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Abstract

tBregs are a newly discovered subcategory of B regulatory cells, which are generated by

breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In

this study, we use a mathematical and computational approach to investigate the complex

interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B

cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis

of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our

model the concentration of rituximab - a monoclonal antibody that has been suggested as a

potential breast cancer therapy - and test its effect, when the standard, as well as experimental

dosages, are administered.
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1 Introduction

B cells play an important role in antibody production, regulation of T cells and activation of

CD4+ T cells [51]. They are characterized by inhomogeneity and depending on their function are

categorized in different classes, such as plasma cells which produce antibodies [53] and B regulatory

cells (Bregs) which regulate the function of other immune cells [62].

The relationship between B cells and cancer, even though is as important as the relationship of

T cells and NK cells with cancer, which is generally more common in scientific research, has only

recently started being studied [27]. In recent years, the discovery of tumor-infiltrating B cells has

sparked new research regarding their role in cancer [38]. More specifically in breast cancer, the

function of B cells seems to be very complex and is still debatable with different studies indicating

them either as positive [43, 31, 76] or negative [48, 49, 47] mediators of the disease or remaining
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neutral [75, 22, 70]. Due to their big significance and rich interactions with breast cancer, tumor-

infiltrating B cells have been characterized as a “new hallmark of breast cancer” [66].

Recent scientific publications [54, 55, 6], discovered a sub-population of Bregs, named tumor-

evoked Bregs (tBregs), which are being generated by the existence of breast cancer. tBregs in turn,

cause an increase in Treg population by helping the differentiation of CD4+ T cells to Tregs, which

kill NK cells causing breast cancer to metastasize to the lungs.

The authors of [55] concluded that tBregs need to be controlled in order for breast cancer to

regress, thus, suggesting the anti-CD20 monoclonal antibody rituximab as a potential cure for

some types of breast cancer. Rituximab targets the CD20 protein, which is mainly found on the

surface of B cells, binding with it and triggering B cell death [8]. It is used to combat blood cancers

such as leukaemia and lymphoma, as well as autoimmune diseases such as rheumatoid arthritis

[69].

Studies regarding the effect of B cell depletion in cancer have been mixed. In [34], mice bearing

lung cancer were depleted of B cells, through the use of an anti-CD20 antibody, which slowed

tumor growth. Additionally, when active immunotherapy was used in conjunction with the anti-

CD20 antibody, the authors observed increased anti-tumor effects and CD8+ T cell levels. On the

other hand, in [2] the authors treated fifteen renal cell carcinoma and six melanoma patients with

rituximab and IL-2 and found that B cell depletion produces no different results on IL-2 therapy.

Moreover, in [9], B-cell-depleted mice bearing glioblastoma and wild-type mice treated with an

anti-CD20 antibody bearing glioblastoma were given a treatment that induces tumor regression

in 60% of wild-type mice. The treatment completely failed in both classes of mice, as mice were

unable to exhibit clonal expansion of anti-tumor T cells. Thus, the authors noted that B cells play

the role of antigen presenting cells.

Mathematical models studying the role of B cells in cancer are scarce. The few published

mathematical models that study B cells, mainly focus on their ability to produce antibodies [23, 18]

or the relationship between mature B cells and progenitor B cells in B-cell acute lymphoblastic

leukaemia [37, 52], while as far as we know, a mathematical model studying their regulatory activity

does not exist.

The goal of this study is to develop a mathematical framework within which we can investigate

the complex interactions between breast cancer and the immune system, including B cells and

tBregs, in order to get a better understanding of their functions, as well as investigate the efficacy

of a potential B-cell-depletion breast cancer therapy through the administration of rituximab. To

this end, we derive a new mathematical model consisting of a system of coupled nonlinear ordinary

differential equations. In our model, we describe the interactions between breast cancer cells, NK

cells, CD8+ T cells, CD4+ T cells, Tregs, B cells and tBregs, as well as the total concentration of

rituximab administered to the organism.

As far as CD8+ T cells are concerned, they have been included in various mathematical models

[16, 17]. The inclusion of CD8+ T cells in our model will allow us to study their vital role of

tumor-lysing, as well as their interactions with Tregs and non-Treg CD4+ T cells.

Non-Treg CD4+ T cells play a big role in anti-tumor immunity since they induce the proliferation

of CD8+ T cells, as well as NK cells through the production of IL-2. They are also activated by B

cells. Furthermore, the process in which tBregs induce the proliferation of Tregs, relies on tBregs

converting non-Treg CD4+ T cells to Tregs. Even though non-Treg CD4+ T cells have been studied

in various mathematical models, the models mainly studied their ability to produce the cytokine

IL-2 and not their interactions with other immune cells [10, 3, 74, 45], whereas other models that

exist in the literature either study their IL-2 production along with Treg generation [61], or their

ability to induce the proliferation of effector cells [20]. Hence, the inclusion of non-Treg CD4+ T
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cells in our model will allow us to study their rich interactions with other immune cells.

The layout of this study is as follows. In Section 2, we describe in detail the new mathematical

model for tumor-immune interactions. In Section 3, we derive the model parameters. In Section

4, we study the dynamics of our model using numerical simulations. Finally, in Section 5, we

conclude with a summary and discussion of the results.

2 Mathematical model

In this section, we develop a mathematical model in an attempt to study the interactions between

breast cancer cells and the various immune cells, including B cells and tBregs, as well as the effect

of rituximab on breast cancer progression.

As the biochemical cascade of events linked with cancer growth and immune response are vastly

complex, we note that there is no catholic agreement on those events. Therefore, we base our model

on the following published scientific propositions:

1. Breast cancer grows logistically in the absence of an immune response, as also discussed in

Section 3.1.

2. Breast cancer promotes the proliferation of tBregs [55].

3. tBregs promote Treg generation, by converting them from non-Treg CD4+ T cells [55].

4. Tregs kill NK cells, which causes lung metastasis [54, 57].

5. Tregs aggressively suppress the proliferation of CD8+ T cells and non-Treg CD4+ T cells,

when cocultured [39].

6. Tregs inhibit the cytotoxic activity of NK cells [72].

7. Both NK cells and CD8+ T cells directly kill breast cancer cells [51, 1].

8. CD4+ T cells improve the efficiency of CD8+ T cells in killing cancer cells [28].

9. CD4+ T cells are required for the generation of CD8+ T cells [36, 32].

10. NK cells stimulate the proliferation of CD8+ T cells [5].

11. CD4+ T cells stimulate the proliferation of NK cells by producing the cytokine IL-2 [46, 4].

12. Rituximab only affects non-tBregs B cells, as tBregs express CD20 in low levels [7].

Figure 1 gives a schematic representation of the interactions between the cells in our model.

Therefore, our model considers seven cell populations and the concentration of rituximab. Let

us denote by:

• t, the time, measured in days.

• T (t), the total tumor cell population, at time t.

• N(t), the total NK cell population, at time t.

• C(t), the total CD8+ T cell population, at time t.

• H(t), the total non-Treg CD4+ T cell population, at time t.

• R(t), the total Treg cell population, at time t.
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Figure 1: Interactions between the cells in system (2.1). Solid line: Stimulating effect. Dashed line:
Inhibiting effect.

• B(t), the total non-tBreg B cell population, at time t.

• BT (t), the total tBreg cell population, at time t.

• X(t), the mass of rituximab per blood volume, measured in micrograms per milliliter, at

time t.

Our model consists of the following system of coupled nonlinear ordinary differential equations:

dT

dt
= aT (1 − bT ) − ce−λRR

Nδ

sNT δ +Nδ
T − d

Cl

sCT l +Cl
T , (2.1a)

dN

dt
= σN − θNN − pTN − γNR

δNN + κHN , (2.1b)

dC

dt
= σC − θCC − qTC − γCRC + rNT +

jCT

kC + T
C +

η1H

η2 +H
C , (2.1c)

dH

dt
= σH − θHH +

jHT

kH + T
BH − c1HBT , (2.1d)

dR

dt
= σR − θRR + c1HBT , (2.1e)

dB

dt
= σB − θBB − c2TB − γBX

2B , (2.1f)

dBT
dt

= −θBTBT + c2TB , (2.1g)

dX

dt
= −θXX + v(t) , (2.1h)
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along with the initial condition:

(T (0) ,N (0) ,C (0) ,H (0) ,R (0) ,B (0) ,BT (0) ,X (0)) =

(T 0,N0,C0,H0,R0,B0,BT
0,X0) ∈ [0,∞)

8
. (2.2)

Table 1 lists all of the terms of system (2.1), along with a brief description. We subsequently

give a detailed description of each model term.

In equation (2.1a), the first term, aT (1−bT ), models the logistic growth of breast cancer. The

last term, −d Cl

sCT l+ClT , describes the CD8+ T cells killing of breast cancer cells. This predation

term is of a Hill form, with the ratio of CD8+ T cells to breast cancer cells as the Hill function

variable. It was firstly used in [16], and subsequently in various other models [17, 45, 13]. The

lysis rate of tumor cells due to CD8+ T cells seems to be a function of their ratio, thus this Hill

form is able to capture that dynamic [16].

The second term, −ce−λRR Nδ

sNT δ+Nδ T , models the breast cancer lysis due to NK cells with Treg

inhibition. We have used the function e−λRR to model the Treg inhibition of NK-induced breast

cancer cell lysis, as it is positive and it does not affect the lytic activity of NK cells when there

are no Tregs. It has also been used in [13] for the same reasons. The Hill function c Nδ

sNT δ+Nδ
is used in the same way as d Cl

sCT l+Cl is used to model the NK-induced breast cancer cell lysis.

