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Abstract

In this paper, we introduce and study an age-structured epidemiological compartment model
and its respective problem, applied but not limited to the COVID-19 pandemic, in order to
investigate the role of the age of the individuals in the evolution of epidemiological phenomena.
We investigate the well-posedness of the model, as well as the global dynamics of it in the
sense of basic reproduction number via constructing Lyapunov functions.
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1 Introduction

Epidemiological mathematical models have played a crucial role in understanding and predicting
the spread of infectious diseases, as well as informing public health policies and measures (see [14,
15, 22, 24, 32] and many references therein). With the emergence of the COVID-19 pandemic, the
importance of these models has been highlighted as they have been used to assess the anticipated
spread of the virus and inform strategies to mitigate its impact [1, 18, 29].

One of the key aspects of modern epidemiological models is the incorporation of age-structured
models, which take into account the differences in susceptibility, transmission, and disease pro-
gression across various age groups (such as [15, 16]). This approach allows for a more accurate
representation of disease dynamics and enables better targeting of interventions and resource allo-
cation.

The aim of the present paper is to investigate the role of the age of the individuals in the
evolution of epidemiological phenomena. Using as a case study the COVID-19 outbreak we aim to
address the following questions:

– How does the age of individuals affect the spread of the epidemic?

– What is the effect of the asymptomatic infectious individuals on the basic reproduction
number, R0, of COVID-19?

We answer the above questions by deriving an age-structured epidemiological compartment
model that incorporates the important role of both asymptomatic and symptomatic individuals.

This study is organized as follows. In §2, we develop a novel age-structured SVEAIR model
that incorporates, among others, the ambiguous (see §2.1) variable of asymptomaticity of infectious
individuals for the spread of COVID-19 disease. We show its global well-posedness, we derive the
basic reproductive number, R0, of the model and we study the global stability of its steady states.
In §3, we undertake numerical simulations to confirm the behaviour of the solution of the problem.
We conclude in §4 with a summary and discussion of the results.
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2 The epidemiological model

Here we introduce an epidemiological model, M , along with the respective problem, P, as a means
of utilization of the proposed scheme in answering the main question of the present paper.

2.1 Derivation and analysis of the model

One of the most critical facts about COVID-19, is that a significant number of cases, mainly those
of young age, has been reported as asymptomatic (see [10] and many references therein), leading
to fast spread of the infection. Although the asymptomatic cases have a shorter duration of viral
shedding and lower viral load [21, 33], their proportion can range from 4%-90% (see [13, 27] and
many references therein) and most of the time they play a key role in infection transmission.
Therefore, we incorporate not only both symptomatic and asymptomatic cases in our model (as it
is done in, e.g., [3]), but also the age of the infected/infectious individuals.

In particular, the proposed M is based on the following hypotheses.

1. The total population, N , is classified into six non-negative-valued compartments, susceptible,
S, vaccinated-with-a-prophylactic-vaccine, V , latent/exposed, E, asymptomatic infectious, A,
symptomatic infectious, I, and recovered/removed, R, individuals, thus

N = S + V +E +A + I +R.

All of the above epidemiological variables depend on non-negative time, t.

2. i. There is also another independent non-negative “age”-variable, θ, which measures the
time elapsed since, e.g., birth or infection. The two time-variables have different scales,
i.e they are measured in different units, and the parameter ω ∈ R+ stands for the con-
version factor from the units of θ to the units of t.

ii. Only the non-negative-valued age-densities of E, A and I, i.e. e, a and i, respectively,
contribute to our M . Those densities should vanish at (or have already vanished before)
θ → ∞, hence it is natural for them to be considered as elements of L1(R+0), for every
fixed t. In the light of the above assumption, the expressions

E =
∞

∫
0

e( ⋅ , θ)dθ, A =
∞

∫
0

a( ⋅ , θ)dθ and I =
∞

∫
0

i( ⋅ , θ)dθ

are well-posed.

3. i. The vaccine is considered to be purely prophylactic.

ii. Only a part of population is vaccinated and p ∈ [0,1] stands for the vaccine coverage.
Since the vaccine is supposed to be purely prophylactic, the only source for the vaccinees
concerns the pool of the susceptible individuals. That source is considered to be linear.

iii. The vaccine is likely to be imperfect (at providing prophylaxis) and ϵ ∈ [0,1] stands for
its effectiveness.

iv. The vaccine-induced immunity, i.e. the process of vaccinees obtaining immunity and
moving into recovered population, is considered to be linear and the letter ζ ∈ R+0 is
employed for the vaccine-induced immunity rate.

4. The transmission, i.e. the process of susceptible individuals and failed-to-be-immune vac-
cinees becoming latent, is considered to be exclusively horizontal and to be governed by
the Holling-type-I functional response. The parameters βA, βI ∈ L∞(R+0 ;R+0) stand for the
transmission rates of asymptomatic and symptomatic, respectively, infectious individuals.

5. The incubation, i.e. the process of latent individuals becoming infectious, is considered
to be linear and k ∈ L∞(R+0 ;R+0) is the incubation rate. That rate is the same for both
asymptomatic and symptomatic classes, but those classes are different from each other in
terms of magnitude of their sources. In particular, q ∈ L∞(R+0 ; [0,1]) stands for the proportion
of latent individuals that become asymptomatic infectious ones.
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6. The recovery, i.e. the process of infectious individuals moving into the recovered population, is
considered to be linear and γA, γI ∈ L∞(R+0 ;R+0) stand for the recovery rates of asymptomatic
and symptomatic, respectively, infectious ones.

7. i. Some of the asymptomatic infectious individuals never develop symptoms and they move
directly into the recovered/removed class and the letter ξ ∈ L∞(R+0 ; [0,1]) is employed
for the proportion of those asymptomatic infectious individuals.

ii. The symptomatic transition, i.e. the process of asymptomatic infectious individuals
turning into symptomatic ones, is considered to be linear and χ ∈ L∞(R+0 ;R+0) stands
for the symptomatic transition rate.

8. Demographic terms are taken into account and they are considered to be linear, with µ ∈ R+
being the universal birth/death rate. We note that µ is considered to be the only strictly
positive constant of M .

9. No reinfections are taken into account, hence no movement from the pool of the removed
individuals to the pool of the susceptible ones is considered.

The respective initial-boundary value P has the following form: For given

(S0, V0, e0, a0, i0,R0) ∈ (R+0)
2 × (L1(R+0 ;R+0))

3 ×R+0 ,

we search for T > 0 and smooth enough

(S,V, e, a, i,R) ∶ [0, T )→ (R+0)
2 × (L1(R+0 ;R+0))

3 ×R+0 ,

such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS

dt
= µN − (p +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ + µ)S

S(0) = S0,

(1a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV

dt
= pS − (ζϵ +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (1 − ϵ) + µ)V

V (0) = V0,

(1b)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂e

∂t
+ 1

ω

∂e

∂θ
= − (k + µ) e

e( ⋅ ,0) = ω
∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (S + (1 − ϵ)V )

e(0, ⋅ ) = e0,

(1c)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
+ 1

ω

∂a

∂θ
= − (γAξ + χ (1 − ξ) + µ)a

a( ⋅ ,0) = ω
∞
∫
0

k(θ)q(θ)e( ⋅ , θ)dθ

a(0, ⋅ ) = a0,

(1d)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂i

∂t
+ 1

ω

∂i

∂θ
= − (γI + µ) i

i( ⋅ ,0) = ω
∞
∫
0

k(θ) (1 − q(θ)) e( ⋅ , θ) + χ(θ) (1 − ξ(θ))a( ⋅ , θ)dθ

i(0, ⋅ ) = i0,

(1e)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dR

dt
= ζϵV +

∞
∫
0

γA(θ)ξ(θ)a( ⋅ , θ) + γI(θ)i( ⋅ , θ)dθ − µR

R(0) = R0.
(1f)

The dimensional units of all variables and parameters appeared in P (1) are gathered in Table
1.

