
Bounds for Variable Degree Rational L∞
Approximations to the Matrix Cosine

Ch. Tsitourasa, V.N. Katsikisb

a TEI of Sterea Hellas, GR34400, Psahna, Greece
bTEI of Piraeus, GR12244, Athens, Greece

Abstract

In this work we derive new alternatives for efficient computation of the matrix
cosine. We focus especially on the two classes of normal and nonnegative ma-
trices and we present intervals of applications for rational L∞ approximations
of various degrees for these types of matrices in the lines of [3]. Our method
relies on Remez algorithm for rational approximation while the innovation here
is the choice of the starting set of non-symmetrical Chebyshev points. Only one
Remez iteration is then enough to quickly approach infinitesimally close to the
required L∞ approximant.

Keywords: Matrix cosine, rational L∞ approximation, Remez algorithm
2000 MSC: 65F30, 65F60, 65D20

1. Introduction

It is well known that in engineering applications many processes are de-
scribed by second order differential equations and the exact solution for these
equations is given in terms of trigonometric matrix functions sine and cosine.
For example the following matrix differential problem

d2y

dt2
+Ay = 0, y(0) = y0, y

′(0) = y′0, (1)

has solution
y(t) = cos(

√
At)y0 + (

√
A)−1 sin(

√
At)y′0, (2)

where
√
A denotes any square root of matrix A. As a case in point, the problem

described in equation (1), comes in front, when we are trying to solve the classi-

cal wave problem v2 ∂2y
∂x2 = ∂2y

∂t2 . To the best of our knowledge, the most efficient

Email addresses: tsitoura@teihal.gr (Ch. Tsitouras), vaskats@gmail.com (V.N.
Katsikis)

URL: http://users.ntua.gr/tsitoura (Ch. Tsitouras),
http://faculty.teipir.gr/vkatsikis (V.N. Katsikis)

Preprint submitted to Elsevier September 9, 2013

and competitive algorithms for computing the matrix cosine are based on Padé
rational approximations [3, 4] and on Hermite matrix polynomial series [1, 2].

In this work we are interested to compare rational approximations and, in
particular the Padé approximation and the best L∞ approximation.

Our main concern is to establish a competitive best rational L∞ approxima-
tion method for the matrix cosine. For this reason, we focus on two large classes
of matrices, normal matrices and nonnegative matrices (i.e., matrices for which
each matrix element is a nonnegative real number). The proposed method seems
to be advantageous over the Padé approximation in terms of digits of error as
well as in number of multiplications. Our method relies on Remez algorithm for
rational approximation while the innovation here is the choice of the starting
set of non-symmetrical Chebyshev points. Only one modified Remez iteration
is then enough to get infinitesimally close to the required L∞ approximant.

This paper is organized as follows. Section 2 summarizes known facts on ra-
tional approximations and in particular the best L∞ rational approximation and
the Padé rational approximation. In Section 3, our proposed method based on
Remez algorithm is described. Numerical experiments are presented in Section
4. Finally, conclusions are given in Section 5.

2. Preliminaries and notation

Rational functions rkm(x) = pk(x)
qm(x) , where pk, qm are polynomials in x of

degree at most k, m, respectively, are of crucial importance for approximation.
It is well known that a scalar approximation f(x) ≈ rkm(x) can be easily trans-
lated into a matrix approximation f(A) ≈ rkm(A), for A ∈ Cn×n, by applying
the scalar approximation to the spectrum of the matrix A. In the case of normal
matrices a good approximation on the spectrum imply a good matrix approx-
imation. To see this, recall that by the spectral theorem if A is normal then
A = UDUT , where U is a unitary matrix and D is a diagonal matrix, in fact,
the normal matrices are precisely those that are unitarily diagonizable . Note
that, the class of normal matrices includes orthogonal matrices, symmetric ma-
trices, skew-symmetric matrices and of course their complex analogues i.e., the
unitary, Hermitian and skew-Hermitian matrices.

Let Rk,m denote the space of rational functions rkm(x) = pk(x)
qm(x) with nu-

merator pk and denominator qm polynomials in x of degree at most k, m, re-
spectively.

The rational function r ∈ Rk,m is a best L∞ approximation to a function f
on [a, b] if it holds

∥r(x)− f(x)∥∞ = min
s∈Rk,m

∥s(x)− f(x)∥∞.

This kind of approximations are usually used for normal matrices where the
error bounds for the scalar problem translate directly into error bounds for the
matrix problem. Best L∞ rational approximations can be calculated using the
Remez algorithm, which is a standard algorithmic procedure in approximation
theory.