The simpler functional response function cN is used in various other models to capture the same

dynamic [16, 17]. Nevertheless, data from [67] show us that this Hill term seems to be able to

capture the NK-induced breast cancer lysis more accurately. For a more in-depth discussion, see

Section 3.2. Modeling the lytic activity of NK cells using a Hill function is a novel approach, since

as far as we know there does not exist a model using this rational Hill form for this purpose.

In equation (2.1b), the first term, σN , represents the constant source of NK cells from the

organism, whereas the second term, −θNN , represents the natural NK cell death. The third

term, −pTN , represents the inactivation of NK cells after interacting with tumor cells. A similar

inactivation term has been used in [35] for the case of CD8+ T cells and in other models for the NK

cells case such as in [14] and [45]. The forth term, −γNR
δNN , is used to model the Treg-induced

NK apoptosis. The form of this term is derived from data fitting experiments based on data from

[67]. For a more in-depth discussion, see Section 3.2. The last term, κHN , is used to model the

fact that NK cells proliferate in the presence of the cytokine IL-2 [46]. Since non-Treg CD4+ T

cells are the main producers of IL-2 [4], we use this term as a proxy due to our model not including

IL-2.

In equation (2.1c), the first term, σC , represents the constant source of CD8+ T cells from

the organism, whereas the second term, −θCC, represents the natural CD8+ T cell death. The

third term, −qTC, represents the inactivation of CD8+ T cells due to their interaction with breast

cancer cells. It has been used in various models, such as in [35] and [14]. The forth term, −γCRC,

is used to model the suppression of CD8+ T cell proliferation by Tregs. In [39], the authors found

that when coculturing CD8+ T cells with Tregs taken from pancreatic and breast cancer patients,

Tregs suppressed the proliferation of CD8+ T cells. The fifth term, rNT , represents CD8+ T cell

recruitment due to the debris from tumor cells lysed by NK cells [5, 30] and has been used in

various models [16, 45]. The sixth term, jCT
kC+T C, models the activation of CD8+ T cells due to

the presence of breast cancer cells and is included since CD8+ T cells are part of the adaptive

immune system. It has the same form as in [35]. The final term, η1H
η2+HC, represents the CD4+

T-cell-induced CD8+ T cell proliferation and it has a Michaelis-Menten form. CD4+ T cells can

directly help the activation of CD8+ T cells through cell-cell interactions via the CD40-CD154

signal pathway or indirectly through the production of IL-2 [36].
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In equation (2.1d), the first term, σH , represents the constant source of non-Treg CD4+ T

cells from the organism, whereas the second term, −θHH, represents the natural non-Treg CD4+ T

cell death. The third term, jHT
kH+T BH, represents the proliferation of non-Treg CD4+ T cells due to

the existence of breast cancer and is included since CD8+ T cells are part of the adaptive immune

system. Non-tBreg B cells appear in this term as they activate non-Treg CD4+ T cells, acting as

antigen presenting cells and thus without them, non-Treg CD4+ T cells would not get activated.

The last term, −c1HBT , represents the differentiation of non-Treg CD4+ T cells to Tregs due to

tBregs [55]. As non-Treg CD4+ T cells are converted to Tregs and Tregs do not seem to play a

part in this conversion, we choose to only include the non-Treg CD4+ T cells and tBregs in this

term. In equation (2.1d), this term has a negative sign since non-Treg CD4+ T cells are decreasing

during this procedure.

In equation (2.1e), the first term, σR, represents the constant source of Tregs from the organ-

ism, whereas the second term, −θRR, represents the natural Treg death. The last term, c1HBT ,

represents the conversion of non-Treg CD4+ T cells to Tregs. This term is the opposite of equa-

tion’s (2.1d) corresponding conversion term, since Tregs are increasing during this procedure and

we want the two terms to have the same absolute value, because the same number of non-Treg

CD4+ T cells that are lost, become Tregs.

In equation (2.1f), the first term, σB , represents the constant source of non-tBreg B cells from

the organism, whereas the second term, −θBB, represents the natural non-tBreg B cells death.

The third term, −c2TB, represents the breast-cancer-induced differentiation of non-tBreg B cells

to tBregs [55]. Just like the conversion term c1HBT in equations (2.1d) and (2.1e), we only include

non-tBreg B cells and breast cancer cells in this term as only these two seem to play a role in the

conversion. In equation (2.1f), this term has a negative sign since non-tBreg B cells are decreasing

during this procedure. The last term, −γBX
2B, represents the rituximab-induced non-tBreg B

cell apoptosis. The trophic function of this term is chosen to be of power form, since the term gets

zeroed when there is no rituximab in the organism and because it makes a good fit to data found

in [71] and [12].

In equation (2.1g), there is no intrinsic growth term, since we assume that tBregs do not exist

in the organism in the absence of breast cancer. The first term, −θBTBT , represents the natural

tBreg cell death. The last term, c2TB, represents the differentiation of non-tBregs B cells to

tBregs. This term is the opposite of equation’s (2.1f) corresponding conversion term since tBregs

are increasing during this procedure and we want the two terms to have the same absolute value,

since the same number of non-tBreg B cells that are lost, become tBregs.

In equation (2.1h), the first term, −θXX, represents the excretion of rituximab from patients.

The last term, v(t), is a function of time that models the mass of rituximab per liter of blood that

gets infused into a patient per amount of time and is measured in µg
mL⋅day

.

3 Parameter estimation

In this section, we carefully determine the model parameters. Since the model features a large

amount of parameters, we use different methods in order to determine them, such as finding their

value in biological literature, data fitting them based on biological research, calculating them

based on the biological homeostasis states we found in Appendix A, borrowing them from other

mathematical models or estimating them in order for our model to exhibit biological reasonable

results. Below we give a detailed explanation about each parameter. A summary of the description

and value of each parameter of the model can be found in Table 5.
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Table 1: Description of the terms of system (2.1).

Deriv. Term Description

dT
dt

aT (1 − bT ) Logistic tumor growth

−ce−λRR Nδ

sNT δ+Nδ T NK-induced tumor death with Treg inhibition

−d Cl

sCT l+ClT CD8+ T-induced tumor death

dN
dT

σN Constant source of NK cells
−θNN Programmed NK cell death
−pTN NK death by exhaustion of tumor-killing resources
γNR

δNN Treg-induced NK apoptosis
κHN CD4+ T-induced NK cell proliferation

dC
dt

σC Constant source of CD8+T cells
−θCC Programmed CD8+T cell death
−qTC CD8+T cells death from exhaustion of tumor-killing resources
−γCRC Suppression of the proliferation of CD8+ T cells by Tregs
rNT CD8+ T cell recruitment due to NK-lysed tumor debris
jCT
kC+T C Activation of CD8+ T cells due to the presence of breast cancer cells
η1H
η2+HC CD4+ T-induced CD8+ T proliferation

dH
dt

σH Constant source of non-Treg CD4+ T cells
−θHH Programmed non-Treg CD4+ T cell death
jHT
kH+T BH CD4+ T cell recruitment due to breast cancer, with B cell help

−c1HBT Differentiation of non-Treg CD4+ T cells to Tregs due to tBregs

dR
dt

σR Constant source of Tregs
−θRR Programmed Treg death
c1HBT Differentiation of non-Treg CD4+ T cells to Tregs due to tBregs

dB
dt

σB Constant source of non-tBreg B cells
−θBB Programmed non-tBreg B cell death
−c2TB Breast-cancer-induced differentiation of non-tBreg B cells to tBregs
−γBX

2B Rituximab-induced non-tBreg B cell apoptosis

dBT
dt

−θBTBT Programmed tBreg death
c2TB Breast-cancer-induced differentiation of non-tBreg B cells to tBregs

dX
dt

−θXX Excretion of rituximab
v(t) Rituximab injection
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Figure 2: Fitting of the logistic and Gompertzian growth models to data from [58].

3.1 The tumor

The breast cancer growth rate, a = 0.17 day−1, and inverse of carrying capacity, b = 10−10 cell−1,

are found using Mathematica’s NonlinearModelFit function to fit the logistic growth equation

to breast tumor growth data from NSG mice found in [58]. The authors of [58] compared the

growth and metastasis of three different breast cancer cells lines, namely CN34BrM, MDA-231

and SUM1315 cell lines, on athymic nude mice and NSG mice. The difference between the two

kinds of mice is that the former lack T cells, since they are athymic, while their innate immunity

is intact meaning that they still have NK cells. On the contrary, NSG mice not only are depleted

of T cells, but also of B cells, while their NK activity is extremely low, therefore having impaired

innate immunity. As can be seen in Figure 1 in [58], the study showed that tumor growth in NSG

mice was greater compared to athymic nude mice, therefore providing a better model of breast

cancer growth in an immunodeficient organism. Even though similar data fitting experiments

have already been conducted [64], we choose to run our own data fitting experiments due to the

superiority of NSG mice versus athymic mice or BALB/c mice - which have the same immune cells

as athymic nude mice [11] - like the ones in which the authors of [64] have based their data fitting

experiments on.

Two of the most common mathematical models used to capture the growth of cancer cells are

the logistic model
dp

dt
= rp(1 −

p

K
) , p(0) = p0 , (3.1)
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Table 2: Parameter values for the logistic and Gompertzian model.

Cell Line
Logistic Model Gompertzian Model

Growth Rate Carrying Cap. Growth Rate Carrying Cap.