We notice that by integration (with respect to θ over R+0) and summation of the left and
right-hand side of the derived ordinary differential equations, one gets

dN

dt
= 0⇔ N = N0 ∶= S0 + V0 +E0 +A0 + I0 +R0, (2)
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Independent
variables

Description Units

t Time T
θ Age, i.e. time elapsed since, e.g., birth or infection Θ

Conversion
factor

Description Units

ω Conversion factor from the units of θ to the units of t T Θ−1

Dependent
variables

Description Units

N Number of total population of individuals #
S Number of susceptible individuals #
V Number of vaccinated-with-a-prophylactic-vaccine individuals #
e Age-density of latent/exposed individuals # Θ−1

E Number of latent/exposed individuals #
a Age-density of asymptomatic infectious individuals # Θ−1

A Number of asymptomatic infectious individuals #
i Age-density of symptomatic infectious # Θ−1

I Number of symptomatic infectious individuals #
R Number of recovered/removed individuals #

Parameters Description Units

N0 Population size #
µ Birth/Death rate T−1

βA Transmission rate of asymptomatic infectious individuals #−1 T−1

βI Transmission rate of symptomatic infectious individuals #−1 T−1

p Vaccination rate T−1

ϵ Vaccine effectiveness -
ζ Vaccine-induced immunity rate T−1

k Latent rate (rate of susceptible individuals becoming infectious) T−1

q Proportion of the latent/exposed individuals becoming asymptomatic
infectious

-

ξ Proportion of the asymptomatic infectious individuals becoming recov-
ered/removed (without developing any symptoms)

-

χ Incubation rate (rate of a part of asymptomatic infectious individuals
developing symptoms)

T−1

γA Recovery rate of asymptomatic infectious individuals T−1

γI Recovery rate of symptomatic infectious individuals T−1

Table 1: Description of the independent and dependent variables as well as parameters of M , along with
their units.

where

E0 ∶=
∞

∫
0

e0(θ)dθ, A0 ∶=
∞

∫
0

a0(θ)dθ and I0 ∶=
∞

∫
0

i0(θ)dθ.

Hence, an additional hypothesis made is as follows.

10. The total population remains constant. This is a practical (yet not necessary) assumption,
and makes sense when the time-span of the modeled epidemiological phenomenon is way
shorter than the time needed for observable changes of the total population (whether they
are caused by the epidemic or not).

Equations (1a)-(1e) are independent of R, hence the problem is reduced to the aforementioned
subsystem itself. In fact, with (2) at hand, R can be easily calculated by

R = N0 − S − V −E −A − I.
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2.1.1 Scaling of age

In order to simplify the analysis of (1a)-(1e), we eliminate the factor ω. We do so by the scaling
of the independent age-variable, θ, and turning it to another time-variable measured in the same
units as t.

Hence, while keeping the same notation, we change the variables as follows

ωθ ↦ θ,

1

ω
f ○ 1

ω
id↦ f,

g ○ 1

ω
id↦ g,

for (f, g) ∈ {e(t, ⋅ ), a(t, ⋅ ), i(t, ⋅ ) ∣ t ∈ R+0} × {βA, βI , k, q, γA, ξ, χ, γI}, and (1a)-(1e) then becomes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS

dt
= µN0 − (p +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ + µ)S

S(0) = S0,

(3a)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dV

dt
= pS − (ζϵ +

∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (1 − ϵ) + µ)V

V (0) = V0,

(3b)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂e

∂t
+ ∂e

∂θ
= − (k + µ) e

e( ⋅ ,0) =
∞
∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ (S + (1 − ϵ)V )

e(0, ⋅ ) = e0,

(3c)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
+ ∂a

∂θ
= − (γAξ + χ (1 − ξ) + µ)a

a( ⋅ ,0) =
∞
∫
0

k(θ)q(θ)e( ⋅ , θ)dθ

a(0, ⋅ ) = a0,

(3d)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂i

∂t
+ ∂i

∂θ
= − (γI + µ) i

i( ⋅ ,0) =
∞
∫
0

k(θ) (1 − q(θ)) e( ⋅ , θ) + χ(θ) (1 − ξ(θ))a( ⋅ , θ)dθ

i(0, ⋅ ) = i0,

(3e)

where t and (the new) θ are now measured in the same time-units.
The flow diagram of the differential equations in (1) is shown in Figure 1.
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Figure 1: Flow diagram of P (3). The increase/decrease of A and I reflects the outbreak/attenuation
of the epidemic, while E is the only source of the aforementioned compartments.

2.1.2 Global well-posedness

We set

β ∶=
∞

∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ, (4a)

ε ∶= e( ⋅ ,0) = β (S + (1 − ϵ)V ) , (4b)

α ∶= a( ⋅ ,0) =
∞

∫
0

k(θ)q(θ)e( ⋅ , θ)dθ, (4c)

ι ∶= i( ⋅ ,0) =
∞

∫
0

k(θ) (1 − q(θ)) e( ⋅ , θ) + χ(θ) (1 − ξ(θ))a( ⋅ , θ)dθ. (4d)

Integrating the independent variables of (3a) and (3b) along [0, T ), as well as the independent
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variables of (3c)-(3e) along the characteristic straight-line paths

{(t, θ) ∈ [0, T ) ×R+0 ∣ t − θ = c} , ∀c ∈ R,

we deduce that

S(t) = S0e
−

t

∫
0

p+β(s)+µds
+ µN0

t

∫
0

e
−

t

∫
s
p+β(τ)+µdτ

ds, ∀t ∈ [0, T ) , (5a)

V (t) = V0e
−

t

∫
0

ζϵ+β(s)(1−ϵ)+µds
+ p

t

∫
0

S(s)e
−

t

∫
s
ζϵ+β(τ)(1−ϵ)+µdτ

ds, ∀t ∈ [0, T ) , (5b)

e(t, θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e0(θ − t)e
−

t

∫
0

k(θ−t+s)+µds
, if t ∈ [0, θ) ⊊ [0, T )

ε(t − θ)e
−

θ

∫
0

k(s)+µds
, if θ ∈ [0, t) ⊊ [0, T ) ,

(5c)

a(t, θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0(θ − t)e
−

t

∫
0

γA(θ−t+s)ξ(θ−t+s)+χ(θ−t+s)(1−ξ(θ−t+s))+µds
, if t ∈ [0, θ) ⊊ [0, T )

α(t − θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
, if θ ∈ [0, t) ⊊ [0, T ) .

(5d)

i(t, θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i0(θ − t)e
−

t

∫
0

γI(θ−t+s)+µds
, if t ∈ [0, θ) ⊊ [0, T )

ι(t − θ)e
−

θ

∫
0

γI(s)+µds
, if θ ∈ [0, t) ⊊ [0, T ) ,

(5e)

We then plug system (5) into system (4) to obtain

β(t) =
t

∫
0

β1(t, s)ds +
∞

∫
0

β2(t, s)ds, ∀t ∈ [0, T ) , (6a)

ε(t) = β(t) (S(t) + (1 − ϵ)V (t)) , ∀t ∈ [0, T ) , (6b)

α(t) =
t

∫
0

α1(t, s)ds +
∞

∫
0

α2(t, s)ds, ∀t ∈ [0, T ) , (6c)

ι(t) =
t

∫
0

ι1(t, s)ds +
∞

∫
0

ι2(t, s)ds, ∀t ∈ [0, T ) . (6d)

where

β1(t, s) ∶= βA(t − s)α(s)e
−

t−s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
+

+ βI(t − s)ι(s)e
−

t−s

∫
0

γI(τ)+µdτ
,

β2(t, s) ∶= βA(t + s)a0(s)e
−

t

∫
0

γA(τ+s)ξ(τ+s)+χ(τ+s)(1−ξ(τ+s))+µdτ
+

+ βI(t + s)i0(s)e
−

t

∫
0

γI(τ+s)+µdτ
,

S and V have already been calculated in terms of β in (5a) and (5b), respectively,

α1(t, s) ∶= k(t − s)q(t − s)β(s) (S(s) + (1 − ϵ)V (s)) e
−

t−s

∫
0

k(τ)+µdτ
,

α2(t, s) ∶= k(t + s)q(t + s)e0(s)e
−

t

∫
0

k(τ+s)+µdτ
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and

ι1(t, s) ∶= k(t − s) (1 − q(t − s))β(s) (S(s) + (1 − ε)V (s)) e
−

t−s

∫
0

k(τ)+µdτ
+

+ χ(t − s) (1 − ξ(t − s))α(s)e
−

t−s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
,

ι2(t, s) ∶= k(t + s) (1 − q(t + s)) e0(s)e
−

t

∫
0

k(τ+s)+µdτ
+

+ χ(t + s) (1 − ξ(t + s))a0(s)e
−

t

∫
0

γA(t+s)ξ(t+s)+χ(t+s)(1−ξ(t+s))+µdτ
.