2

The rational function r ∈ Rk,m is a [k/m] Padé approximant to a given
scalar function f if qm(0) = 1 and

f(x)− rkm(x) = O(xk+m+1).

Note that, for a given f, k and m a [k/m] Padé approximant might not exist
but if it exists then it is unique.

Especially for the function cos we are interested for rational forms where
numerator and denominator are polynomials in even powers sharing the same
degree. Thus let’s denote by r̂d these elements of Rd,d.

When ∥A∥ . 1, cos(A) may be easily approximated using the r̂8 Padé ap-
proximation. For large ∥A∥, the usual procedure is a scaling and squaring
method that can reduce the norm. At this point it useful to keep in mind
that Padé approximants have the same drawbacks as Taylor expansions: they
are local (i.e., around one value) approximations only. In [4], the authors
developed and algorithm that chooses s so that 2−s∥A∥ ≤ 1, approximates
cos(A) ≈ r̂8(2

−sA) and then one can obtain a good approximation at reason-
able cost of the matrix cosine by using the cosine double angle formula. Several
improvements to this method where made in [3].

Namely, variable degree Padé approximants were used according to the mag-
nitude of the norm of the matrix A. We illustrate this in the following algorithm
which follows the lines of [3, Algorithm 3.1].

Algorithm 1 Given a matrix A ∈ Cn×n this algorithm approximates C =
cos(A). It uses the constants θd given in Table-2.

Require: Matrix A ∈ Cn×n

1: B = A2

2: θ = ||B||1/2∞
3: for d = [2 4 6 8 12 16]
4: if θ ≤ θd
5: C = r̂d(A)
6: quit
7: end
8: end
9: s = ceil(log2(θ/θ16))

10: B ← 4−sB
11: C = r̂d(2

−sA)
12: for i = 1 : s
13: C = 2C2 − I
14: end

Actually in [3] even d = 20 was used. But here we found that at maximum
d = 16 is enough. It is obvious that if we avoid Padé and try L∞ approximations
then θd will be different. For the matrices under consideration values of θd are
expected to be greater. Then a matrix multiplication can be saved.

3

3. The Remez algorithm for efficient computation of the matrix co-
sine

Muller [6] states that ”It is no longer necessary to write specific software or
to perform long paper and pencil calculations in order to compute polynomial or
rational approximations of functions. Software such as Maple readily computes
minimax or Chebyshev approximations.”

Indeed using Maple we may for example approximate r̂4 that best approxi-
mates cos over the interval [−1, 1], by typing:

with(numapprox):

Digits := 40:

sol := fnormal(minimax(cos(x),x=-1..1,[4, 4],1,’err’),16,10^(-11));

and after some seconds we get the result

0.9780991458613181− 0.4459077731148132 · x2 + 0.02006287192090119 · x4

0.9780991466002248 + 0.04314176272693444 · x2 + 0.0008799254301546418 · x4

The maximum error observed in the interval is ϵ ≈ 7.5545 · 10−10.

Mathematica offers the same benefit. Typing:

In[1]:=<< FunctionApproximations‘

In[2]:=N[Chop[MiniMaxApproximation[Cos[x], {x, {-1, 1},

4, 5}, WorkingPrecision -> 33, MaxIterations -> 200]

[[2, 1]], 10^-16], 16]

we get

Out[2] :=
0.9999999989884365− 0.4558785528455367 · x2 + 0.02050650951514645 · x4

1 + 0.04412140084820871 · x2 + 0.0009008930686455960 · x4

But the maximum error observed in the interval is ϵ ≈ 1.0115 ·10−9. This er-
ratic behavior is common with MiniMaxApproximation function of Mathematica.
Actually we couldn’t derive r̂12 or higher order with the latter function. Thus
we developed another heuristic approach that approximates the correct minimal
at much less time than the corresponding function of Maple.

At first the new algorithm selects an initial set of Chebyshev-type non-
symmetrical points (say xj) and fits a function r̂′d. In all cases checked, this first
approximant r̂′d was extremely close to the minimal. Then just one minimization
of the sum of squares of the differences

r̂d(x
′
j)− cos(x′

j) + (−1)jϵ

was enough to get the minimal ϵ, where ϵ is the norm of the maximum error
and x′

j , j = 1, 2, · · · , 2d + 3 the extremes of the difference r̂′d − cos. The least
squares approach overthrows ”ill-posed” problems and allows us not to deal with

4

-1.0 -0.5 0.5 1.0

-6.´10-10

-4.´10-10

-2.´10-10

2.´10-10

4.´10-10

6.´10-10

Figure 1: Error of r̂4 approximation by minimax and Algorithm-2 to cos

nullified coefficients of odd powers in polynomials of the rational forms. Thus
only d + 2 unknowns (d + 1 coefficients of r̂d and ϵ) are used to minimize the
sum of squares of 2d+3 factors. The algorithm is very fast since it is tuned for
approaching cos function.