CN34BrM 0.16511 7.58 ⋅ 108 0.0513 1.05 ⋅ 109

MDA-231 0.16835 1.03 ⋅ 109 0.0328 3.6 ⋅ 109

SUM1315 0.06554 3.39 ⋅ 109 0.007 4.92 ⋅ 1011

and the Gompertzian model [15]

dp

dt
= rp ln

K

p
, p(0) = p0 , (3.2)

where r is the intrinsic growth of the population and K is its carrying capacity.

Before we fit the two models to the data, we need to convert the data from tumor volume to

total number of cancer cells that exist in each tumor volume. We use the same method as in [13].

Assuming a spherical tumor cell diameter of approximately 15.15µm yields a tumor cell volume of

approximately 1.82 ⋅ 103µm3. Converting the data points from Figure 1 in [58], from mm3 to µm3

and dividing them by the tumor cell volume calculated, yields the total cancer cell number in each

tumor volume.

The results from fitting the above two growth models to the data from [58] for the three breast

cancer cell lines, are summarized in Figure 2 and Table 2. As we can see in Figure 2, both models

make a very good fit to the data, which is consistent with the results from [64]. With that in

mind and considering that the logistic model is simpler and would make analysis easier, we pick

the logistic over the Gompertzian function for our model.

Finally, we choose the value of breast cancer growth rate to be the round up maximum value

found by our data fitting experiments, that is 0.16835 day−1. On the other hand, we chose the

inverse of the carrying capacity to be a bit smaller than the lowest value found on our data fitting

experiments which is approximately 2.8 ⋅ 10−10 cell−1. Our reasoning for doing so is because we

want to study the case of an aggressive breast cancer.

The value range for the maximum rate at which NK cells lyse cancer cells, c, the value of (N
T
)δ

for half-maximal NK toxicity, sN , and the Hill coefficient, δ, are determined through data fitting

experiments based on data from [67]. In that study, the authors collected blood samples from

normal donors and female breast cancer patients. The NK cells collected from their blood were

expanded and subsequently placed on wells, along with either 2 ⋅ 105 cells of the triple negative

breast cancer cell line MDA-MB-231 or 4 ⋅ 105 cells of the HER2-positive breast cancer cell line

MDA-MB-453, at various ratios. After 4-5 hours the percent-specific lysis of breast cancer cells by

NK cells was calculated. Assuming, that both cell populations are not able to grow inside the wells

due to the lack of nutrients and space, we can use the following initial value problem to model the

described phenomenon:

dT

dt
= −f (T,N)T (t) , T (0) = TE , (3.3a)

dN

dt
= −θNEN(t) , N(0) = ratio ⋅ TE , (3.3b)

where T is the breast cancer cell population, N is the NK cell population, θNE is the rate of natural

NK cell death in vitro, TE is the initial number of breast cancer cells, ratio is the ratio of NK cells

to breast cancer cells and f (T,N) is the trophic function describing the killing of breast cancer
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Table 3: Parameter values admitted from data fitting problem (3.3) to data from [67].

MDA-MB-231/luc MDA-MB-453

Power Form

c 1.462 ⋅ 10−7 2.07 ⋅ 10−5

δ 1.2089 0.7883

Rational Form

c 11.2263 19.6448
δ 1.33332 0.8249
sN 39.222 3.85119

Michaelis-Menten Form

c 55.0679 22.858
δ 1.8547 ⋅ 107 1.23545 ⋅ 106

cells by NK cells.

Using data from Figure 5 in [54] we get that θNE = 0.7414 day−1 (see Appendix B for more on

how to calculate the turnover rate in vitro).

As far as the trophic function f (T,N) is concerned, we use three different functions in order

to determine which one makes the best fit and is therefore able to capture the dynamics of NK

cells killing breast cancer cells more accurately. We use a power form, a rational Hill form and

a Michaelis-Menten form, thus during our data fitting experiments the trophic function f (T,N)

takes one of the following forms:

f (T,N) = cNδ or = c
Nδ

sNT δ +Nδ
or = c

N

δ +N
. (3.4)

Using Mathematica’s ParametricNDSolveValue function, we are able to solve problem (3.3)

numerically and get the percent-specific lysis of breast cancer cells by NK cells as a function of the

form

1 − T (tfinal)

TE
, (3.5)

where tfinal = 5/24 days, since we assume that authors kept the cells in the wells for 5 hours.

Function (3.5) depends on the parameters of problem (3.3), as well as the ratio. We then pass

function (3.5) on to Mathematica’s NonlinearModelFit function, which allows us to fit function

(3.5) to the percent-specific lysis of breast cancer cells by NK cells expanded from breast cancer

patients data taken from Figure 2 in [67], with ratio as the independent variable.

The percent-specific lysis curves predicted by problem (3.3) along with the distance to data at

each data point are given in Figure 3. Table 3 lists the parameters determined from our data fitting

experiments. As we can see in Figure 3, the rational Hill form makes the best fit regarding both

breast cancer cell lines. Although the rational Hill form has one more variable and is therefore

easier to be fitted, both breast cancer cell lysis curves seem to exhibit a saturation effect as the

ratio gets larger, hence it is natural for the rational Hill form to make a better fit.

In [16], a similar data fitting experiment was conducted, in which it was found that the power

form, and more specifically a linear function, makes a very good fit in the case of NK cells lysing

YAC-1 tumor cells. Different forms of the functional response function were not tested. This

contrast between [16] and our simulations could be explained in two ways. Firstly, YAC-1 is a

lymphoma cell line, unlike the two breast cancer cell lines we used in our simulations. Thus, it
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Figure 3: Left: Lysis curves of breast cancer cells by NK cells predicted by fitting the parameters of
problem (3.3) to data from [67]. Right: The residuals at each data point.

seems that NK cells lyse different cancer cell types in different ways. Secondly, as we already

discussed, the cell lysis data we used in our simulations seem to exhibit a saturation effect as the

ratio of NK to breast cancer cells gets larger, something that is not true with the respective data

used in [16], which also explains the difference between the outcomes of [16] and our simulations.

In our numerical simulations we vary those three parameters in order to study their effect on

the breast cancer-immune dynamics.

The Treg-induced NK cell inhibition coefficient, λR = 1 ⋅10−8 cell−1, is found to give the best fit

to known data.

The maximum rate at which CD8+ T cells lyse cancer cells, d = 1.7 day−1, the value of (C
T
)l

for half-maximal CD8+ T cell toxicity, sC = 3.5 ⋅10−2, and the Hill coefficient, l = 1.7, are borrowed

from [13], in which the authors derived the value of these parameters using data found in [19] and

[21].

3.2 The NK cells

The constant source of NK cells, σN = 1.13 ⋅ 108 cells ⋅ day−1, is taken from [77]. In that study, the

authors found that healthy young adults have a total NK production rate of (15±7.6)⋅106 cells ⋅ L−1

· day−1, while healthy older adults have one of (7.3± 3.7) ⋅ 106 cells ⋅ L−1 · day−1. Considering that

the average amount of blood in the human body is about 5 liters [68] and choosing the maximum

NK production rate, we get the value of σN .

The rate of programmable NK cell death, θN = 0.06301 day−1 is found by assuming the expo-

nential decay of NK cells. Furthermore, the half-life of NK cells in humans is 1 to 2 weeks [77].
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Figure 4: Left: Lysis curves of NK cells by Tregs predicted by fitting the parameters of problem (3.6) to
data from [54]. Right: The residuals at each data point.

Here, we choose an NK cell half-life of 11 days with a corresponding programmable NK death rate

of θN = ln 2
11 day

≈ 0.06301 day−1 .

The rate of Treg-induced NK cell apoptosis, γN = 10−6 cell−δN ⋅ day−1, and NK cell resistance

to Treg-induced apoptosis coefficient, δN = 0.5, is determined by fitting data found in [54]. In

particular, the authors of [54] cultured NK cells along with Tregs in wells, at various ratios. After

16 hours, the apoptosis of NK cells was assessed. Assuming, that both cell populations are not

able to grow inside the wells due to the lack of nutrients and space, we can use the following initial

value problem to model the described phenomenon:

dN

dt
= −θNEN(t) − f (N,R)N(t) , N(0) = NE , (3.6a)

dR

dt
= −θRER(t) , R(0) = ratio ⋅NE , (3.6b)

where N is the NK cell population, R is the Treg population, θNE is the rate of natural NK cell

death in vitro, θRE is the rate of natural Treg death in vitro, NE is the initial number of NK cells,

ratio is the ratio of Tregs to NK cells and f (N,R) is the trophic function describing the killing of

NK cells by Tregs.

From Figure 1a in [44], we notice that, in vitro, the percentage of Treg reduction after 24 hours

is approximately 18%. Therefore, we have that θRE ≈ 0.1985 day−1. From Figure 5A in [54], we

notice that, in vitro, the percentage of NK cell reduction after 16 hours is approximately 39%.

Therefore, we have that θNE ≈ 0.7414 day−1 (see Appendix B for more on how to calculate the

turnover rate in vitro).

Since the authors of [54] do not specify the initial number of NK cells that were put in the

wells, we assume it to be 5 ⋅ 109, a number of the same order of magnitude as the number of NK

cells at homeostasis state we found in Appendix A. Choosing the following three trophic functions:

f (N,R) = γNN
δN or = γN

NδN

sRRδN +NδN
or = γN

N

δN +N
, (3.7)

and following the same procedure we used for the NK-induced lysis of breast cancer cells in Section

3.1, we get that the lytic curves predicted by problem (3.6) are given in Figure 4, whereas parameter

12



Table 4: Parameter values admitted from data fitting problem (3.6) to data from [67].