Equations (6a), (6c) and (6d) can be considered as an auxiliary problem (in integral form) for
the unknown functions β, α and ι. A direct application of the classic theory of integral equations
provides us with the following preliminary result, the standard proof of which is omitted (see, e.g.,
[15, 17, 30]).

Theorem 1. For every (S0, V0, e0, a0, i0,R0) ∈ R2 ×(L1(R+0 ;R))3 ×R, the problem (6a), (6c), (6d)

is globally (i.e. T =∞) well-posed, with (β,α, ι) ∈ (C(R+0 ;R))3.

Moreover, it is straightforward to check that if (S0, V0, e0, a0, i0,R0) = (0,0,0,0,0,N0), then
the solution of (6a), (6c), (6d) is the constant (β,α, ι) = (0,0,0). Hence, from the uniqueness of
solution we derive the next result.

Proposition 1. If (S0, V0, e0, a0, i0,R0) ∈ (R+0)
2×(L1(R+0 ;R+0))

3×R+0 , then (β,α, ι) ∈ (C(R+0 ;R+0))
3
.

The global well-posedness of the main problem then follows.

Corollary 1. For every (S0, V0, e0, a0, i0,R0) ∈ (R+0)
2 × (L1(R+0 ;R+0))

3 ×R+0 , the P (3) is globally

well-posed, with (S,V, e, a, i) ∈ (C1(R+0 ;R+0))
2 × (C(R+0 ;L1(R+0)))

3
. In particular, the differential

equations in (3a) and (3b) are satisfied ∀t ∈ R+0 , while the subsystem (3c)-(3e) is satisfied in the
following sense

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim
h→0

e(t + h, θ + h) − e(t, θ)
h

= − (k(θ) + µ) e(t, θ), for a.e. (t, θ) ∈ (R+0)
2

e(t,0) = ε(t), ∀t ∈ R+

e(0, θ) = e0(θ), for a.e. θ ∈ R+0 ,
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim
h→0

a(t + h, θ + h) − a(t, θ)
h

= − (γA(θ)ξ(θ) + χ(θ) (1 − ξ(θ)) + µ)a(t, θ), for a.e. (t, θ) ∈ (R+0)
2

a(t,0) = α(t), ∀t ∈ R+

a(0, θ) = a0(θ), for a.e. θ ∈ R+0 ,
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim
h→0

i(t + h, θ + h) − i(t, θ)
h

= − (γI(θ) + µ) i(t, θ), for a.e. (t, θ) ∈ (R+0)
2

i(t,0) = ι(t), ∀t ∈ R+

i(0, θ) = i0(θ), for a.e. θ ∈ R+0 .

We also note that we can obtain certain regularity results by strengthening the assumptions
regarding the data of the problem, but this lies beyond the scope of the present work.
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2.1.3 Steady states and basic reproductive number

A steady state, (S∗, V ∗, e∗, a∗, i∗), of P (3) is a constant-with-respect-to-t solution, i.e. it is defined
to satisfy

0 = µN0 − (p + β∗ + µ)S∗, (7a)

0 = pS∗ − (ζϵ + β∗ (1 − ϵ) + µ)V ∗, (7b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

de∗

dθ
= − (k + µ) e∗

e∗(0) = ε∗,
(7c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

da∗

dθ
= − (γAξ + χ (1 − ξ) + µ)a∗

a∗(0) = α∗,
(7d)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

di∗

dθ
= − (γI + µ) i∗

i∗(0) = ι∗,
(7e)

where

β∗ ∶=
∞

∫
0

βA(θ)a∗(θ) + βI(θ)i∗(θ)dθ, (8a)

ε∗ ∶= β∗ (S∗ + (1 − ϵ)V ∗) , (8b)

α∗ ∶=
∞

∫
0

k(θ)q(θ)e∗(θ)dθ, (8c)

ι∗ ∶=
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ) + χ(θ) (1 − ξ(θ))a∗(θ)dθ, (8d)

hence

S∗ = µN0

p + β∗ + µ, (9a)

V ∗ = pS∗

ζϵ + β∗ (1 − ϵ) + µ, (9b)

e∗(θ) = ε∗e
−

θ

∫
0

k(s)+µds
, ∀θ ∈ R+0 , (9c)

a∗(θ) = α∗e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
, ∀θ ∈ R+0 , (9d)

i∗(θ) = ι∗e
−

θ

∫
0

γI(s)+µds
, ∀θ ∈ R+0 . (9e)
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By plugging (8b)-(8d) into (9) and expressing the components of a steady state exclusively in terms
of the constant parameter β∗, we get

S∗ = µN0

p + β∗ + µ, (10a)

V ∗ = pµN0

(p + β∗ + µ) (ζϵ + β∗ (1 − ϵ) + µ) , (10b)

e∗(θ) = β∗ µN0

p + β∗ + µ (1 +
p (1 − ϵ)

ζϵ + β∗ (1 − ϵ) + µ) e
−

θ

∫
0

k(s)+µds
, ∀θ ∈ R+0 , (10c)

a∗(θ) = β∗ µN0

p + β∗ + µ (1 +
p (1 − ϵ)

ζϵ + β∗ (1 − ϵ) + µ)
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds×

× e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
, ∀θ ∈ R+0 , (10d)

i∗(θ) = β∗ µN0

p + β∗ + µ (1 +
p (1 − ϵ)

ζϵ + β∗ (1 − ϵ) + µ)×

×

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∞

∫
0

k(s) (1 − q(s)) e
−

s

∫
0

k(τ)+µdτ
ds+

+
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds

∞

∫
0

χ(s) (1 − ξ(s)) e
−

s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

×

× e
−

θ

∫
0

γI(s)+µds
, ∀θ ∈ R+0 . (10e)

We now set

R+0 ∋R0 ∶=
µN0

p + µ (1 +
p (1 − ϵ)
ζϵ + µ )(RA +RI) , (11)

where

R+0 ∋RA ∶=
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds

∞

∫
0

βA(s)e
−

s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds

and

R+0 ∋RI ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

∞

∫
0

k(s) (1 − q(s)) e
−

s

∫
0

k(τ)+µdτ
ds+

+
∞

∫
0

k(s)q(s)e
−

s

∫
0

k(τ)+µdτ
ds

∞

∫
0

χ(s) (1 − ξ(s)) e
−

s

∫
0

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

×

×
∞

∫
0

βI(s)e
−

s

∫
0

γI(τ)+µdτ
ds,

for the basic reproductive number of the aforementioned problem. Its definition emerges naturally
from the following result.

Proposition 2. Concerning β∗ ∈ R+0 ,

1. if R0 ≤ 1, then β∗ = 0,

2. if R0 > 1, then

i. either β∗ = 0,
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ii. or β∗ > 0, such that
b2β

∗2 + b1β∗ + b0 = 0,

where

b2 = (1 − ϵ) ,
b1 = (p + µ) (1 − ϵ) + ζϵ + µ − µN0 (1 − ϵ) (RA +RI) ,
b0 = (p + µ) (ϵζ + µ) (1 −R0) .

Proof. We substitute a∗ and i∗ of (10d) and (10e), respectively, into (8a) to deduce that

β∗ = β∗ µN0

p + β∗ + µ (1 +
p (1 − ϵ)

ζϵ + β∗ (1 − ϵ) + µ)(RA +RI) .