Algorithm 2 Given an even d and an interval [−θ, θ] return the rational form

r̂d(x) =
p0+p2x

2+···+pdx
d

1+q2x2+···+qdxd that best approximates function cos in [−θ, θ].
Require: Choose an even d and an interval [−θ, θ]
1: Choose points x1.5d+0.75− j

4
= θ · cos(πj6d), j = 6d− 1, 6d− 5, 6d− 9, · · · , 3

2: Find the least squares fit of r̂′d to the data (xj , cosxj), j = 1, 2, · · · , 1.5d
3: Perform just one modified Remez iteration i.e.,

Compute points x′ where r̂′d(x)− cos(x) has its 2d+ 3 extremes
Find the following least squares sum for the coefficients of r̂d and ϵ∑j=2d+3

j=1 (r̂d(x
′
j)− cos(x′

j) + (−1)jϵ)2.

In Figure-1 we observe the correct behavior of minimax and Algorithm-2 in
evaluating r̂4 in L∞. The extremes alternate signs in full amplification ϵ as
expected by Chebyshev theorem [6, pg. 47]. In the contrary the corresponding
result by MiniMaxApproximation fails as can be seen in Figure-2.

We also tested the ability of functions

1. minimax built-in with Maple

2. cosi implementing Algorithm-2 in Mathematica (see Appendix)

3. MiniMaxApproximation built-in with Mathematica

to produce r̂d over the interval [−1, 1] for d = 4, 6, 8. We summarized the re-
sults in Table-1 and observed that Algorithm-2 is by far the fastest that achieves
the minimal.

5

-1.0 -0.5 0.5 1.0

-1.´10-9

-5.´10-10

5.´10-10

1.´10-9

Figure 2: Error of r̂4 approximation by MiniMaxApproximation to cos

Table 1: Time in seconds and error for various minimax functions over the interval [−1, 1].

Maple Algorithm-2 Mathematica
d time error time error time error

4 4.4 7.554 · 10−10 0.094 7.554 · 10−10 0.156 1.011 · 10−9

6 7.6 1.634 · 10−15 0.469 1.634 · 10−15 0.282 2.187 · 10−15

8 16.3 1.095 · 10−21 0.485 1.095 · 10−21 0.469 1.466 · 10−21

The rational forms r̂d that best approximate the function cos over the in-
terval [−θd, θd] can be found. The question that raises now is ”how we choose
θd’s?”.

We construct randomly 1000 matrices Aj , j = 1, 2, · · · , 1000 with norms
in [0, θd]. These norms are more densely distributed in the right of the latter
interval. We evaluate their true value of cos(Aj) along with their approximations
r̂d(Aj). θd is chosen such that

max
j=1,2,··· ,1000

||r̂d(Aj)− cos(Aj)||∞ ≤ 10−16.

The discussion above for the need for a fast and accurate algorithm is pro-
found. The values found for normal or nonnegative matrices are given in Table-2.
The corresponding values for Padé approximants [3, Table 3.1] are also given in
this table. All r̂d’s derived have denominators with positive coefficients posing
no problems in any area of the intervals of their application. We remark here
that in order the functions r̂d to be applicable to floating point arithmetic used
in packages like MATLAB, then we have to truncate the coefficients derived by
Algorithm-2 to 16 significant digits. The results in Table-2 were computed after
this truncation was made.

6

Table 2: Bounds for Pade and L∞ approximations.

values of θd
d Pade Normal Nonnegative
2 0.006 0.011 0.01
4 0.11 0.22 0.17
6 0.43 0.85 0.65
8 0.98 2.0 1.5
12 2.6 5.3 3.8
16 4.7 7.6 6.7
20 7.1 – –

4. Numerical experiments

Testing of the new algorithm was performed in MATLAB 7.4 in IEEE double
precision arithmetic. We used a set of 52 test matrices that are built-in with
MATLAB. Fourteen of these matrices are nonnegative non-normal and eighteen
are normal. Thus 32 matrices of the total 52 are of interest in our work. The
dimensions tried were n = 5 and n = 10. For comparison, we also applied
cosm function from Matrix Computation Toolbox [5] that implements the vari-
able order Padé approximation [3]. We evaluated the absolute error ||Ĉ − C||2
where Ĉ is the computed approximation to C and the exact C = cos(A) is
computed in 50 significant decimal digit arithmetic using MATLAB′s Symbolic
Math Toolbox.

