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ABSTRACT. A tenth order explicit symmetric and in consequence sym-
plectic Runge Kutta Nystrom method 1s presented here. We derive the order
conditions needed and solve them for the parameters of the method. Numerical
results indicate the superiority of the new method compared to the other high
order symplectic methods appeared in the literature until now.
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1. INTRODUCTION.

The initial value problem

y// = f(tv y)7 y(tO) = Yo, y/(tO) = y67 le [t07tend] (1)
where f: R x R™ — R™, and yo, y), € R™, is usually approximated at a discrete set

of points (¢, yn, y,) by an explicit s-stage Runge-Kutta-Nystrém (RKN) method of
order p. The form of this method is

i—1
fi = f(tn ‘I’Cihnvyn‘l'cihny;z —I_h?zzzaijfj)v @ = 1727"'75

i=1

=1
B
=1

with h, = t,41 — t,. The coefficients of a RKN method can be presented using
matrices in the Butcher tableau [1],
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where A € R***, b 0T ¢ € R®.
If fin (1) is the gradient of a scalar potential —V = —V (y) and if we set p =y
, ¢ =y, then (1) can be rewritten as

dp’ _ WV dg’
a ol ar P

1<J<m

This is the separable Hamiltonian system of ordinary differential equations

dp’ 9H dg’ 9H
S . Y
dt Jg ar g LsSsm

with Hamiltonian function H = H(p,q) =T (p) + V(q), T(p) = %pr_

A RKN method is said to be canonical or symplectic if it preserves the symplectic
structure of the space of variables (p,¢). Suris [11] showed that an RKN method is
symplectic if

by =b(1—¢) 1=1,2,...,s (2)

and

bi(bj — ag;) = bi(b; —aj), 1<i,j<s. (3)

Assumptions (2) and (3) are too restrictive since they actually determine matrix A
according to the formula a;; = b’ (¢; — ¢;). Another interesting result is that, if the
method is explicit and symmetric then it is symplectic [9]. An RKN is symmetric
when

/ ! .
i =1—csp1-g, by=01 1, 1=1,2,...,s

So only few coefficients remain to be determined, in order to solve the equations of
conditions (order conditions) and derive a symmetric RKN method.

2. THE ORDER CONDITIONS AND THE NEW METHOD.
The general form of an s-stages symplectic integrator is given by [7],

oT oV )
%i+1 = qo + %ha—p@o)v Piy1 = DPo — diha—p(f]o)7 t=1,2,...,s—1 (4)

with ¢o and pg the initial values and ¢, and p, the numerical solution at t, + h. The
transformation from ¢q, pg to ¢s, ps is symplectic.
Yoshida in [15], suggested that when s = 2r 4+ 1 and setting dy,40 = 0, d; =
T

dyry1 = W, dy = dyp = wp_q,-+-, dy = dpjg = wy, dpjg = wg =1—-23% w; and
=1
_ _ 1 _ _ 1 _ _ 1
Y1 = Yord2 = 5Wr, Y2 = Yorgl = 5 (W FWel1) 0y Yeg1 = Vrg2 = 3 (w14 wo),

then we may get the equivalent s-stage RKN method:
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Table 1: Order conditions.

3rd order  H'C?e = %

5th order  0'Cte= 1, b/CAc= L.

7th order  b'Ce = %, bC3Ac = 42, b’CQACQe = 84, b/CAQC = %

9th order  b'C3e % VC2AC3e = 180, b’CZAC‘le = 270, b’CAC5e = 378,
VCA3c = —45360, VC?AC Ac = 16207 VCAC? Ac = 22687
VC3A?%c = 1080, VC?A2C?%e = 3240

