
A TENTH ORDER SYMPLECTIC RUNGE KUTTA NYSTR

�

OM

METHOD.

Ch. Tsitouras

�

Department of Mathematics, National Technical University of Athens,

Zografou Campus 15780, Athens, GREECE,
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1. Introduction.
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) by an explicit s-stage Runge-Kutta-Nystr�om (RKN) method of
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: The coe�cients of a RKN method can be presented using

matrices in the Butcher tableau [1],
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where A 2 R

s�s

; b

T

; b

0T

; c 2 R

s

:

If f in (1) is the gradient of a scalar potential �V = �V (y) and if we set p =

:

y

; q = y; then (1) can be rewritten as
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J
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J
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J
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= p

J

; 1 � J � m

This is the separable Hamiltonian system of ordinary di�erential equations

dp

J

dt

= �

#H

#q

J

;

dq

J

dt

=

#H

#p

J

; 1 � J � m

with Hamiltonian function H = H(p; q) = T (p) + V (q); T (p) =

1

2

p

T

p:

A RKN method is said to be canonical or symplectic if it preserves the symplectic

structure of the space of variables (p; q): Suris [11] showed that an RKN method is

symplectic if
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Assumptions (2) and (3) are too restrictive since they actually determine matrix A

according to the formula a

ij

= b

0

j

(c

i

� c

j

): Another interesting result is that, if the

method is explicit and symmetric then it is symplectic [9]. An RKN is symmetric

when

c
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i
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0
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; i = 1; 2; : : : ; s:

So only few coe�cients remain to be determined, in order to solve the equations of

conditions (order conditions) and derive a symmetric RKN method.

2. The order conditions and the new method.

The general form of an s-stages symplectic integrator is given by [7],
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with q
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the initial values and q

s

and p

s

the numerical solution at t

n
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then we may get the equivalent s-stage RKN method:
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Table 1: Order conditions.

3rd order b

0

C
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:

5th order b

0

C
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1

5

; b

0

CAc =

1
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:
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0
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1
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:

9th order b

0

C

8

e =
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In the table above we substitute C = diag(c), e = [1; 1; :::;1]
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:

Actually this is a composition method, consisting of r repetitions of Leap Frog method

using the proper step w

i

h. Under these assumptions the even order equations vanish

and the �nally the order conditions to be solved are given in table 1. As a consequence

p can be only an even number.
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These equations remain independent when using the fact that the equations with

symmetric left hand sides of the form b

0
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A�
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and b

0

�

2
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1

are equivalent for any

subtree �

1

; �

2

[6]. Additionally, we may drop the equations including

1

Ae; and we

can also drop their equivalent equations. For example from the twenty equations of

seventh order [3], only four remain to be satis�ed. We observe that b
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0
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2
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satis�ed. The order conditions b

0

C

4
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1
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or b

0

CACAe =

1
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are also dropped

because of Ae, while equations like b

0

AC

4

e =

1
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b

0

C

4
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1
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:

Such methods behave the same as if we had used the assumptions (3) and Ae =

1

2

C

2

e together, [3]. The enumeration of equations follows from Theorem 3:2 in [3].

So for m
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�
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0

�
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= 4; m

0

�

9

= 9; m

0

�
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= 23; m

0

�
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= 63; and m

0

�
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According to this enumeration the stages s

i

for obtaining i-th order are, s
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= 3 =

2m
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+ 1; s
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m

0

�

3
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+ 1; s
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= 15; s

10

= 33; s

12

= 79; s

14

= 205;

s

16

= 569:

In order to construct a 10th order method, 16 equations of condition need to be

solved. This means that we require 16 variables w

1

; w

2

; : : : ; w

16

and 2� 16 + 1 = 33

stages. This is a very di�cult task for someone to accomplish but we manage to get

some solutions. One of these solutions is given in Table 2 in 45-digits of accuracy.

The high precision of the coe�cients is obligatory since the method is expected to

perform in quadruple arithmetic for long intervals.

It can be veri�ed that the method of table 2 satis�es all 288 order conditions of a

10th order RKN method needed when Ae 6=

1

2

C

2

e (see 3rd column of Table 1 in [3]).

It also satis�es the order conditions concerning b automatically from (2).

3. Numerical results

We choose the Kepler problem to perform our tests. Its potential is V (q) = �1= kqk :

As initial conditions we have p

1

= 0; p

2

=

q

1+e

1�e

; q

1

= 1 � e; q

2

= 0: The

eccentricity is chosen to be e = 1=2: For our choice the solution is 2� periodic. The

errors were measured in the absolute maximum norm of R

4

; at the endpoints 10�;

100� and 1000�. The methods tested were divided in two groups. The former group

contains the symplectic methods:

(i) The 33 stages, 10th order method NEW10 appeared in the previous section.