There are only two discrete cases, either β∗ = 0, or β∗ > 0. If β∗ > 0, then, equivalently,

1 = µN0

p + β∗ + µ (1 +
p (1 − ϵ)

ζϵ + β∗ + (1 − ϵ) + µ)(RA +RI) ,

or else
b2β

∗2 + b1β∗ + b0 = 0.

We observe that

a. if ϵ = 1 then b2 = 0 and b1 > 0,

b. if ϵ ≠ 1 then b2 > 0.

Therefore, in any case, there exists β∗ > 0 satisfying the above equation iff b3 < 0, i.e. R0 > 1, and
of course, such β∗ is unique.

The following result is now straightforward.

Corollary 2. Concerning (S∗, V ∗, e∗, a∗, i∗),

1. if R0 ≤ 1 then (e∗, a∗, i∗) = (0,0,0),

2. if R0 > 1 then

i. either (e∗, a∗, i∗) = (0,0,0),
ii. or (e∗, a∗, i∗) > (0,0,0).

The solution (S∗, V ∗, e∗, a∗, i∗) is called disease-free steady state if (e∗, a∗, i∗) = (0,0,0), as well
as endemic steady state if (e∗, a∗, i∗) > (0,0,0).

2.1.4 Global stability

We are interested in the longer-time dynamics of the modeled epidemiological phenomenon, globally

with respect to the set of initial data, (R+0)
2×(L1(R+0 ;R+0))

3×R+0 . Below we check the global stability
of the steady state of P (3) by finding a Lyapunov function. Since the steady state changes with
respect to the sign of 1 −R0, we check each such case separately.

Theorem 2. If R0 ≤ 1, then the disease-free steady state,

(S∗, V ∗, e∗, a∗, i∗) = ( µN0

p + µ,
pµN0

(p + µ) (ζϵ + µ) ,0,0,0) ,

is globally asymptotically stable.

Proof. Step I:
We define the following functions

f ∶R+ → R+0
x↦ f(x) ∶= x − 1 − lnx,
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and

L ∶R+0 → R+0
t↦ L(t;S,V, e, a, i) ∶= LSV +LE +LA +LI ,

where

LSV ∶= S∗f(
S

S∗
) + V ∗f( V

V ∗
), (12)

LE ∶=
∞

∫
0

fE(θ)e( ⋅ , θ)dθ (13)

LA ∶=
∞

∫
0

fA(θ)a( ⋅ , θ)dθ (14)

LI ∶=
∞

∫
0

fI(θ)i( ⋅ , θ)dθ, (15)

and fE , fA and fI are left to be defined.
Step II:

We differentiate LSV , LE , LA and LI . From (3a) and (3b) we get

dLSV

dt
= (1 − S∗

S
) dS

dt
+ (1 − V ∗

V
) dV

dt
=

= µS∗ (2 − S

S∗
− S∗

S
) + pS∗ (3 − V

V ∗
− S∗

S
− SV ∗

S∗V
) − β (S + (1 − ϵ)V ) + β (S∗ + (1 − ϵ)V ∗) .

With (5c) at hand, we also calculate

dLE

dt
= d

dt

⎛
⎜
⎝

t

∫
0

fE(θ)ε(t − θ)e
−

θ

∫
0

k(s)+µds
dθ +

∞

∫
t

fE(θ)e0(θ − t)e
−

t

∫
0

k(θ−t+s)+µds
dθ
⎞
⎟
⎠
=

= fE(0)ε +
∞

∫
0

(dfE
dθ
(θ) − fE(θ) (k(θ) + µ)) e( ⋅ , θ)dθ.

Similarly, from (5d) and (5e) we deduce the following expressions

dLA

dt
= fA(0)α +

∞

∫
0

(dfA
dθ
(θ) − fA(θ) (γA(θ)ξ(θ) + χ(θ) (1 − ξ(θ)) + µ))a( ⋅ , θ)dθ

and
dLI

dt
= fI(0)ι +

∞

∫
0

(dfI
dθ
(θ) − fI(θ) (γI(θ) + µ)) i( ⋅ , θ)dθ.

Therefore, we have

dL

dt
= dLSV

dt
+ dLE

dt
+ dLA

dt
+ dLI

dt
=

= −µS∗ ( S

S∗
+ S∗

S
− 1) − pS∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3) − (1 − fE(0)) ε+

+ (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ+

+
∞

∫
0

(dfE
dθ
(θ) − fE(θ) (k(θ) + µ) + fA(0)k(θ)q(θ) + fI(0)k(θ) (1 − q(θ))) e( ⋅ , θ)dθ+

+
∞

∫
0

(dfA
dθ
(θ) − fA(θ) (γA(θ)ξ(θ) + χ(θ) (1 − ξ(θ)) + µ) + fI(0)χ(θ) (1 − ξ(θ)))a( ⋅ , θ)dθ+

+
∞

∫
0

(dfI
dθ
(θ) − fI(θ) (γI(θ) + µ)) i( ⋅ , θ)dθ.
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Step III:
We choose fE , fA and fI such that the latter terms in the last equation to be zero, that is

dfE
dθ
= fE (k + µ) − fA(0)kq − fI(0)k (1 − q) ,

dfA
dθ
= fA (γAξ + χ (1 − ξ) + µ) − fI(0)χ (1 − ξ) − (S∗ + (1 − ϵ)V ∗)βA,

dfI
dθ
= fI (γI + µ) − (S∗ + (1 − ϵ)V ∗)βI .

Hence, ∀θ ∈ R+0 , we set

fE(θ) ∶= fA(0)
∞

∫
0

k(s)q(s)e
−

s

∫
θ

k(τ)+µdτ
ds + fI(0)

∞

∫
0

k(s) (1 − q(s)) e
−

s

∫
θ

k(τ)+µdτ
ds, (16)

fA(θ) ∶= (S∗ + (1 − ϵ)V ∗)
∞

∫
θ

βA(s)e
−

s

∫
θ

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds+

+ fI(0)
∞

∫
θ

χ(s) (1 − ξ(s)) e
−

s

∫
θ

γA(τ)ξ(τ)+χ(τ)(1−ξ(τ))+µdτ
ds, (17)

fI(θ) ∶= (S∗ + (1 − ϵ)V ∗)
∞

∫
θ

βI(s)e
−

s

∫
θ

γI(τ)+µdτ
ds. (18)

For fE , fA and fI defined as such we have

dL

dt
= −µS∗ ( S

S∗
+ S∗

S
− 1) − pS∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3) − (1 −R0) ε.

Step IV:
Due to the arithmetic-geometric mean inequality, we derive

R0 ≤ 1⇒ dL

dt
≤ 0, ∀t ∈ R+0

and the equality holds only for the disease-free steady state, i.e. when

(S,V, e, a, i) = (S∗, V ∗, e∗, a∗, i∗) .

Hence, the singleton {(S∗, V ∗, e∗, a∗, i∗)} is the largest invariant set for which

dL

dt
= 0.

Then, from the LaSalle in-variance principle it follows that the disease-free steady state is globally
asymptotically stable.

Theorem 3. If R0 > 1, then the endemic steady state,

(S∗, V ∗, e∗, a∗, i∗) ≠ (S∗, V ∗,0,0,0) ,

is globally asymptotically stable.

Proof. Step I:
Based on (16)-(18), we now define

L ∶R+0 → R+0
t↦ L(t;S,V, e, a, i) ∶= LSV +LE +LA +LI ,
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with

LSV ∶= S∗f(
S

S∗
) + V ∗f( V

V ∗
),

LE ∶= fA(0)
∞

∫
0

∞

∫
θ

k(s)q(s)e∗(s)ds f(e( ⋅ , θ)
e∗(θ) )dθ+

+ fI(0)
∞

∫
0

∞

∫
θ

k(s) (1 − q(s)) e∗(s)ds f(e( ⋅ , θ)
e∗(θ) )dθ,

LA ∶= (S∗ + (1 − ϵ)V ∗)
∞

∫
0

∞

∫
θ

βA(s)a∗(s)ds f(
a( ⋅ , θ)
a∗(θ) )dθ+

+ fI(0)
∞

∫
0

∞

∫
θ

χ(s) (1 − ξ(s))a∗(s)ds f(a( ⋅ , θ)
a∗(θ) )dθ,

LI ∶= (S∗ + (1 − ϵ)V ∗)
∞

∫
0

∞

∫
θ

βI(s)i∗(s)ds f(
i( ⋅ , θ)
i∗(θ) )dθ

and

f ∶R+ → R+0
x↦ f(x) ∶= x − 1 − lnx.