Power Form

γN 2.92131 ⋅ 10−6

δN 0.499502

Rational Form

γN 5.15405 ⋅ 1010

δN 0.478213
sR 2.93734 ⋅ 1011

Michaelis-Menten Form

γN 0.604742
δN 1.02378 ⋅ 1010

values are given in Table 4. As we can see in Figure 4, the power form and rational form make

the greatest fit. Since the power form is simpler, we choose it over the rational form. For further

simplicity, we round parameters γN and δN in order to finally get γN = 10−6 cell−δN ⋅ day−1 and

δN = 0.5.

The rate of CD4+ T cell-induced NK activation, κ = 1.63 ⋅ 10−11 cell−1
⋅ day−1, is derived by

assuming equation (2.1b) at the zero-tumor equilibrium. When dN
dt

= 0, we have that σN − θNN0 −

γNR
δN
0 N0 + κH0N0 = 0 and by solving for κ we derive its value.

The rate of NK cell death due to tumor interaction, p = 4.66 ⋅ 10−12 cell−1
⋅ day−1, is derived by

assuming equation (2.1b) at the high-tumor equilibrium. When dN
dt

= 0, we have that σN −θNN1 −

pT1N1 − γNR
δN
1 N1 + κH1N1 = 0 and by solving for p we derive its value.

3.3 The CD8+ T cells

The constant source of CD8+ T cells, σC = 3 ⋅ 107 cells ⋅ day−1, is taken from [29]. In that study,

the authors found that the mean value of the absolute proliferation of CD8+ T cells is 5.9 cells ⋅

day−1
⋅ µL−1. Assuming that the average human has 5 liters of blood and converting the absolute

proliferation of CD8+ T cells to cells ⋅ day−1 and rounding the result up, yields the value of σC .

The rate of programmable CD8+ T cell death, θC = 0.009 day−1, is found by assuming expo-

nential decay of CD8+ T cells and taking their half-life to be 77 days, as found in [29]. Hence,

θC = ln 2
77 day

≈ 0.009 day−1.

The rate of CD8+ T cell death due to tumor interaction, q = 3.422 ⋅ 10−10 cell−1 ⋅ day−1, is

borrowed from [35] in which the authors derived the value from mouse data and a general effector

cell and cancer cell population.

The rate of Treg-induced CD8+ T cell death, γC = 10−6 cell−1
⋅ day−1, is an ad hoc value that

has been chosen to give reasonable biological results due to the lack of data regarding the death

of CD8+ T cells due to Tregs.

The rate of CD8+ T cell activation due to NK lysed tumor cell debris, r = 1.05⋅10−10 cells⋅day−1,

is derived by assuming equation (2.1c) at the high-tumor equilibrium. When dC
dt

= 0, we have that

σC − θCC1 − qT1C1 − γCR1C1 + rN1T1 +
jCT1

kC+T1
C1 +

η1H1

η2+H1
C1 = 0 and by solving for r we derive its

value.

The rate of CD8+ T cell recruitment due to cancer, jC = 1.245 ⋅ 10−1 day−1, and the breast

cancer cell number for half-maximal CD8+ T cell recruitment due to cancer, kC = 2.019 ⋅ 107 cells,

are borrowed from [35] in which the authors derived the value from mouse data and a general

effector cell and cancer cell population.
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The rate of CD8+ T cell recruitment due to CD4+ T cells, η1 = 2.48 day−1, is derived by

assuming equation (2.1c) at the zero-tumor equilibrium. When dC
dt

= 0, we have that σC − θCC0 −

γCR0C0 +
η1H0

η2+H0
C0 = 0 and by solving for η1 we derive its value.

The CD4+ T cell number for half-maximal CD8+ T cell recruitment due to CD4+ T cells,

η2 = 2.5036 ⋅ 103 cells, is an ad hoc value that has been chosen to give reasonable biological results

due to the lack of data regarding the activation of CD8+ T cells by CD4+ T cells.

3.4 The CD4+ T cells

The constant source of CD4+ T cells, σH = 2.2 ⋅ 107 cells · day−1, is derived by assuming equation

(2.1d) at the zero-tumor equilibrium. When dH
dt

= 0, we have that σH − θHH0 = 0 and by solving

for σH we derive its value.

The rate of programmable CD4+ T cell death, θH = 0.00797 day−1, is found by assuming

exponential decay of CD4+ T cells and taking their half-life to be 87 days, as found in [29]. Hence,

θH = ln 2
87 day

≈ 0.00797 day−1.

The breast cancer cell number for half-maximal CD4+ T cell recruitment due to breast cancer,

kH = 2.5036 ⋅ 103 cells, is an ad hoc value that has been chosen to give reasonable biological results

due to the lack of data regarding the recruitment of CD4+ T cells due to breast cancer cells.

The rate of CD4+ T cell recruitment due to breast cancer, jH = 4.45 ⋅ 10−12 cell−1⋅ day−1, is

derived by assuming equation (2.1d) at the high-tumor equilibrium. When dH
dt

= 0, we have that

σH − θHH1 +
jHT1

kH+T1
B1H1 − c1H1BT1 = 0 and by solving for jH we derive its value.

The rate of differentiation of CD4+ T cells to Tregs, c1 = 1.21 ⋅ 10−10 cell−1 · day−1, is derived

in Section 3.5.

3.5 The Tregs

The constant source of Tregs, σR = 9.24 ⋅ 106 cells · day−1, is derived by assuming equation (2.1e)

at the zero-tumor equilibrium. When dR
dt

= 0, we have that σR − θRR0 = 0 and by solving for σR

we derive its value.

The rate of programmable Treg death, θR = 0.03851 day−1, is found by assuming their half-life

to be 18 days, as found in [40]. Thus, assuming Tregs follow exponential decay we have that

θR = ln 2
18 day

≈ 0.03851 day−1.

The rate of differentiation of CD4+ T cells to Tregs, c1 = 1.21 ⋅10−10 cell−1 · day−1, is derived by

assuming equation (2.1e) at the high-tumor equilibrium. When dR
dt

= 0, we have that σR − θRR1 +

c1H1BT1 = 0 and by solving for c1 we derive its value.

3.6 The B cells

The constant source of non-tBreg B cells, σB = 3.16 ⋅ 107 cells · day−1, is derived by assuming

equation (2.1f) at the zero-tumor equilibrium. When dB
dt

= 0, we have that σB − θBB0 = 0 and by

solving for σB we derive its value.

The rate of programmable non-tBreg B cell death, θB = 0.0395 day−1, is derived from data

taken from [41]. In that study, the authors measured the half-life of the whole B cell population

among 12 healthy donors aged between 19 and 85 years of age. Looking at the data from their

Table 1, we have that the average B cell half-life in those 12 donors, with an average age of about

51.1 years, is approximately 17.56 days. Assuming exponential decay of B cells, we have that the

rate of programmable B cell death is θB = ln 2
17.56 day

≈ 0.0395 day−1.
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The rate of differentiation of B cells to tBregs, c2 = 1.7⋅10−13 cell−1·day−1, is derived by assuming

equation (2.1f) at the high-tumor equilibrium. When dB
dt

= 0, we have that σB −θBB1 − c2T1B1 = 0

and by solving for c2 we derive its value.

The rituximab-induced non-tBreg B cell inhibition coefficient, γB = 20 mL2

µg2 ⋅ day
, was found by

running numerical simulations and choosing the value of γB , so the behavior of non-tBreg B cells

to be similar to data from [71] and [12]. For a more in-depth discussion, see Section 4.2.

3.7 The tBregs

The rate of programmable tBreg death, θBT = 0.039 day−1, is derived by assuming equation (2.1g)

at the high-tumor equilibrium. When dBT
dt

= 0, we have that θBTBT1 + c2T1B1 = 0 and by solving

for θBT we derive its value.

The rate of differentiation of B cells to tBregs, c2 = 1.7 ⋅ 10−13 cell−1·day−1, was derived in

Section 3.6.

3.8 The rituximab

The rate of excretion of rituximab, θX = 0.033 day−1, is taken from [71] and [60]. In [71], the authors

measured the half-life of 12 rituximab-treated patients with relapsed CD20+ B-cell lymphoma.

Four of the patients received four weekly doses of 250mg/m2 and eight of the patients received

four weekly doses of 375mg/m2. In total, the average rituximab half-life of both groups was

445.4 hours. In [60], the authors measured the half-life of 22 patients with follicular lymphoma

in complete or partial remission, 14 patients with various autoimmune disorders, four patients

with AL Amyloidosis and eight patients with relapsed follicular or mantle cell lymphoma. All

patients received the standard dose of 375mg/m2. Patients in the first two groups received four

weekly doses, patients in the third group received eight weekly doses, whereas patients in the fourth

group received a total of six doses with various schedules. No statistically significant difference

was observed between the groups, with a total average half-life of about 3 weeks. Seeing as both

studies agree on the half-life of rituximab being about 3 weeks and assuming exponential decay,

we have that θX = ln 2
21 day

≈ 0.033 day−1.

The rituximab dose function, v(t), is a function of time, and is determined as follows. The

standard dosage of rituximab is 375mg/m2 once a week for four weeks, as its clinical safety and

efficacy has been established [25]. However, when inside the organism, rituximab is measured in

µg/mL as we can notice in several studies, for example in [71] and [60]. Therefore, we convert

the amount of rituximab received per dose from mg/m2 to µg/mL. We choose the body surface

area to be equal to 1.7m2 based on breast cancer patients’ data provided by Table 3 in [63] and

references there in. In [63], the authors focused on cancer patients who were already receiving

some sort of treatment, but we do not notice a difference between them and patients who received

no treatment based on values from other studies discussed in that particular article. Furthermore,

assuming once again that the average human has 5 liters of blood, we have that

375
mg

m2
→ 375 ⋅ 1.7m2

⋅
1

5L

mg

m2
=

375 ⋅ 1.7

5 ⋅ 103

mg

mL
= 127.5

µg

mL
. (3.8)

Hence, we assume that every patient receives 127.5 µg/mL rituximab per dose.