Table 3: Results for nonnegative, non-normal matrices, n = 5

matrix 4 5 6 9 11 12 18
digits of Pade 15.1 13.8 14.7 15.3 15.6 14.6 15.4
error L∞ 15.4 13.8 15.1 15.2 15.0 14.3 15.5
multipli- Pade 7 9 8 7 6 9 6
cations L∞ 7 8 7 6 5 8 6

matrix 24 33 35 43 45 49 52
digits of Pade 15.4 15.2 15.3 14.0 15.4 14.0 15.2
error L∞ 15.5 15.2 15.3 14.2 15.2 14.2 15.0
multipli- Pade 7 7 7 11 7 11 7
cations L∞ 6 7 6 11 6 11 6

For nonnegative matrices after interpreting Table-3 we observe that the same
accuracies were achieved but our r̂d’s were able in 9 of the 14 cases to save
a matrix multiplication. The same improvement was recorded in Table-4 for
higher dimension matrices.

The results for normal matrices are even more pleasant. For n = 5 we found
that in 16 of 18 cases we gained a multiplication without loss in accuracy. For

7

n = 10 this gain was raised to 17 matrices over 18 in total. In the latter case and
for matrices numbered 17 and 42, no error was recorded since these matrices
share extremely large norms.

Table 4: Results for nonnegative, non-normal matrices, n = 10

matrix 4 5 6 9 11 12 18
digits of Pade 14.5 7.8 14.1 14.8 15.3 13.3 15.4
error L∞ 14.6 7.8 14.3 14.7 13.8 13.3 15.5
multipli- Pade 8 11 9 7 6 11 6
cations L∞ 8 10 8 7 5 10 6

matrix 24 33 35 43 45 49 52
digits of Pade 15.1 14.8 15.0 11.4 14.7 11.4 14.7
error L∞ 15.3 14.9 15.1 11.0 14.7 11.0 14.6
multipli- Pade 7 8 8 14 8 14 8
cations L∞ 7 7 7 14 7 14 7

Table 5: Results for normal matrices, n = 5.

matrix 1 7 10 17 20 22 25 26 27
digits of Pade 15.5 11.6 14.7 3.6 15.4 15.2 14.1 14.8 15.4
error L∞ 15.2 11.6 14.8 4.7 15.3 15.2 13.6 14.7 15.3
multipli- Pade 6 12 8 27 6 7 9 8 6
cations L∞ 5 11 7 26 6 6 8 7 5

matrix 29 30 32 37 39 41 42 44 47
digits of Pade 14.5 15.4 15.5 15.5 14.8 15.6 6.1 13.3 15.5
error L∞ 14.5 15.4 15.3 15.4 14.8 15.5 6.4 12.9 15.5
multipli- Pade 8 6 6 6 7 6 24 12 6
cations L∞ 7 5 5 5 6 5 23 11 6

5. Conclusion

A new method for the computation of the matrix cosine is presented. Our
method relies on Remez algorithm for rational approximation while the innova-
tion here is the choice of the starting set of non-symmetrical Chebyshev points.
Only one Remez iteration is then enough to get infinitesimally close to the re-
quired L∞ approximant. The proposed algorithm, Algorithm-2, has proven to
be advantageous over the Padé approximation (see Higham [3]), in terms of
digits of error as well as in number of multiplications.

8

Table 6: Results for normal matrices, n = 10.

matrix 1 7 10 17 20 22 25 26 27
digits of Pade 14.8 12.2 13.1 −− 14.8 14.5 13.0 14.0 15.1
error L∞ 14.9 12.2 13.5 −− 14.8 14.3 13.1 13.7 15.0
multipli- Pade 6 12 10 66 7 8 11 10 6
cations L∞ 5 11 9 65 6 7 10 9 5

matrix 29 30 32 37 39 41 42 44 47
digits of Pade 14.3 15.0 14.9 14.7 14.3 14.8 −− 6.7 14.3
error L∞ 14.0 14.9 14.9 14.7 14.4 14.7 −− 7.0 14.3
multipli- Pade 9 6 6 6 8 6 48 21 8
cations L∞ 8 5 5 5 7 6 47 20 7

Acknowledgments

This research has been co-financed by the European Union (European So-
cial Fund - ESF) and Greek national funds through the Operational Program
”Education and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in
knowledge society through the European Social Fund.