Step IIa:
We differentiate LSV , LE , LA and LI . From (3a) and (3b) we get

dLSV

dt
= (1 − S∗

S
) dS

dt
+ (1 − V ∗

V
) dV

dt
=

= −µS∗ ( S

S∗
+ S∗

S
− 2) − pS∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3)+

+ S∗
∞

∫
0

βA(θ)a∗(θ)(1 −
S a( ⋅ , θ)
S∗a∗(θ) −

S∗

S
+ a( ⋅ , θ)

a∗(θ) )dθ+

+ S∗
∞

∫
0

βI(θ)i∗(θ)(1 −
S i( ⋅ , θ)
S∗i∗(θ) −

S∗

S
+ i( ⋅ , θ)

i∗(θ) )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)(−1 − V a( ⋅ , θ)
V ∗a∗(θ) +

V

V ∗
+ a( ⋅ , θ)

a∗(θ) )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βI(θ)i∗(θ)(−1 − V i( ⋅ , θ)
V ∗i∗(θ) +

V

V ∗
+ i( ⋅ , θ)

i∗(θ) )dθ.

From the differential equation in (3c) along with (7c) we have

∂

∂t
f(e(t, θ)

e∗(θ) ) = −
∂

∂θ
f(e(t, θ)

e∗(θ) ),

thus

dLE

dt
= −fA(0)

∞

∫
0

∞

∫
θ

k(s)q(s)e∗(s)ds ∂

∂θ
f(e( ⋅ , θ)

e∗(θ) )dθ−

− fI(0)
∞

∫
0

∞

∫
θ

k(s) (1 − q(s)) e∗(s)ds ∂

∂θ
f(e( ⋅ , θ)

e∗(θ) )dθ =

= fA(0)
∞

∫
0

k(θ)q(θ)e∗(θ)( ε

ε∗
− e( ⋅ , θ)

e∗(θ) + ln
e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)( ε

ε∗
− e( ⋅ , θ)

e∗(θ) + ln
e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ.
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Similarly, from (3d) along with (7d), as well as (3e) along with (7e), we deduce

dLA

dt
= (S∗ + (1 − ϵ)V ∗)

∞

∫
0

βA(θ)a∗(θ)(
α

α∗
− a( ⋅ , θ)

a∗(θ) + ln
a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)( α

α∗
− a( ⋅ , θ)

a∗(θ) + ln
a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ

and

dLI

dt
= (S∗ + (1 − ϵ)V ∗)

∞

∫
0

βI(θ)i∗(θ)(
ι

ι∗
− i( ⋅ , θ)

i∗(θ) + ln
i( ⋅ , θ)
i∗(θ) − ln

ι

ι∗
)dθ,

respectively. Therefore, we have

dL

dt
= dLSV

dt
+ dLE

dt
+ dLA

dt
+ dLI

dt
=

= −µS∗ ( S

S∗
+ S∗

S
− 2) − pS∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3)+

+ S∗
∞

∫
0

βA(θ)a∗(θ)(1 −
S∗

S
+ ln

a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ S∗
∞

∫
0

βI(θ)i∗(θ)(1 −
S∗

S
+ ln

i( ⋅ , θ)
i∗(θ) − ln

ι

ι∗
)dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)(−1 + V

V ∗
+ ln

a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βI(θ)i∗(θ)(−1 + V

V ∗
+ ln

i( ⋅ , θ)
i∗(θ) − ln

ι

ι∗
)dθ+

+ fA(0)
∞

∫
0

k(θ)q(θ)e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)(ln a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ +

6

∑
i=1

Di,
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where

D1 ∶= (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)a∗(θ)
α

α∗
+ βI(θ)i∗(θ)

ι

ι∗
dθ,

D2 ∶= − (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)e( ⋅ , θ)
e∗(θ) dθ−

− fI(0)
⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)e( ⋅ , θ)
e∗(θ) dθ +

∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)a( ⋅ , θ)
a∗(θ) dθ

⎞
⎠
,

D3 ∶= −S∗
∞

∫
0

βA(θ)a∗(θ)
S a( ⋅ , θ)
S∗a∗(θ) + βI(θ)i∗(θ)

S i( ⋅ , θ)
S∗i∗(θ) dθ−

− (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)
V a( ⋅ , θ)
V ∗a∗(θ) + βI(θ)i∗(θ)

V i( ⋅ , θ)
V ∗i∗(θ) dθ,

D4 ∶=
ε

ε∗

∞

∫
0

(fA(0)k(θ)q(θ) + fI(0)k(θ) (1 − q(θ))) e∗(θ)dθ,

D5 ∶= −fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ)) e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)e( ⋅ , θ)
e∗(θ) dθ,

D6 ∶= fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ) α
α∗

dθ.

Step IIb:
From (4c) and (9d) we see that

D5 +D6 = 0.

Moreover, by (8) and (9), along with (4a) and (4b), we observe that

D4 =
ε

ε∗
(S∗ + (1 − ϵ)V ∗)

∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)dθ+

+ ε

ε∗
fI(0)

⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ) + χ(θ) (1 − ξ(θ))a∗(θ)dθ
⎞
⎠
=

= ε

ε∗
(S∗ + (1 − ϵ)V ∗)

⎛
⎜
⎝
α∗

∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ + ι∗

∞

∫
0

βI(θ)e
−

θ

∫
0

γI(s)+µds
dθ
⎞
⎟
⎠
=

= ε

ε∗
(S∗ + (1 − ϵ)V ∗)β∗ = ε

ε∗
ε∗ = β (S + (1 − ϵ)V ) =

= (S + (1 − ϵ)V )
∞

∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ = −D3.

Additionally, from (8) and (9) we have that

−D2 = α (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ + ιfI(0) =

= α

α∗
α∗ (S∗ + (1 − ϵ)V ∗)

∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ + ι

ι∗
ι∗fI(0) =

= α

α∗
(S∗ + (1 − ϵ)V ∗)

∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)dθ+

+ ι

ι∗
fI(0)

⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)dθ +
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)dθ
⎞
⎠
=D1.
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Consequently,
6

∑
i=1

Di = 0

and with (7b) at hand we deduce that

dL

dt
= −µS∗ ( S

S∗
+ S∗

S
− 2) − (ζϵ + β∗ (1 − ϵ) + µ)V ∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3)+

+ S∗
∞

∫
0

βA(θ)a∗(θ)(1 −
S∗

S
+ ln

a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ S∗
∞

∫
0

βI(θ)i∗(θ)(1 −
S∗

S
+ ln

i( ⋅ , θ)
i∗(θ) − ln

ι

ι∗
)dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)(−1 + V

V ∗
+ ln

a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βI(θ)i∗(θ)(−1 + V

V ∗
+ ln

i( ⋅ , θ)
i∗(θ) − ln

ι

ι∗
)dθ+

+ fA(0)
∞

∫
0

k(θ)q(θ)e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)(ln a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ.

Step IIc:
We then proceed by adding some useful zero terms in the above equation. First, from (4b), along
with (8a) and (8b), we have the following useful expression for

(S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)a∗(θ) + βI(θ)i∗(θ)dθ = ε∗

as follows

ε∗ = ε∗

ε
ε = ε∗

ε
(S + (1 − ϵ)V )

∞

∫
0

βA(θ)a( ⋅ , θ) + βI(θ)i( ⋅ , θ)dθ =

= S∗
∞

∫
0

βA(θ)a∗(θ)
S a( ⋅ , θ)ε∗
S∗a∗(θ)ε + βI(θ)i∗(θ)

S i( ⋅ , θ)ε∗
S∗i∗(θ)ε dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)
V a( ⋅ , θ)ε∗
V ∗a∗(θ)ε + βI(θ)i∗(θ)

V i( ⋅ , θ)ε∗
V ∗i∗(θ)ε dθ.