In [60], we see that the infusion time of rituximab is about 4 to 6 hours for the first infusion

and 3 to 4 hours for subsequent infusions. Assuming that each infusion lasts 4 hours, we have that

in order to model the total amount of rituximab entering the organism, the value of v(t) needs to
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be equal to

v(t) =
127.5

4

µg

mL ⋅ hour
=

127.5

4/24

µg

mL ⋅ day
= 765

µg

mL ⋅ day
, (3.9)

for 4 hours in order to simulate a full infusion. Therefore, in order to model a complete standard

dose, starting at day 0, we have that

v(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

765 , t ∈D

0 , elsewhere ,
(3.10)

where

D = {t ∈ R ∶ (0 ≤ t ≤ 0.16) ∪ (7 ≤ t ≤ 7.16) ∪ (14 ≤ t ≤ 14.16) ∪ (21 ≤ t ≤ 21.16)} . (3.11)

To sum up we have Table 5.

Table 5: A list of model parameters along with their description, value, units and source.

Par. Description Value Units Source

a Breast cancer growth rate 0.17 day−1 Data fitting from [58]

b Inverse of breast cancer’s carrying ca-

pacity

10−10 cell−1 Data fitting from [58]

λR Treg-induced NK cell inhibition coeffi-

cient

10−8 cell−1 No data found

c Rate at which NK cells lyse breast can-

cer cells

[11.2263,

19.6448]

day−1 Data fitting from [67]

δ Hill coefficient measuring the steepness

of the NK cell toxicity curve

[0.8249,

1.33332]

- Data fitting from [67]

sN Value of (N
T
)δ for half-maximal NK

cell toxicity

[3.85119,

39.222]

- Data fitting from [67]

d Maximum rate at which CD8+ T cells

lyse cancer cells

1.7 day−1 Borrowed from [13]

l Hill coefficient measuring the steepness

of the CD8+ T cell toxicity curve

1.7 - Borrowed from [13]

sC Value of (C
T
)l for half-maximal CD8+

T cell toxicity

3.5 ⋅ 10−2 - Borrowed from [13]

σN Constant source of NK cells 1.13 ⋅ 108 cell ⋅ day−1 Estimated from [77]

θN Rate of programmable NK cell death 0.06301 day−1 Estimated from [77]

p Rate of NK cell death due to tumor

interaction

4.66 ⋅ 10−12 cell−1 · day−1 Estimated from homeosta-

sis state

γN Rate of Treg-induced NK cell apopto-

sis

10−6 cell−δN ⋅ day−1 Data fitting from [54]

δN NK cell resistance to Treg-induced

apoptosis coefficient

0.5 - Data fitting from [54]

κ Rate of CD4+-T-cell-induced NK acti-

vation

1.63 ⋅ 10−11 cell−1 · day−1 Estimated from homeosta-

sis state

σC Constant source of CD8+ T cells 3 ⋅ 107 cell ⋅ day−1 Estimated from [29]

θC Rate of programmable CD8+ T cell

death

0.009 day−1 Estimated from [29]

q Rate of CD8+ T cell death due to tu-

mor interaction

3.422 ⋅ 10−10 cell−1 · day−1 Borrowed from [35]

γC Rate of Treg-induced CD8+ T cell

death

10−6 cell−1 · day−1 No data found

Continued on next page
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Table 5 – Continued from previous page

Par. Description Value Units Source

r Rate of CD8+ T cell activation due to

NK lysed tumor cell debris

1.05 ⋅ 10−10 cell−1 · day−1 Estimated from homeosta-

sis state

jC Rate of CD8+ T cell recruitment due

to cancer

1.245 ⋅ 10−1 day−1 Borrowed from [35]

kC Breast cancer cell number for half-

maximal CD8+ T cell recruitment due

to cancer

2.019 ⋅ 107 cell Borrowed from [35]

η1 Rate of CD8+ T cell recruitment due

to CD4+ T cells

2.48 day−1 Estimated from homeosta-

sis state

η2 CD4+ T cell number for half-maximal

CD8+ T cell recruitment due to CD4+

T cells

2.5036 ⋅ 103 cell No data found

σH Constant source of CD4+ T cells 2.2 ⋅ 107 cell · day−1 Estimated from homeosta-

sis state

θH Rate of programmable CD4+ T cell

death

0.00797 day−1 Estimated from [29]

jH Rate of CD4+ T cell recruitment due

to breast cancer

4.45 ⋅ 10−12 cell−1⋅ day−1 Estimated from homeosta-

sis state

kH Breast cancer cell number for half-

maximal CD4+ T cell recruitment

2.5036 ⋅ 103 cell No data found

c1 Rate of differentiation of CD4+ T cells

to Tregs

1.21 ⋅ 10−10 cell−1 · day−1 Estimated from homeosta-

sis state

σR Constant source of Tregs 9.24 ⋅ 106 cell · day−1 Estimated from homeosta-

sis state

θR Rate of differentiation of CD4+ T cells

to Tregs

0.03851 day−1 Estimated from [40]

σB Constant source of non-tBreg B cells 3.16 ⋅ 107 cell · day−1 Estimated from homeosta-

sis state

θB Rate of programmable non-tBreg B

cell death

0.0395 day−1 Estimated from [41]

c2 Rate of differentiation of B cells to

tBregs

1.7 ⋅ 10−13 cell−1 · day−1 Estimated from homeosta-

sis state

γB Rituximab-induced non-tBreg B cell

inhibition coefficient

20 mL2

µg2 ⋅ day
Estimated from [71, 12]

θBT Rate of programmable tBreg death 0.039 day−1 Estimated from homeosta-

sis state

θX Rate of excretion of rituximab 0.033 day−1 Estimated from [71], [60]

4 Numerical simulations and results

In this section, we numerically solve problem (2.1)-(2.2) using Julia and the suite DifferentialEqua-

tions.jl [59]. Before we begin, in order to get a better understanding of the breast tumor size, we

convert the primary tumor size classifications of the American Joint Committee on Cancer, found

in Table 2 of [24], from diameter (measured in mm) to total cell count. We present the results in

Table 6. We give a detailed explanation about this conversion in Appendix D.

4.1 Numerical simulations without rituximab

We begin by verifying whether our model yields a high-tumor equilibrium close to the high-tumor

homeostasis values we calculated in Appendix A.2. As far as the zero-tumor equilibrium is con-

cerned, there is no need to numerically verify its existence, since in our linear stability analysis
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Table 6: Classification of breast cancer size expressed in total breast cancer cell count.

Category Range (in Total Breast Cancer Cell Count)

T1 [0,2.30 ⋅ 109]

T1mi [0,2.88 ⋅ 105]

T1a [2.88 ⋅ 105,3.59 ⋅ 107]

T1b [3.59 ⋅ 107,2.88 ⋅ 108]

T1c [2.88 ⋅ 108,2.30 ⋅ 109]

T2 [2.30 ⋅ 109,3.59 ⋅ 1010]

T3 [3.59 ⋅ 1010,+∞]

in Appendix C, we calculated it analytically and, additionally, we derived some of the model’s

parameters using every coordinate of the zero-tumor homeostasis value we found in Appendix A.1.

In Figure 5, we see that with E1 as the initial condition and parameter values as in Table 5, with

c = 15 day−1, sN = 25 and δ = 1, the equilibrium of the model shows a slight decreased value of

breast cancer cells when compared to the biological homeostasis value determined in Appendix

A.2. In particular, the number of breast cancer cells after 300 days is 9.97 ⋅ 109 cells, whereas all

the other cells retain their initial value. This is to be expected, since we assumed breast cancer

cells’ high-tumor biological homeostasis value to be equal to that of an immunodeficient organism.

Therefore, we verify that system (2.1) exhibits biologically realistic results and we move on to

studying the interactions of breast cancer and the immune system.

0 25 50 75 100 125 150 175 200 225 250 275 300
104

105

106

107

108

109

1010

Days

BCa Cells
NK Cells
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Figure 5: Initial condition equal to E1 and parameter values as in Table 5, with c = 15 day−1, sN = 25
and δ = 1.

Next, we numerically test the stability of the high-tumor equilibrium. Figure 6 shows that an

organism with the same parameter values as the simulation showcased in Figure 5, is not able to

fight a relatively small, T1a-stage tumor, with a total cell population of 9.18 ⋅106 cells, while being

able to kill any tumor lower than that. Evidently, the high-tumor equilibrium is stable.
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Figure 6: Initial condition of breast cancer cells is Left: 9.18 ⋅ 106 cells. Right: 9.17 ⋅ 106 cells. All the
other initial conditions are equal to E1 and parameter values are as in Table 5, with c = 15 day−1, sN = 25
and δ = 1.

We turn our attention to the zero-tumor equilibrium and its stability. As this equilibrium point’s

mathematical complexity is lower when compared to the complexity of the high-tumor equilibrium,

we are able to analytically study its local stability. Linearization around the equilibrium shows

that the zero-tumor equilibrium is locally stable for parameter values as in Table 5 (for more see

Appendix C). In fact, out of the three parameters that represent NK cells’ strength at lysing breast

cancer cells, c, sN and δ, only c affects the local stability of the system and therefore causes the

organism to either kill or succumb to the tumor when near the zero-tumor equilibrium. We note

that c is the only parameter of the aforementioned three, that does not directly relate to the ratio

of NK to breast cancer cells, so it seems that in a healthy organism the rate at which NK cells

lyse tumor cells is of greater importance than their ratio. That could also explain the case of

cancer escaping immune surveillance and establishing itself, while only starting as a few cells. The

same holds for the respective CD8+ T cells parameters. For example, Figure 7 shows a case of

immune surveillance breakdown, with c = 0.1 day−1, d = 0.1 day−1 and an initial condition of 5

breast cancer cells while all the other cells are at their healthy homeostasis value. We see that

after approximately 250 days, the tumor reaches its carrying capacity. An interesting observation

is that in this scenario, a breast cancer tumor needs to be of around 103 cells in order to generate

tBregs and it does so at around 80 days after its formation.