Appendix

Next we present the Mathematica package that computes the cosine as ra-
tional approximant of even power polynomials. Notice that we don’t solve the
linear system of the Remez iteration. Instead we find the minimum of the sum
of squares of the equations involved.

As inputs we insert,
order: The value d of the rational form r̂d.
bound: The bounds of the interval [−θ, θ] where we want a r̂d that best approx-
imates cos.

In the output we get r̂d.

cosi[order_, bound_] := Module[{x0, y0, j1, a, b, res, temp, x1, uu, xx},

(*-- the initial points --*)

x0 = Table[Cos[Pi*j1/6/order], {j1, 6*order - 1, 1, -4}]*bound;y0 = Cos[x0];

(*-- the initial least squares rational approximant temp --*)

res = FindFit[Transpose[{x0, y0}],

Sum[a[j1]*x^j1, {j1, 0, order, 2}]/(1 + Sum[b[j1]*x^j1, {j1, 2, order, 2}]),

Join[Table[a[j1], {j1, 0, order, 2}], Table[b[j1], {j1, 2, order, 2}]],

x, NormFunction -> (Norm[#, 2] &), {WorkingPrecision -> 33,

MaxIterations -> 200}

];

temp = Sum[a[j1]*x^j1, {j1, 0, order, 2}]/(1 + Sum[b[j1]*x^j1, {j1, 2, order, 2}])

/. res;

9

(*-- compute the extremes xx over the interval [-bound,bound] --*)

x1 = Table[Cos[Pi*j1/6/order], {j1, 6*order, 1, -2}]*bound; (* find critical points *)

uu = Sort[Table[FindRoot[D[temp - Cos[x], x] == 0, {x, x1[[j1]]}, WorkingPrecision -> 33],

{j1, 1, Length[x1]}][[All, 1, 2]], #1 < #2 &];

(* exclude saddle points *)

xx = Transpose[Select[Transpose[{uu, Join[uu[[2 ;; Length[uu]]], {1821}]}],

Abs[#[[1]] - #[[2]]] > .01 &]][[1]];

(* add boundaries *)

xx = Insert[Insert[xx, -bound - 10^-28, 1], bound - 10^-28, -1] + 10^-28;

(*-- perform a Remez iteration --*)

Return[Sum[a[j1]*x^j1, {j1, 0, order, 2}]/(1 + Sum[b[j1]*x^j1, {j1, 2, order, 2}]) /.

FindMinimum[Total[Table[(Sum[a[j1]*xx[[j2]]^j1, {j1, 0, order, 2}]/

(1 + Sum[b[j1]*xx[[j2]]^j1, {j1, 2, order, 2}]) -

Cos[xx[[j2]]] + (-1)^j2*eps)^2, {j2, 1, Length[xx]}]

],

Join[Transpose[{Join[Table[a[j1], {j1, 0, order, 2}],

Table[b[j1], {j1, 2, order, 2}]

], res[[All, 2]]}

], {{eps, 0}}

], WorkingPrecision -> 31, MaxIterations -> 500

][[2]]

]

];

References

[1] E. Defez, J. Sastre, J.J. Ibáñez, P.A. Ruiz, Computing matrix functions
arising in engineering models with orthogonal matrix polynomials, Math.
Comput. Model., in press. http://dx.doi.org/10.1016/j.mcm.2011.11.022.

[2] E. Defez, J. Sastre, J. Ibáñez, P. Ruiz, J.C. Cortés. Solving engineering
models using matrix functions, Modelling for Engineering and Human Be-
haviour 2011, Valencia, Spain, Sept. 69, 2011, 1-17.

[3] G.I. Hargreaves, N.J. Higham, Efficient algorithms for the matrix cosine
and sine, Numer. Algorithms 40 (2005) 383-400.

[4] N.J. Higham, M.I. Smith, Computing the matrix cosine, Numer. Algorithms
34 (2003) 13-26.

[5] N.J. Higham, The Matrix Computation Toolbox, http://www.ma.man.
ac.uk/higham/mctoolbox.

[6] J. M. Muller, Elementary Functions: Algorithms and Implementation,
Birkhäuser, Boston, 2006.

[7] E. Remez, Sur un procédé convergent d’approximations successives pour
d’eterminer les polynômes d’approximation, C.R. Acad. Sci., Paris, 198
(1934) 2063-2065.

10