Second, by (4c) and (4d), along with (8c) and (8d), we have

0 = (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ (α∗ − α∗

α
α) + fI(0) (ι∗ −

ι∗

ι
ι) =

= (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)(1 − e( ⋅ , θ)α∗
e∗(θ)α ) dθ+

+ fI(0)
⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)(1 − e( ⋅ , θ)ι∗
e∗(θ)ι )dθ +

∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)(1 − a( ⋅ , θ)ι∗
a∗(θ)ι )dθ

⎞
⎠
.
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In view of the above, we now write

dL

dt
= −µS∗ ( S

S∗
+ S∗

S
− 2) − (ζϵ + µ)V ∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3)+

+ (S∗ + (1 − ϵ)V ∗)
∞

∫
0

(βA(θ)a∗(θ) + βI(θ)i∗(θ)) (1 −
S∗

S
+ ln

S∗

S
)dθ+

+ S∗
∞

∫
0

βA(θ)a∗(θ)(ln
S a( ⋅ , θ)
S∗a∗(θ) − ln

α

α∗
+ 1 − S a( ⋅ , θ)ε∗

S∗a∗(θ)ε )dθ+

+ S∗
∞

∫
0

βI(θ)i∗(θ)(ln
S i( ⋅ , θ)
S∗i∗(θ) − ln

ι

ι∗
+ 1 − S i( ⋅ , θ)ε∗

S∗i∗(θ)ε )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)(1 −
SV ∗

S∗V
+ ln

S a( ⋅ , θ)
S∗a∗(θ) − ln

α

α∗
+ 1 − V a( ⋅ , θ)ε∗

V ∗a∗(θ)ε )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βI(θ)i∗(θ)(1 −
SV ∗

S∗V
+ ln

S i( ⋅ , θ)
S∗i∗(θ) − ln

ι

ι∗
+ 1 − V i( ⋅ , θ)ε∗

V ∗i∗(θ)ε )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)(ln
SV ∗

S∗V
− ln

SV ∗

S∗V
+ ln

V a( ⋅ , θ)ε∗
V ∗a∗(θ)ε − ln

V a( ⋅ , θ)ε∗
V ∗a∗(θ)ε )dθ+

+ (1 − ϵ)V ∗
∞

∫
0

βI(θ)i∗(θ)(ln
SV ∗

S∗V
− ln

SV ∗

S∗V
+ ln

V i( ⋅ , θ)ε∗
V ∗i∗(θ)ε − ln

V i( ⋅ , θ)ε∗
V ∗i∗(θ)ε )dθ+

+ fA(0)
∞

∫
0

k(θ)q(θ)e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)(ln e( ⋅ , θ)
e∗(θ) − ln

ε

ε∗
)dθ+

+ fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)(ln a( ⋅ , θ)
a∗(θ) − ln

α

α∗
)dθ+

+ (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)(1 − e( ⋅ , θ)α∗
e∗(θ)α ) dθ+

+ fI(0)
⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)(1 − e( ⋅ , θ)ι∗
e∗(θ)ι )dθ +

∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)(1 − a( ⋅ , θ)ι∗
a∗(θ)ι )dθ

⎞
⎠
.

Step IId:
From the definition of f and the equation

D1 =
α

α∗
(S∗ + (1 − ϵ)V ∗)

∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)dθ+

+ ι

ι∗
fI(0)

⎛
⎝

∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)dθ +
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)dθ
⎞
⎠
,
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the expression can eventually be simplified as follows

dL

dt
= −µS∗ ( S

S∗
+ S∗

S
− 2) − (ζϵ + µ)V ∗ ( V

V ∗
+ S∗

S
+ SV ∗

S∗V
− 3)−

− (S∗ + (1 − ϵ)V ∗)
∞

∫
0

(βA(θ)a∗(θ) + βI(θ)i∗(θ)) f(
S∗

S
)dθ−

− S∗
∞

∫
0

βA(θ)a∗(θ)f(
S a( ⋅ , θ)ε∗
S∗a∗(θ)ε )dθ − S∗

∞

∫
0

βI(θ)i∗(θ)f(
S i( ⋅ , θ)ε∗
S∗i∗(θ)ε )dθ−

− (1 − ϵ)V ∗
∞

∫
0

βA(θ)a∗(θ)f(
V a( ⋅ , θ)ε∗
V ∗a∗(θ)ε )dθ − (1 − ϵ)V ∗

∞

∫
0

βI(θ)i∗(θ)f(
V i( ⋅ , θ)ε∗
V ∗i∗(θ)ε )dθ−

− (1 − ϵ)V ∗
∞

∫
0

(βA(θ)a∗(θ) + βI(θ)i∗(θ)) f(
SV ∗

S∗V
)dθ−

− (S∗ + (1 − ϵ)V ∗)
∞

∫
0

βA(θ)e
−

θ

∫
0

γA(s)ξ(s)+χ(s)(1−ξ(s))+µds
dθ

∞

∫
0

k(θ)q(θ)e∗(θ)f(e( ⋅ , θ)α
∗

e∗(θ)α )dθ−

− fI(0)
∞

∫
0

k(θ) (1 − q(θ)) e∗(θ)f(e( ⋅ , θ)ι
∗

e∗(θ)ι )dθ − fI(0)
∞

∫
0

χ(θ) (1 − ξ(θ))a∗(θ)f(a( ⋅ , θ)ι
∗

a∗(θ)ι )dθ.

Step III:
Employing the arithmetic-geometric mean inequality, we get

R0 ≤ 1⇒ dL

dt
≤ 0, ∀t ∈ R+0

and the equality holds only for the endemic steady state, i.e. when

(S,V, e, a, i) = (S∗, V ∗, e∗, a∗, i∗) .

Hence, the singleton {(S∗, V ∗, e∗, a∗, i∗)} is the largest invariant set for which

dL

dt
= 0.

Then, from the LaSalle in-variance principle it follows that the endemic steady state is globally
asymptotically stable.

3 Numerical simulations

In this section, we numerically solve P (3) in order to verify the validity of the analysis performed
in §2.1 and to further investigate the behavior of P (3).

3.1 Numerical scheme

Here, we present the temporal discretization used to numerically solve P and the code used to
implement it.

3.1.1 Temporal discretization

We assume that the maximum age of the population, θ†, is equal to 90 ⋅ 360 days. Furthermore,
we study P (3) for a time of up to 1500 days. Hence, we solve P (3) in the interval (t, θ) ∈
[0, 1500] × [0, 90 ⋅ 360] ⋅ days. The time-age step we chose is h = 0.05. Let N be the number of
time-age steps needed to reach the maximum age, i.e θ†, and J be the number of time-age steps
needed to reach the maximum time, i.e 1500 days.

To discretize the time derivative, we use the following first-order forward difference scheme:

∂

∂t
(u(tn)) = lim

h→0+

u(tn + h) − u(tn)
h

≈ un+1 − un

h
, 0 ≤ n ≤ N − 1 ,
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for u ∈ {S(t), V (t) ∣ t ∈ [0, 1500] ⋅ days}.
To discretize the temporal directional derivative, we use the following first-order approximation:

( ∂
∂t
+ ∂

∂θ
) (u(tn, θj)) = lim

h→0+

u(tn + h, θj + h) − u(tn, θj)
h

≈
un+1
j+1 − un

j

h
, 0 ≤ n ≤ N −1, 0 ≤ j ≤ J −1 ,

for u ∈ {e(t, θ ), a(t, θ ), i(t, θ ) ∣ (t, θ) ∈ [0, 1500] × [0, 90 ⋅ 360] ⋅ days} .
To discretize the integrals, we use the following quadrature formula:

∞

∫
0

g(θ)u( tn , θ)dθ ≈ h
J
∑
j=0

g(θj)u( tn , θj) = h
J
∑
j=0

gju
n
j , 0 ≤ n ≤ N − 1 ,

for

(u, g) ∈ {e(t, θ ), a(t, θ ), i(t, θ ) ∣ (t, θ) ∈ [0, 1500] × [0, 90 ⋅ 360] ⋅ days}×
× {βA(θ), βI(θ), k(θ), q(θ), γA(θ), ξ(θ), χ(θ), γI(θ) ∣ θ ∈ [0, 90 ⋅ 360] ⋅ days} .