Being interested in whether sN and δ play a bigger role in tumor elimination as we move

further away from the zero-tumor equilibrium, we run simulations to find what is the biggest

tumor a healthy organism can beat. In Figure 8, we see that a healthy organism with parameter

values as in Table 5 with c = 15 day−1, sN = 25 and δ = 1, can kill T1c-stage tumors of around

1.03 ⋅109 cells, while unable to kill tumors larger than that. We also see that by increasing the value

of δ to the maximum value found in our data fitting in Section 3.1, the immune system is capable

of beating tumors larger than the aforementioned size, while the same also holds for the case in

which we decrease the parameter sN to its lowest, that is sN = 3.85119. It is evident from the form

of the functional response regarding the NK lysing of tumor cells, −c Nδ

sNT δ+Nδ , that an increase in

c and a decrease in sN , or in other words, an increase in the maximum rate at which NK cells lyse

cancer cells and a decrease in the value of (N
T
)δ for half-maximal NK toxicity, respectively, benefits
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Figure 7: Initial condition of breast cancer cells is 5 cells. All the other initial conditions are equal to E0

and parameter values, except for d = 0.1, are as in Table 5, with c = 0.1 day−1, sN = 25 and δ = 1.

the organism. Nevertheless, things are a bit more complicated as far as δ is concerned. In contrast

to the results shown in Figure 8, Table 7 shows the final number of cancer cells after 300 days in

a simulation with initial conditions as in the high-tumor homeostasis values save for breast cancer

cells and NK cells, all while allowing δ to take values outside of our data fitting results in order

to illustrate how the tumor gets larger as δ increases. In order to make sense of these seemingly

contradicting results, we take a closer look at the functional response term −c Nδ

sNT δ+Nδ .

The functional response in question is a Hill function of the ratio of NK to breast cancer cells,

with δ being its Hill coefficient. That means that values of δ smaller than 1 give to the curve of the

breast cancer lysis by NK cells a hyperbolic form, whereas values of δ greater than 1 give to the

curve a sigmoid form. This phenomenon is also present in our data fitting experiments in Figure

3. Furthermore, as can be seen in Figure 9, the smaller the Hill coefficient is, in this case δ, the

slower the lysis percent increases the more the NK to breast cancer cell ratio increases. On the

other hand, the larger δ is, the faster the lysis percent increases when the ratio increases while

near the curve’s inflection point. In Figure 10, we showcase how increasing the initial value of NK

cells affects the growing of breast cancer depending on the value of δ. The parameter δ, as well as

c and sN in addition to breast-cancer-type-specific as we showed earlier, are also patient-specific,

as found in [16] for the respective CD8+ T cells case, and could theoretically be measured. Since

one way of increasing the number of NK cells, and in turn the ratio, in real life could be by NK

Table 7: In all simulations the initial value of breast cancer and NK cells is 1.04 ⋅ 109 cells and 5 ⋅ 108

cells, respectively, with the other cells as in E1. Parameter values are as in Table 5, with c = 19 day−1 and
sN = 4.

Value of δ 0.0002 0.002 0.02 0.2 1 2
BCa cells after 300 days 8.182 ⋅ 109 8.190 ⋅ 109 8.259 ⋅ 109 8.810 ⋅ 109 9.777 ⋅ 109 9.970 ⋅ 109
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Figure 8: Left: Initial condition of breast cancer cells is 1.03 ⋅109 cells and δ = 1. Center: Initial condition
of breast cancer cells is 1.04 ⋅ 109 cells and δ = 1. Right: Initial condition of breast cancer cells is 1.39 ⋅ 109

cells and δ = 1.3. All the other initial conditions are equal to E0 and parameter values are as in Table 5,
with c = 15 day−1 and sN = 25.

adaptive immunotherapy, measuring in advance the value of each patient’s δ, as well their total

number of NK and breast cancer cells could be a valuable indication to whether an NK adoptive

immunotherapy would have the intended results.

We continue our analysis by examining the interactions between breast cancer cells and tBregs.

We saw earlier that a healthy organism could beat tumors as large as around 1.03 ⋅109 cells, which

is a T1c-stage tumor. In the case, however, that the tumor has generated as many tBregs as their

high-tumor equilibrium value, that number goes down to 5.58 ⋅108 cells as can be seen in Figure 11,

which is a T1b-stage tumor. When tBregs have led to the proliferation of Tregs that number goes

even lower to 1.10 ⋅ 107 cells, which is a T1a-stage tumor. Clearly, another reason of breast cancer

being able to establish itself is the result of the existence of regulatory cells. Our simulations show

that the fewer they are the more likely it is for an organism to kill the tumor. The authors of

[55] suggested the anti-CD20 antibody rituximab, which would deplete the B cell population and

therefore tBregs - potentially stopping the proliferation of tBregs and in turn Tregs, as a possible

therapy for breast cancer. We study the effects of rituximab in Section 4.2.

4.2 Numerical simulations with rituximab

We firstly check whether our model yields reasonable results in response to treatment with rit-

uximab, based on data from clinical studies. In [71], 12 patients with relapsed CD20+ B-cell

lymphoma were treated with rituximab, as we already discussed in Section 3.8. In all but one

patients, B cells in the peripheral blood decreased to between 0 and 2% of the total lymphocyte

population, within two days after the first infusion. The remaining patient also exhibited reduced

B cell levels, but only after the final infusion, that is four weeks after the first dose. In the four

months that the patients’ B cell levels were monitored, their B cell population did not recover. In

[12], 57 patients with immune thrombocytopenic purpura were treated with the standard dose of

rituximab, that is four weekly doses of 375 mg/m2. As we can see in Figure 5 in [12], B cell levels

started decreasing after the first infusion with rituximab and got depleted approximately five weeks

later, after which B cells slowly increased until they regained their original population at around

51 weeks. As we can see in Figure 12, in our simulations, the non-tBreg B cell population rapidly

decreases, just like in [71], and reaches a population of around 10 cells, thus being almost depleted,

at around the 25th day, that is around 10 days later when compared to the patients from [12]. In
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Figure 9: Plot of the Hill function for different values of the Hill coefficient, n.

our simulations, 120 days after the first dose, the non-tBreg B cell population is around 104 cells,

which is negligible compared to the total lymphocyte population, just like the data from the two

clinical studies. Furthermore, after 350 days the non-tBreg B cell population is slowly reaching its

original number, that is about 109 cells, with the same thing happening at around the 357th day

in [12]. Since the behavior of non-tBreg B cells in our model is in agreement with the two clinical

studies, we verify the validity of our model in predicting B cell behavior in response to rituximab

treatment and we therefore proceed to analyze the results with regard to tumor growth.

In Figure 12, we see that with the standard treatment of four weekly doses of 375 mg/m2

rituximab, the highest number of initial breast cancer cells an organism can beat raised slightly to

9.54⋅106 cells, when compared to 9.17⋅106 cells for the case without rituximab treatment, with both

of them being T1a-stage tumors. We notice that the difference between the two breast cancer cell

populations is very small. Even though tBregs exhibit a greater decrease when compared to the

no rituximab case, it is still not enough for the organism to fight a significantly larger-sized tumor.

Furthermore, tBregs start increasing shortly after the tumor has reached its carrying capacity.

Additionally, we notice a slight decrease in the number of non-Treg CD4+ T cells, which is to be

expected since B cells activate CD4+ T cells. We also notice a decrease in the Treg population,

which returns to normal levels after tBregs reached their equilibrium. With these in mind, it seems

that the tumor-induced differentiation of B cells to tBregs seems to play a bigger role than B cells

activating CD4+ T cells, as their depletion helps the organism, if only slightly. Hence, B cells seem

to play a pro-tumor role in breast cancer growth.

We continue our analysis with trying out different experimental dosage schedules and quantities

and evaluating their results. The administration of eight weekly doses of 375 mg/m2 of rituximab,

just like in [60], does not change the maximum number of breast cancer cells an organism can beat,

as we can see in Figure 13. Even though that at four weekly doses tBregs decrease up to around the

188th day before they start increasing, at eight weekly doses the same things happens at around

the 210th day. It is clear that more doses result in a further reduction of tBregs. However, this
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Figure 10: In all simulations the initial value of breast cancer cells is 1.04 ⋅ 108 cells and all the other
cells are equal to their high-tumor homeostasis values. Parameters are as in Table 5 with c = 19 day−1 and
sN = 4.

reduction happens too late, at a time when breast cancer has already reached its carrying capacity,

thus making the organism unable to kill it.