11th order &' CVe = li VC"Ac = 66,b’C6ACQe = QL VCPAC3e = %
VC*AC*e = ﬁ,b’C2 ((AC%e) . (A02 ) =b'C* (AC?e ) = 15184,
e (AC)3 = va/ <A2 ) - 1584007 (<A02 ) (A202 )> = m?
b (AC36)2 = m,b’C (AC?e) . (ACPe) = m,b’C2 (Ac). (AC3e) = ﬁ,
b'C? (Ac). (AC%e) = 75132b/04 (AC) = 3967 b (Ae). (AC%¢) = ﬁ’
b/C (AC) (AC4 ) = %7 b/ (AC4 ) A02 ) = m7

(
v <A2 ) (ACB ) = 264007 /02 Ac). ( ) = 79207
b'C' (Ac) . (A202 )= 237607 b'C (Ac). (ACAc) = 11880
VC (AC?e) . (A%c) = 158407 "(Ac ) (AC%¢) = m-

In the table above we substitute C = diag(c), e = [1,1,...,1]T € R® while the dot (.)
represents a component by component multiplication. So if u, v,w € R, then u = v.w =

u; = viw;, t=1,2,---,8.
_ 1 - _ -
. §wr wy
§w7’—1 + w, Wy 1
1 ~ wy
§w1 + Z Wy r
1=2 nT
c= Yy = 1-2> w;
i || ge
1—-c¢, Wy
1—c w1
1—¢c W,

Actually this is a composition method, consisting of r repetitions of Leap Frog method
using the proper step w;h. Under these assumptions the even order equations vanish
and the finally the order conditions to be solved are given in table 1. As a consequence
p can be only an even number.
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These equations remain independent when using the fact that the equations with
symmetric left hand sides of the form b'¢ A¢y and b ¢3Ap; are equivalent for any
subtree ¢y, ¢y [6]. Additionally, we may drop the equations including! Ae, and we
can also drop their equivalent equations. For example from the twenty equations of
seventh order [3], only four remain to be satisfied. We observe that d’C>Ac = 41—2 drops
VCAC3e = 7, VCA%c = = drops b (Ac).(Ac) = 515 while the self-symmetric

140 840 252

2
V'C?AC?e = 4; drops nothing. Equations like b'(4e)? — o5 =¥/ (%Cze — %b’z) — 3
= ib’C‘le — %(b’ 3).026 + 61—4()’ 5 % = i X % —040- % = 0,? are automatically
satisfied. The order conditions b'C*Ae = ﬁ or VOCAC Ae = 21@ are also dropped
because of Ae, while equations like 5’ AC%e = ﬁ is dropped since it is symmetric to
bCtAe = ﬁ.

Such methods behave the same as if we had used the assumptions (3) and Ae =
1C?e together, [3]. The enumeration of equations follows from Theorem 3.2 in [3].
So for m;)* =1, m;* =2, m/7* = 4, m;* =9, mll*1 = 23, mll*3 = 63, and mll*5 = 182.
According to this enumeration the stages s; for obtaining i-th order are, s4 = 3 =
Imy 4+ 1, 86 = 7 = 2 (m;*+m;*) 11, 85 = 15, s10 = 33, 510 = 79, 514 = 205,
S16 = 569.

In order to construct a 10th order method, 16 equations of condition need to be
solved. This means that we require 16 variables wq, ws, ..., wig and 2 X 16+ 1 =33
stages. This is a very difficult task for someone to accomplish but we manage to get
some solutions. One of these solutions is given in Table 2 in 45-digits of accuracy.
The high precision of the coefficients is obligatory since the method is expected to
perform in quadruple arithmetic for long intervals.

It can be verified that the method of table 2 satisfies all 288 order conditions of a
10th order RKN method needed when Ae # 1C?e (see 3rd column of Table 1 in [3]).
It also satisfies the order conditions concerning b automatically from (2).