3.1.2 Code implementation

To implement the aforementioned discretization schemes, we use Julia (v1.8.5) [2]. The code can
be found at https://github.com/TsilidisV/age-structured-SVeaiR-model. To plot the numerical
solution of P (3), we use Makie.jl [8]. To save and load the results, we use JLD2.jl and CodecZlib.jl.
To calculate R0, we use QuadGK.jl [19] and Integrals.jl [25]. To create faster Julia structs for
the parameters and initial conditions, we use FunctionWrappers.jl. Finally, we use Dierckx.jl to
interpolate, as well as CSV.jl and DataFrames.jl [4] to load the data for the parameter values.

3.2 Parameter values

Here, we give a description of the parameter values chosen to represent the case of SARS-CoV-2.
A summary of the parameter values, can be found in Table 2.

Table 2: A list of parameters of P (3), along with their value, units and value source

Parameters Value Units Source

N0 80 ⋅ 106 individuals Estimated from [23]
µ 4.38356 ⋅ 10−5 day −1 Estimated from [23]
βA Figure 2 individual−1 ⋅day −1 Estimated from [9]
βI Figure 2 individual−1 ⋅day−1 Estimated from [9]
p 10−3 day−1 Estimated from [23]
ϵ 0.7 - Estimated from [11]
ζ 1

14
day−1 Estimated from [7]

k Equation 20 day−1 Estimated from [20, 31]
q Figure 3 - Estimated from [27]
ξ 0.5 - Estimated from [12, 5]
χ Equation 21 day−1 Estimated from [12, 5]
γA

1
8

day−1 Estimated from [6]
γI

1
14

day−1 Estimated from [6]

• N0 = 80 ⋅ 106, the size of the population, is chosen to be that of a relative large country [23].

• µ = 4.38356 ⋅10−5 day−1, the birth/death rate, is converted from the average birth/death rate
of the world for the year 2021, 16 per 1000 individuals per year, found in [23].

• βA and βI are functions of age and are estimated from [9]. As can be seen from Fig. 2 of [9],
the average contacts an individual makes each day regardless of their epidemiological status
is about 16.71 contacts per day. In order to examine the effect of age in the dynamics of P
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(3), we assume the following two functions to respectively model two extreme cases of the
average number of contacts an individual makes:

c1(θ) =
16.71

0.38
exp((θ − 80ω

104
)
2

) , θ ∈ [0, 90 ⋅ 360] ⋅ days (19a)

c2(θ) =
16.71

0.38
exp((θ − 10ω

104
)
2

) , θ ∈ [0, 90 ⋅ 360] ⋅ days . (19b)

Both c1 and c2 have the same mean value of 16.71 contacts per day in the interval [0, 90 ⋅ 360] ⋅
days. We additionally assume that the probability of an exposed individual passing to the
compartments of asymptomatic and symptomatic individuals to be ϖE→A = 1

5
and ϖE→I = 2

5
,

respectively. Finally, assuming the transmission rates to be defined as βAi = ci⋅ϖE→A

N0
and

βIi = ci⋅ϖE→I

N0
, for i = 1,2, we get Figure 2.
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Figure 2: Two extreme types of transmission rates for the symptomatic infectious and asymptomatic
infectious individuals. The transmission rates corresponding to the contact function of c1 peak at individ-
uals of 10 years of age, whereas the transmission rates corresponding to the contact function of c2 peak at
individuals of 80 years of age.

• p = 10−3 day−1, the vaccination rate, is assumed to be that during the summer of 2021 in the
USA [23].

• ϵ = 0.7, the vaccine effectiveness, is assumed to be an average effectiveness of the BNT162b2
and ChAdOx1 nCoV-19 vaccine [11].

• ζ = 1
14

, the vaccine-induced immunity rate, is taken from [7].

• k, the latent rate, is a function of age and is taken by assuming that the latent and incubation
period differ by one day [20, 31]. It is given by

k(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

day−1, θ < 30 ⋅ 360
1
4.8

day−1, 30 ⋅ 360 ≤ θ < 40 ⋅ 360
1
4.8

day−1, 40 ⋅ 360 ≤ θ < 50 ⋅ 360
1
5.5

day−1, 50 ⋅ 360 ≤ θ < 60 ⋅ 360
1
3.1

day−1, 60 ⋅ 360 ≤ θ < 70 ⋅ 360
1
6

day−1, 70 ⋅ 360 ≤ θ .

(20)

• q, the proportion of the latent/exposed individuals becoming asymptomatic infectious is taken
from [27] and can be seen in Figure 3. To digitise the data from [27], we use WebPlotDigitizer
4.6 [26].
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Figure 3: Two types of transmission rates for the symptomatic infectious and asymptomatic infectious
individuals. The transmission rates corresponding to the contact function of c1 peak at individuals of 10
years of age, whereas the transmission rates corresponding to the contact function of c2 peak at individuals
of 80 years of age.

• ξ = 0.5, the proportion of the asymptomatic infectious individuals becoming recovered/removed
without developing any symptoms, is estimated from [12, 5].

• χ, the incubation rate, is a function of age and is taken form data from [28]. It is given by

χ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5

day−1, θ < 30 ⋅ 360
1
5.8

day−1, 30 ⋅ 360 ≤ θ < 40 ⋅ 360
1
5.8

day−1, 40 ⋅ 360 ≤ θ < 50 ⋅ 360
1
6.5

day−1, 50 ⋅ 360 ≤ θ < 60 ⋅ 360
1
4.1

day−1, 60 ⋅ 360 ≤ θ < 70 ⋅ 360
1
7

day−1, 70 ⋅ 360 ≤ θ .

(21)

• γA = 1
8

day−1, the recovery rate of the asymptomatic infectious individuals, is a function of
age, but it is taken as a constant due to lack of available data. It is estimated from [6].

• γI = 1
14

day−1, the recovery rate of the symptomatic infectious individuals, is a function of
age, but it is taken as a constant due to lack of available data. It is estimated from [6].

3.3 Results

Throughout our simulations we assume that S0 = V0 = 2 ⋅ 107 individuals. In order to study P
(3) in a global scale, we vary the rest of the initial conditions. In particular, we assume that
E0 = A0 = I0 = d and let d take the values of 10, 104, 106, 4 ⋅ 106, 107.