In Figure 14, we compare five cases of different rituximab dosages. In the first case we consider

a standard dose of four weekly doses of 375 mg/m2, just like in Figure 12. For the second case, we

increase the infused concentration of rituximab to 1 g/m2 and decrease the number of infusions to

two, just like in [65], where the authors used the same dosage to treat patients with membranous

glomerulonephritis. In the third case, we model eight weekly doses of 375 mg/m2, like the case in

Figure 13. In the fourth case, we experiment with decreasing the quantity of rituximab infused to

the patient to 122.549 mg/m2, while also decreasing the dose schedule to be one infusion per five

days. Finally, the fifth case is an extension of the third case, where we increase the dosage schedule

to an 8-dose schedule and keep the quantity of rituximab to 1 g/m2. In Figure 14, we notice

that the treatment dosage that more successfully depletes non-tBreg B cells, while also being the

superior at reducing tBregs is the fifth case. It is clear that no matter how successful each case is

at depleting B cells, the effect it has on tBregs is to maintain the rate at which they decrease for a

longer amount of time. In other words, the more successful in depleting the B cells a dosage is, the

more time tBregs decrease for and they do so while maintaining the rate at which they decrease.

However, that is not enough for the organism to beat the tumor, as that decrease of tBregs is not

fast enough.

4.3 Numerical sensitivity analysis

In order to explore which parameters have the greatest effect on breast cancer-immune dynamics,

we perform local sensitivity analysis on the model without rituximab interventions. The procedure

has as follows. Firstly, we measure the final tumor size after 50 days with the initial condition of

breast cancer cells being 9.5⋅106 cells, whereas all the other cells are at their high-tumor homeostasis

values and parameter values as in Table 5, with c = 15 day−1, sN = 25 and δ = 1. Next, we rerun the

simulation, but this time we increase one parameter by 1% and measure the percent change of the

breast cancer cell population after 50 days when compared to our first simulation. Subsequently,

we revert the parameter back to its original value and decrease it by 1%, before rerunning the

simulation and again measuring the percent change of the final tumor size when compared to our

first simulation. After doing the same for all parameters, we get Figure 15.
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Figure 11: Left: Initial condition of breast cancer cells is 5.58 ⋅108 cells and of tBregs as their high-tumor
homeostasis value. Right: Initial condition of breast cancer cells is 1.10 ⋅ 107 cells and of Tregs and tBregs
as their high-tumor homeostasis value. In both simulations the initial value of all of the other cells is as
their zero-tumor homeostasis values. Parameters are is in Table 5, with c = 15 day−1, sN = 25 and δ = 1.

In Figure 15, we notice that the parameters with the biggest impact on tumor growth, mainly

concern five type of cells: breast cancer cells, NK cells, CD8+ T cells, Tregs and tBregs. The

parameter with the biggest impact on the system is the Treg-induced NK cell inhibition coefficient,

λR, which is no surprise considering that it directly concerns three of the most important cells in

our model: breast cancer cells, NK cells and Tregs. Finding a way to decrease the inhibition

caused by Tregs to NK cells would greatly help the organism. It is also natural for the breast

cancer growth rate, a, to play a big role in tumor growth. An interesting observation is that

contrary to the parameters regarding NK cells, the parameters regarding CD8+ T cells, show little

to no sensitivity. Therefore, in the case studied in our sensitivity analysis, it is clear that NK cells

are of greater importance when compared to CD8+ T cells. Additionally, the three parameters we

focused on in our numerical simulations, c, sN and δ also play a big role. Since, in our sensitivity

analysis, the initial ratio of NK to breast cancer cells is by far greater than one, increasing δ, has

an anti-tumor effect, while the opposite holds for decreasing δ, further validating our claims in

Section 4.1. Furthermore, the natural death rate of Tregs, θR, their constant source, σR, as well as

the rate of differentiation of CD4+ T cells to Tregs, c1, are also of importance. This implies that a

drug such as sunitinib, which reduces the rate at which T cells differentiate into Tregs [26], could

prove useful in treating breast cancer. Finally, the reliance of our model on the natural death rate

of tBregs, θBT , and the small reliance on parameters directly involving non-tBreg B cells, implies

that a drug explicitly targeting tBregs, instead of implicitly targeting them through non-tBreg B

cells, could be a better option.

5 Conclusion and discussion

In this study, we developed a model of nonlinear ordinary differential equations with the intent of

exploring the various interactions between breast cancer and the immune system, with a focus on

tBregs. Additionally, based on data fitting, we chose a Hill function with its variable being the

ratio of NK cells to breast cancer cells, as the functional response which describes the way NK

cells lyse breast cancer cells.
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Figure 12: Initial condition of breast cancer cells is Left: 9.55 ⋅106 cells and Right: 9.54 ⋅106 cells. In both
simulations the initial condition of all the other cells is at their high-tumor homeostasis value. Parameters
are is in Table 5, with c = 15 day−1, sN = 25 and δ = 1. Four weekly doses of 375 mg/m2 of rituximab are
administrated.
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Figure 13: Initial condition of breast cancer cells is Left: 9.55 ⋅106 cells and Right: 9.54 ⋅106 cells. In both
simulations the initial condition of all the other cells is at their high-tumor homeostasis value. Parameters
are is in Table 5, with c = 15 day−1, sN = 25 and δ = 1. Eight weekly doses of 375 mg/m2 of rituximab are
administrated.
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Figure 14: Initial condition of breast cancer cells is 9.55 ⋅ 106 cells, whereas all the other cells are at their
high-tumor homeostasis values. Parameters are is in Table 5, with c = 15 day−1, sN = 25 and δ = 1. A
dotted line represents the tumor cell population, a dashed the tBregs and a solid the non-tBreg B cell
population. Case 1: Four weekly doses of 375 mg/m2. Case 2: Two weekly doses of 1 g/m2. Case 3: Eight
weekly doses of 375 mg/m2. Case 4: Four doses of 122.549 mg/m2 every five days. Case 5: Eight weekly
doses of 1 g/m2.

Firstly, we validated the biological realism of our model by comparing its numerical solution

with the two biologically realistic homeostasis values we derived. Then, we found out that the

largest tumor a healthy and a compromised organism could beat is a T1c-stage and a T1a-stage

tumor, respectively.

Moreover, we gave the conditions under which an increase in the NK cell population, such as

through the use of immunotherapy, could bear the intended results. These conditions revolved

around the Hill coefficient of the functional response, which describes the way NK cells lyse breast

cancer cells, as well as the ratio of NK cells to breast cancer cells. The Hill coefficient can be

measured in a clinical setting for each particular patient though a chromium release assay, thus

potentially making it a significant marker.

Furthermore, we showed that when tBregs exist in an organism with the initial condition of all

the other immune cells at the zero-tumor homeostasis state, the largest tumor the organism can

beat goes down to a T1b-stage tumor and goes even lower to a T1c-stage tumor when tBregs have

led to the proliferation of Tregs. Thus, we showed that tBregs need to be killed, in order for the

tumor to be controlled.

We also performed simulations with the anti-CD20 antibody rituximab. After validating that

the B cell decrease in our model mirrors that of clinical trials, we showed that with the standard

rituximab dosage the size of the tumor an organism can beat increases, but does so only slightly.

We additionally explored the behavior of our model with experimental rituximab dosages and

found the same results as with the standard dose, as far as controlling the growth of breast cancer

is concerned.

The aforementioned results, along with the reliance of breast cancer growth on tBregs and
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Figure 15: Depicted is the effect of a 1% parameter change on final tumor size after 50 days. Initial
condition of breast cancer cells is 9.5⋅106 cells, whereas all the other cells are at their high-tumor homeostasis
values. Parameters are is in Table 5, with c = 15 day−1, sN = 25 and δ = 1.

Tregs rather than directly on B cells, as was revealed by our sensitivity analysis, bore testament

to the fact that attempts at controlling tBregs and Tregs could bring better results than targeting

B cells.
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Appendix A Homeostasis states

Here we derive two biological realistic homeostasis states for a zero-tumor condition and a high-

tumor condition. Using the values of these two homeostasis states, we verify that our model yields

biologically relevant results, as well as determine some of the model parameters.

A.1 Zero-tumor homeostasis values

Naturally, T0 = 0 in the zero-tumor homeostasis state.

Approximately 4 to 29% of circulating lymphocytes are NK cells [33]. The average number of

lymphocytes per microliter is 1000 to 4800 cells [1], and since the average human has an average

of 5 liters of blood [68], we have that the total population of lymphocytes in a human is 5 ⋅ 109

to 24 ⋅ 109 cells. Therefore, the total population of NK cells in blood is 2 ⋅ 108 to 6.96 ⋅ 109 cells.

Taking the median value yields N0 = 3.38 ⋅ 109 cells.

For the CD8+ T cell zero-tumor homeostasis value, we take the value derived from [17] which

is 2.526 ⋅ 104 cells ⋅L−1, thus multiplying by 5 liters which is the average blood volume in a human,

yields C0 = 1.263 ⋅ 105 cells. This value represents the total number of CD8+ T cells specific for a
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particular tumor associated antigen in the case of melanoma. While in this study we are interested

in breast cancer, the authors of [17] noted that other antigens present a similar degree of CD8+ T

cell activation.

The percentage of the total population of CD4+ T cells among circulating lymphocytes ranges

from 50 to 60% [1]. Based on the total number of lymphocytes we calculated above, we have that

the total number of circulating CD4+ T cells ranges from 2.5 ⋅ 109 to 1.44 ⋅ 1010 cells, so we choose

the intermediate value of 3 ⋅ 109 cells. However, we are interested in the non-Treg CD4+ T cell

population, thus subtracting the median of the Treg population (see the following paragraph for

its derivation) from the chosen intermediate value, we get the population of non-Treg CD4+ T cells

in the zero-tumor homeostasis state to be H0 = 2.76 ⋅ 109 cells.

Tregs make up 5 to 10% of the circulating CD4+ T cell population [56], or in other words 2.5

to 6% of the whole circulating lymphocyte population, which means that their total population

is in the range of 1.25 ⋅ 108 to 1.44 ⋅ 109 cells. Choosing the value corresponding to 8% of the

circulating CD4+ T cell population [39] as our zero-tumor homeostasis state value for Tregs, we

get R0 = 2.4 ⋅ 108 cells.