3. NUMERICAL RESULTS

We choose the Kepler problem to perform our tests. Its potential is V(¢) = —1/||¢]| .
As initial conditions we have p! = 0, p? = \/%, ¢! =1—e, ¢*> = 0. The
eccentricity is chosen to be e = 1/2. For our choice the solution is 27 periodic. The
errors were measured in the absolute maximum norm of R4, at the endpoints 107,
1007 and 10007. The methods tested were divided in two groups. The former group
contains the symplectic methods:

(i) The 33 stages, 10th order method NEW10 appeared in the previous section.
We integrated this method using the step sizes 27 /31, 7/31 and 27/93.

(ii) A 3lstages, 10th order method S10 given by Suzuki, [13]. Its coefficients are
presented in table 3. We tried here the stepsizes 27 /33, 7/33 and 27 /99.

1Ae‘ = %CQ@ - éb&
pre=0fori=3,5,...,p—1, [12].
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Table 2: Solution of 10th order.
wy = 0.02690013604768968151437422144441685467297755661

wy = 0.939801567135683337900037741418097674632505563
w3 = —0.00803583920385358749646380826318191806393661063
wy = —0.866485197373761372803661767454208401679117010
ws = 0.1023112911193598731078563285067131541328142449
= —0.1970772151393080101376018465105491958660525085
wr = 0.617877713318069357335731125307019691019646679
wg = 0.1907272896000121001605903836891198270441436012
wg = 0.2072605028852482559382954630002620777969060377
wio = —0.395006197760920667393122535979679328161187572
w1 = —0.582423447311644594710573905438945739845940956
wiy = 0.742673314357319863476853599632017373530365297
w3z = 0.1643375495204672910151440244080443210570501579
wig = —0.615116639060545182658778437156157368647972997
wys = 0.2017504140367640350582861633379013481712172488
wie = 0.45238717224346720617588658607423353932336395045

g
]
|

Table 3: Coeflicients of 10th order method of Suzuki.
wy = .2511533095387726982616883

wy = —.6369257308162692976516439
w3 = .7477954563227205558861854
wy = .1154223875364780004665333
ws = .7341233481533524507511856
we = —.8878678069874644807057962
wr = —.6512663158972613330899293
wg = .5311659336578173351561816
wg = .1307499863921240887409958
wig = .8950269744648292197242156
wip = —.4500114055934121490287758
wiz = .2150000213788581353291374
wiz = —.5198079779534024447151808
wig = —.8002447419481216045467065
wis = .6122193440386721474677501

15
wog=1-—25 w; =.4269344354246134148889169
=1
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Table 4: NEW10, Suzukil0 and Calvo Sanz-Serna8

end point function NEW10 10 (-8S8
evaluations

5115 1.0-107> 2.0-10~* 4.7-10°F
107 10230 1.1-107% 1.0-107% 2.3.10°8
15345 1.9-1071° 4.1-10"% 9.1-10"10
51150 1.0-107* 2.0-1073 4.7-10°°
1007 102300 1.1-10°7 1.0-107° 2.3-1077
153450 1.8-1079 4.1-1077 9.0-107°
511500 1.0-1073 2.0-1072 4.7-10°*
10007 1023000 1.1-107% 1.0-107* 2.3.10°°
1534500 1.8-107% 4.1-107% 9.0-10°8

Global errors observed at 10w, 1007 and 10007, for the three symplectic methods under
consideration.

(iii) The 26stages, 24 evaluations per step, 8th order symplectic formula C-SS8,
[3]. We tried the stepsizes 27/42.6, 7/85.2 and 27/127.9.

The methods were implemented according to (4). The steplengths used, are
chosen so the total number of function evaluations for the methods are equal. The
stepsizes are chosen to be constant during the integration since variable steps destroy
symplectiness [4]. The errors at various end points were notified at table 4.