3.3.1 The case of R0 ≤ 1

Here, we assume the average number of contacts of each individual, c, to be as in (19a), i.e. c = c1.
In such a case, R0 = 5.95 ⋅ 10−5. As we see in Figure 4, for every initial condition we have that
(E, A, I) → (0, 0, 0), as t → ∞. This confirms the global stability analysis performed in §2.1,
since the solutions converge to the disease-free steady state for every initial condition when R0 ≤ 1.
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Solution of the problem for 𝓡0≤1 and different initial values of E, A and I
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Figure 4: Solution of P (3) for t ∈ [0,1500] ⋅ days. The time in each large diagram is in the range [0,100] ⋅
days, whereas in each inserted small diagram in the range of [100,1500] ⋅ days. The parameter values are
as in Table 2, with c = c1, and the initial conditions for S and V are S0 = V0 = 2 ⋅ 107. The time-related
initial conditions E0, A0 and I0 for E, A and I, respectively, are all equal, i.e E0 = A0 = I0 = d. The
value of d takes the values of 10,104,106,4 ⋅106 and 107. We see that for all initial conditions the solutions
converge towards the disease-free steady state, since (E, A, I) → (0, 0, 0), as t → ∞. Hence, the global
stability of the disease-free steady state for R0 ≤ 1 is numerically confirmed.
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3.3.2 The case of R0 > 1

Here, we assume the average number of contacts of each individual, c, to be as in (19b), i.e. c = c2.
In such a case, R0 = 9.14. As we see in Figure 5, for every initial condition we have that (E, A, I)
converges to a nonzero value, as t → ∞. This confirms the global stability analysis performed
in §2.1, since the solutions converge, in an oscillatory way, to the endemic steady state for every
initial condition when R0 > 1.
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Figure 5: Solution of P (3) for t ∈ [0,1500] ⋅ days. The time in each large diagram is in the range [0,100] ⋅
days, whereas in each inserted small diagram in the range of [100,1500] ⋅ days. The parameter values are as
in Table 2, with c = c2, and the initial conditions for S and V are S0 = V0 = 2 ⋅ 107. The time-related initial
conditions E0, A0 and I0 for E, A and I, respectively, are all equal, i.e E0 = A0 = I0 = d. The value of d
takes the values of 10, 104, 106,4 ⋅106 and 107. We see that for all initial conditions the solutions converge
towards the endemic steady state, since (E, A, I) converges to a nonzero value, as t →∞. Interestingly,
the convergence to the endemic steady state is oscillatory. Hence, the global stability of the endemic steady
state for R0 > 1 is numerically confirmed.
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4 Conclusions and discussion

In this paper, we derived an age-structured epidemiological compartment problem and we studied
it in terms of global well-posedness and stability analysis. From this analysis we deduced the basic
reproductive number, R0, of the model, a critical measurement of the transmission potential of a
disease.

The model presented in this paper focused on the age structure of a population. A straight-
forward generalization includes the consideration of more independent variables, such as a spatial
one. Moreover, it would be essential to include additional, potentially important factors of the
evolution of the epidemiological phenomenon, such as waning immunity gained by both infected
and vaccinated individuals.

References

[1] Aniruddha Adiga, Devdatt Dubhashi, Bryan Lewis, Madhav Marathe, Srinivasan Venkatra-
manan, and Anil Vullikanti. Mathematical models for COVID-19 pandemic: a comparative
analysis. J. Indian. Inst. Sci., 100(4):793–807, 2020.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65–98, 2017.

[3] Vasiliki Bitsouni, Nikolaos Gialelis, and Ioannis G. Stratis. A model for the outbreak of
COVID-19: Vaccine effectiveness in a case study of Italy. In A. Karapetyants, I. V. Pavlov,
and A. N. Shiryaev, editors, Operator Theory and Harmonic Analysis - Part II: Probability-
Analytical Models, Methods and Applications, volume 358 of Springer Proc. in Math. & Stat.,
pages 91–107. Springer, 2021.
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Von Platen, Olivia Chény, Fäıza Omar, Christophe David, Alexandra Rogoff, et al. Impact
of SARS-CoV-2 Delta variant on incubation, transmission settings and vaccine effectiveness:
Results from a nationwide case-control study in France. Lancet Reg. Health Eur., 13:100278,
2022.

26



[12] Jingjing He, Yifei Guo, Richeng Mao, and Jiming Zhang. Proportion of asymptomatic coro-
navirus disease 2019: A systematic review and meta-analysis. J. Med. Virol., 93(2):820–830,
2021.

[13] C Heneghan, J Brassey, and T Jefferson. COVID-19: what proportion are asymp-
tomatic? https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/.
CEBM. 2020.

[14] M. Iannelli and A. Pugliese. An Introduction to Mathematical Population Dynamics: Along
the Trail of Volterra and Lotka. Springer, 2014.

[15] Mimmo Iannelli and Fabio Milner. The Basic Approach to Age-Structured Population Dy-
namics: Models, Methods and Numerics. Lecture Notes on Mathematical Modelling in the
Life Sciences. Springer, 2017.

[16] Hisashi Inaba. Threshold and stability results for an age-structured epidemic model. J. Math.
Biol., 28:411–434, 1990.

[17] Hisashi Inaba. Age-Structured Population Dynamics in Demography and Epidemiology.
Springer, 2017.

[18] Nicholas P Jewell, Joseph A Lewnard, and Britta L Jewell. Predictive mathematical mod-
els of the COVID-19 pandemic: underlying principles and value of projections. JAMA,
323(19):1893–1894, 2020.

[19] Steven G. Johnson. QuadGK.jl: Gauss–Kronrod integration in Julia. https://github.com/
JuliaMath/QuadGK.jl, 2013.

[20] Min Kang, Hualei Xin, Jun Yuan, Sheikh Taslim Ali, Zimian Liang, Jiayi Zhang, Ting Hu,
Eric HY Lau, Yingtao Zhang, Meng Zhang, et al. Transmission dynamics and epidemiological
characteristics of SARS-CoV-2 Delta variant infections in Guangdong, China, May to June
2021. Eurosurveillance, 27(10):2100815, 2022.

[21] Ruiyun Li, Sen Pei, Bin Chen, Yimeng Song, Tao Zhang, Wan Yang, and Jeffrey Shaman.
Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2). Science, 368(6490):489–493, 2020.

[22] Philos. Mag. L. a problem in age-distribution. Proc. Edinb. Math. Soc., 21(124):435–438,
1911.

[23] Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie Giat-
tino, Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban Ortiz-Ospina,
and Max Roser. Coronavirus Pandemic (COVID-19). Our World in Data, 2020. https:
//ourworldindata.org/coronavirus.

[24] AG M’kendrick. Applications of mathematics to medical problems. Proc. Edinb. Math. Soc.,
44:98–130, 1925.

[25] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a performant and feature-
rich ecosystem for solving differential equations in julia. J. Open Source Softw., 5(1), 2017.
Exported from https://app.dimensions.ai on 2019/05/05.

[26] Ankit Rohatgi. Webplotdigitizer: Version 4.6. https://automeris.io/WebPlotDigitizer, 2022.

[27] Pratha Sah, Meagan C Fitzpatrick, Charlotte F Zimmer, Elaheh Abdollahi, Lyndon Juden-
Kelly, Seyed M Moghadas, Burton H Singer, and Alison P Galvani. Asymptomatic
SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci.,
118(34):e2109229118, 2021.

[28] WYT Tan, LY Wong, YS Leo, and MPHS Toh. Does incubation period of COVID-19 vary
with age? A study of epidemiologically linked cases in Singapore. Epidemiol. Infect., 148:e197,
2020.

27

https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/
https://github.com/JuliaMath/QuadGK.jl
https://github.com/JuliaMath/QuadGK.jl
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://automeris.io/WebPlotDigitizer


[29] Oliver J Watson, Gregory Barnsley, Jaspreet Toor, Alexandra B Hogan, Peter Winskill, and
Azra C Ghani. Global impact of the first year of COVID-19 vaccination: a mathematical
modelling study. Lancet Infect. Dis., 22(9):1293–1302, 2022.

[30] Glenn F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Number 89 in
Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, 1985.

[31] Yu Wu, Liangyu Kang, Zirui Guo, Jue Liu, Min Liu, and Wannian Liang. Incubation period
of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis.
JAMA Netw Open, 5(8):e2228008–e2228008, 2022.

[32] Yue Xiang, Yonghong Jia, Linlin Chen, Lei Guo, Bizhen Shu, and Enshen Long. COVID-19
epidemic prediction and the impact of public health interventions: A review of COVID-19
epidemic models. Infect. Dis. Model, 6:324–342, 2021.

[33] R. Yang, X. Gui, and Y. Xiong. Comparison of clinical characteristics of patients with asymp-
tomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Netw. Open,
3:e2010182, 2020.

28


	Introduction
	The epidemiological model
	Derivation and analysis of the model
	Scaling of age
	Global well-posedness
	Steady states and basic reproductive number
	Global stability


	Numerical simulations
	Numerical scheme
	Temporal discretization
	Code implementation

	Parameter values
	Results
	The case of R0<=1
	The case of R0>1


	Conclusions and discussion
	Bibliography