B cells are approximately 3 to 21% of circulating lymphocytes in a healthy organism [33], ergo

their total population is 1.5 ⋅ 108 to 5.04 ⋅ 109 cells. Taking the median of that range and rounding

it, we get that B0 = 8 ⋅ 108 cells.

We assume that there are no tBregs in the absence of tumor, at least not a clinically detectable

number of them, therefore BT0 = 0.

To summarize, the zero-tumor homeostasis state is

E0 = (0,3.38 ⋅ 109,1.263 ⋅ 105,2.76 ⋅ 109,2.4 ⋅ 108,8 ⋅ 108,0) ⋅ cells . (A.1)

A.2 High-tumor homeostasis values

We assume that the breast cancer cell population at the high-tumor homeostasis state is equal

to our model’s carrying capacity parameter, 1/b. Based on our data fitting in Section 3.1, we

choose the value of b to be 10−10 cell−1, thus the breast cancer cell population at the high-tumor

homeostasis state is T1 = 1/b = 1010 cells.

For the the NK cell population, we use the same reasoning as in [17], where authors noticed that

in [46] the average circulating NK cell population in cancer patients before receiving daily doses

of IL-2 was 250 cells per microliter (data was taken from Figure 1 in [46]), therefore N1 = 1.25 ⋅109

cells.

For the CD8+ T cell high-tumor homeostasis state, we again use the value derived in [17],

5.268⋅105 cells ⋅ L−1, thus C1 = 2.634 ⋅ 106 cells. Just like the homeostasis value of CD8+ T cells in

the zero-tumor homeostasis state, this value was calculated with data from CD8+ T cells activated

from a melanoma-specific antigen, however as the authors of [17] state, we assume a similar amount

of CD8+ T cells to get activated in other types of cancers too.

In [42] the authors measured the amount of circulating CD4+ T cells, in 80 cancer patients,

36 of which were suffering from breast cancer, before and 12 days after starting chemotherapy.

Before starting chemotherapy the average number of circulating CD4+ T cells in breast cancer

patients was 613 cells per microliter or about 3.065⋅109 cells in total. Since we are interested only

in non-Treg CD4+ T cells, we subtract R1 (the Treg high-tumor homeostasis value found in the

following paragraph) from the total CD4+ T cell number, which yields H1 = 2.55621 ⋅ 109 cells.

In [39] the authors measured and compared the prevalence of Tregs in the whole CD4+ T cell

population among 35 breast cancer patients, 30 pancreatic cancer patients and 35 healthy donors.
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In the case of breast cancer patients they found that the percentage of Tregs among circulating

CD4+ T cells was higher when compared to healthy donors. Specifically, 16.6% versus 8.6%,

respectively. Based on the 16.6% prevalence of Tregs in breast cancer patients and the fact that

we calculated that the average number of circulating CD4+ T cells is 3.065⋅109 cells, we have that

R1 = 5.0879 ⋅ 108 cells.

In [73] the authors identified the expressions of cell markers from blood samples of 27 breast

cancer patients and 12 healthy donors and found that the percentage of B cell in each cohort was

about 8.905% and 11.51%, respectively (data was taken from Table 2 of [73]). Those numbers are

within the normal range of B cells [33, 1], thus we’ll assume the total B cell population remains

constant when compared between a healthy person and a cancer patient, with the only changes

happening within the B cell sub-populations, as we can also see in [73], with memory B cells being

the most expanded sub-population. Consequently, since we are interested in the non-tBreg B cell

population, we subtract the tBreg population assumed in the following paragraph from B0 to find

B1 = 7.67 ⋅ 108 cells.

As tBregs are newly discovered, data regarding them are scarce. For that reason, we are unable

to find the average population of tBregs in a breast cancer patient. Thus, we observe that in [50]

the authors discover an increase in the percentage of the immunosuppressive cytokine IL-10 pro-

ducing B regulatory cells expressing the CD19+CD24hiCD27+ mark in patients with gastric cancer

compared to healthy donors. In particular about 8.35% versus about 5.65% of the whole CD19+

expressing B cell population, respectively (data taken from Table 1 of [50]). Since B cells express

the CD19+ mark, we consider this to be the whole B cell population. Furthermore, the authors of

[50] found out that the B cells expressing the CD19+CD24hiCD27+ mark are able to suppress the

proliferation of autologous CD4+ T cells, while also inhibiting their IFN-gamma production. This

makes us believe that there could be a connection between tBregs and CD19+CD24hiCD27+ B cells,

thus we make the assumption that half of those B regulatory cells are tBregs. Hence, multiplying

the average number of B cells with 8.35%, dividing by 2 and rounding it we get BT1 = 3.34 ⋅ 107

cells.

To summarize, the high-tumor homeostasis state is

E1 = (1010,1.25 ⋅ 109,2.634 ⋅ 106,2.55621 ⋅ 109,5.0879 ⋅ 108,7.67 ⋅ 108,3.34 ⋅ 107) ⋅ cells . (A.2)

Appendix B Calculation of the in-vitro natural death rate

Assuming that cells inside a well are not able to grow due to lack of nutrients and space, but only

die due to natural death, we have that their population can be modeled by the following initial

value problem:

dK

dt
= −θKEK(t) , K(0) =KE , (B.1)

where K is the cell population, θKE is the rate of natural cell death in vitro and KE is the initial

number of cells.

Assuming that at time tF we count the cell population and find that the population has been

reduced by pE% compared to the initial cell population KE , we have that K(tF ) = KE −
pE
100

KE .

By solving initial value problem (B.1), we get K(t) = KEe
−θKE t. Setting t = tF and solving for

θKE yields

θKE =
1

tF
ln

1

1 − pE
. (B.2)
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Relation (B.2) allows us to find the in vitro natural death rate of a cell population, by only

knowing the time that has passed since the cells were first put inside the wells until their assessment,

and the percentage of their reduction.

Appendix C Linear stability analysis of the zero-tumor equi-

librium

Even though system (2.1) is too complex to analytically find all of its equilibria, we can calculate

the equilibrium in which the tumor is zero, in the absence of rituximab. Let

E∗
= (T ∗,N∗,C∗,H∗,R∗,B∗,B∗

T ) , (C.1)

be the zero-tumor equilibrium. Assuming that all derivatives are equal to zero and additionally

that T ∗ = 0, then from equation (2.1f) we have that B∗
T = 0. From equation (2.1e), we get R∗ = σR

θR
.

From equation (2.1f), we get B∗ = σB
θB

. From equation (2.1d), we get H∗ = σH
θH

. Replacing R∗ and

H∗ to equations (2.1b) and (2.1c), we get N∗ = θHsN

−κσH+θHθN+θHγN
√
σR
θR

and C∗ = σC
θC+ γCσRθR

− η1σH
η2θH+σH

.

Therefore, the zero-tumor equilibrium is

E∗
=
⎛

⎝
0,
θHsN

Λ
,

σC
θC +

γCσR
θR

−
η1σH

η2θH+σH
,
σH
θH

,
σR
θR
,
σB
θB

, 0
⎞

⎠
. (C.2)

The Jacobian matrix of system (2.1) at the equilibrium point E∗ is

J(E∗
) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 0 0 0 0 0 0

−
pθHsN

Λ
− Λ
θH

0 κθHsN
Λ

−
θHγNsN

2
√
σR
θR

Λ
0 0

A31 0 A33 A34
γCσC
A33

0 0
σBjHσH
θBθHkH

0 0 −θH 0 0 − c1σH
θH

0 0 0 0 −θR 0 c1σH
θH

− c2σB
θB

0 0 0 0 −θB 0
c2σB
θB

0 0 0 0 0 −θBT

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.3)

where

Λ = −κσH + θHθN + θHγN

√
σR
θR

,

A11 = a − ce
−λRσRθR − d ,

A22 =
κσH
θH

− θN + γN (−

√
σR
θR

) ,

A31 =
σCθR (jC − qkC) (η2θH + σH)

γCkCσR (η2θH + σH) + kCθR (σH (θC − η1) + η2θCθH)
+
rθHsN

Λ
,

A33 = −θC −
γCσR
θR

+
η1σH

η2θH + σH
and

A34 =
η1η2σCθ

2
HθR

(η2θH + σH) (γCσR (η2θH + σH) + σHθR (θC − η1) + η2θCθHθR)
.
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The eigenvalues of J(E∗) are

λ1 = A11 , λ2 = −θB , λ3 = −θBT , λ4 = −θH , λ5 = −θR , λ6 = A33 and λ7 = −
Λ

θH
. (C.4)

For parameter values as in Table 5, we have that λi < 0, for i = 1,2, . . . ,7, hence E∗ is locally

asymptotically stable.

Appendix D Classification of breast cancer size expressed

in total breast cancer cell count

The conversion of tumor diameter (measured in mm) to total cancer cell count that we present in

Table 6 is found, using the same method as in Section 3.1 (taken from [13]), where we assume that

a spherical cancer cell has a diameter of approximately 15.15µm, as well as that cancer cells and

tumors are spherical. Next, we find the volume range for each tumor classification by utilizing the

diameter of the largest tumor dimension, found in Table 2 of [24]. Finally, we divide the tumor

volume by the cancer cell volume we derived, to find the range of each classification expressed in

total breast cancer cell number.
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[22] N. Eiró, I. Pidal, B. Fernandez-Garcia, S. Junquera, M. L. Lamelas, J. M. del Casar, L. O.
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