Interpreting the results we observe a nice linear in time, growth of the error. This
is a significant characteristic of symplectic methods since this growth is quadratic for
conventional methods [4]. So, when we integrate the problem up to 1097 with NEW10
using stepsize 27 /93, we spend 1.5345 - 10'? function evaluations expecting an error
about 1.8 - 1072, We also observe that the new 10th order method achieves better
accuracies. But the remarkable result is that Suzuki 10th order method does not
justify its order. When doubling or tripling the step using a pth order method then
the error has to be 2P or 3P times greater respectively. This fact holds for NEW10
and C-SS8 but not for S10. Actually, S10 justifies an eighth order of accuracy.

The latter group contains three common RKN pairs.

(i) PT86, the RKN pair of orders eight and six presented in [10].

(ii) DEP86, the RKN pair of orders eight and six presented in [5],

(iii) DEP12(10), the RKN pair of orders twelve and ten presented in [5].

These pairs were run for tolerances 1072, 1073, ..., 1072%, in quadruple precision,
using variable step-size implementation according to the guidelines given in [14]. For
reasons of comparison to table 4 we estimated the errors that might be generated
at the same costs. This estimation was done by linear interpolation on the decimal
digits of accuracy achieved by each pair.

From Table 5 we observe an advantage of PT86 over DEP86 for about half decimal
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Table 5: PT86, DEP86 and DEP12(10)

o0
end point evfzflﬁfonns PT86 DEP86  DEP12(10)
5115 76-1071% 1.2.1071 1.7-10718
107 10230 86-10717 1.4.10715 7.3-10723
15345 8.1-10"18 7.4.10°17 2.9.107%4
51150 1.9-107" 7.4.1071" 7.4-10717
1007 102300 3.4-107% 1.3.107 7.7-107%
153450 82-1071¢ 29.1071%  3.3.10722
511500 2.0-107% 82.107° 2.2-10714
10007 1023000 3.9-10712 1.6-10711 8.6-10718
1534500 9.6-10"1* 4.0-10713  3.9.10°2

Global errors estimated at 107, 1007 and 10007, for the three RKN pairs under consider-
ation.

digit. On the other hand both 8th order RKN pairs reveal higher accuracy than
NEW10 for about 5 — 6 decimal digits. There is a possibility of comparable results if
we integrate 8(6) pairs up to 1097, as well. Then at a cost of 1.5345 - 10'? function
evaluations mentioned before we will normally observe only 1—2 digits of accuracy. As
a conjecture NEW10 outperforms conventional eighth order nonsymplectic variable
steplength integrators when using very small stepsizes at extremely long integrations.
The pair DEP12(10) is far more efficient than all the other methods. There is no
possibility to compete it with a 10th order symplectic method since decreasing the
step-size we simply increase the difference of accuracy in favor of DEP12(10). Finally
twelfth order symplectic methods require too many stages per step, and there is a
doubt if such methods are able to cover the efficiency superiority of DEP12(10).

4. DiscussioN.
A new 10th order symplectic Runge-Kutta-Nystrom method at a cost of 33 stages per
step is presented for first time in this article. Numerical results show its advantage
when high accuracy is requested, compared to lower order methods of this category.
According to the discussion in [2] there is a possibility to throw away one of the
last four equations of ninth order in table 1. Then the number of the remaining
equations coincides with the number reported by McLachlan [8] and Suzuki [12]. In
these papers it seems to be a contradiction in the number of the equations needed
for constructing higher order methods, but both agree that 31 stages are required
for a 10th order method. According to McLachlan s1o = 31, s153 = 67, s14 = 147,
s16 = 326, while according to Suzuki s14 = 135, s16 = 277. Suzuki lists the equations
up to 11th order in [12]. Later he solved them correctly in order to derive some 31
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stage 10th order methods [13]. Unfortunately, these methods are only of 8th order
of accuracy according to our RKN-type implementation, since they fail to solve six
of the nine equations of order nine, given in Table 1. So, the relevant theory needs
reconsideration. Perhaps s1g = 31 or s13 < 79 holds after a careful interpretation of
the results in [2], but the true conditions seem to differ than those given in [12].
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