We integrated this method using the step sizes 2�=31; �=31 and 2�=93:

(ii) A 31stages, 10th order method S10 given by Suzuki, [13]. Its coe�cients are

presented in table 3. We tried here the stepsizes 2�=33; �=33 and 2�=99:

1

Ae =

1

2

C

2

e �

1

8

b

02

2

b

0 i

:e = 0 for i = 3; 5; : : : ; p� 1, [12].
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Table 2: Solution of 10th order.

w

1

= 0:02690013604768968151437422144441685467297755661

w

2

= 0:939801567135683337900037741418097674632505563

w

3

= �0:00803583920385358749646880826318191806393661063

w

4

= �0:866485197373761372803661767454208401679117010

w

5

= 0:1023112911193598731078563285067131541328142449

w

6

= �0:1970772151393080101376018465105491958660525085

w

7

= 0:617877713318069357335731125307019691019646679

w

8

= 0:1907272896000121001605903836891198270441436012

w

9

= 0:2072605028852482559382954630002620777969060377

w

10

= �0:395006197760920667393122535979679328161187572

w

11

= �0:582423447311644594710573905438945739845940956

w

12

= 0:742673314357319863476853599632017373530365297

w

13

= 0:1643375495204672910151440244080443210570501579

w

14

= �0:615116639060545182658778437156157368647972997

w

15

= 0:2017504140367640350582861633379013481712172488

w

16

= 0:45238717224346720617588658607423353932336395045

Table 3: Coe�cients of 10th order method of Suzuki.

w

1

= :2511533095387726982616883

w

2

= �:6369257308162692976516439

w

3

= :7477954563227205558861854

w

4

= :1154223875364780004665333

w

5

= :7341233481533524507511856

w

6

= �:8878678069874644807057962

w

7

= �:6512663158972613330899293

w

8

= :5311659336578173351561816

w

9

= :1307499863921240887409958

w

10

= :8950269744648292197242156

w

11

= �:4500114055934121490287758

w

12

= :2150000213788581353291374

w

13

= �:5198079779534024447151808

w

14

= �:8002447419481216045467065

w

15

= :6122193440386721474677501

w

0

= 1� 2

15

P

i=1

w

i

= :4269344354246134148889169
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Table 4: NEW10, Suzuki10 and Calvo Sanz-Serna8

end point

function

evaluations

NEW10 S10 C-SS8

5115 1:0 � 10

�5

2:0 � 10

�4

4:7 � 10

�6

10� 10230 1:1 � 10

�8

1:0 � 10

�6

2:3 � 10

�8

15345 1:9 � 10

�10

4:1 � 10

�8

9:1 � 10

�10

51150 1:0 � 10

�4

2:0 � 10

�3

4:7 � 10

�5

100� 102300 1:1 � 10

�7

1:0 � 10

�5

2:3 � 10

�7

153450 1:8 � 10

�9

4:1 � 10

�7

9:0 � 10

�9

511500 1:0 � 10

�3

2:0 � 10

�2

4:7 � 10

�4

1000� 1023000 1:1 � 10

�6

1:0 � 10

�4

2:3 � 10

�6

1534500 1:8 � 10

�8

4:1 � 10

�6

9:0 � 10

�8

Global errors observed at 10�; 100� and 1000�; for the three symplectic methods under

consideration.

(iii) The 26stages, 24 evaluations per step, 8th order symplectic formula C-SS8,

[3]. We tried the stepsizes 2�=42:6; �=85:2 and 2�=127:9:

The methods were implemented according to (4). The steplengths used, are

chosen so the total number of function evaluations for the methods are equal. The

stepsizes are chosen to be constant during the integration since variable steps destroy

symplectiness [4]. The errors at various end points were noti�ed at table 4.

Interpreting the results we observe a nice linear in time, growth of the error. This

is a signi�cant characteristic of symplectic methods since this growth is quadratic for

conventional methods [4]. So, when we integrate the problem up to 10

9

� with NEW10

using stepsize 2�=93; we spend 1:5345 � 10

12

function evaluations expecting an error

about 1:8 � 10

�2

. We also observe that the new 10th order method achieves better

accuracies. But the remarkable result is that Suzuki 10th order method does not

justify its order. When doubling or tripling the step using a pth order method then

the error has to be 2

p

or 3

p

times greater respectively. This fact holds for NEW10

and C-SS8 but not for S10. Actually, S10 justi�es an eighth order of accuracy.

The latter group contains three common RKN pairs.

(i) PT86, the RKN pair of orders eight and six presented in [10].

(ii) DEP86, the RKN pair of orders eight and six presented in [5],

(iii) DEP12(10), the RKN pair of orders twelve and ten presented in [5].

These pairs were run for tolerances 10

�12

; 10

�13

; � � � ; 10

�24

; in quadruple precision,

using variable step-size implementation according to the guidelines given in [14]. For

reasons of comparison to table 4 we estimated the errors that might be generated

at the same costs. This estimation was done by linear interpolation on the decimal

digits of accuracy achieved by each pair.

From Table 5 we observe an advantage of PT86 over DEP86 for about half decimal
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Table 5: PT86, DEP86 and DEP12(10)

1

end point

function

evaluations

PT86 DEP86 DEP12(10)

5115 7:6 � 10

�14

1:2 � 10

�13

1:7 � 10

�18

10� 10230 8:6 � 10

�17

1:4 � 10

�15

7:3 � 10

�23

15345 8:1 � 10

�18

7:4 � 10

�17

2:9 � 10

�24

51150 1:9 � 10

�11

7:4 � 10

�11

7:4 � 10

�17

100� 102300 3:4 � 10

�14

1:3 � 10

�13

7:7 � 10

�20

153450 8:2 � 10

�16

2:9 � 10

�15

3:3 � 10

�22

511500 2:0 � 10

�9

8:2 � 10

�9

2:2 � 10

�14

1000� 1023000 3:9 � 10

�12

1:6 � 10

�11

8:6 � 10

�18

1534500 9:6 � 10

�14

4:0 � 10

�13

3:9 � 10

�20

Global errors estimated at 10�; 100� and 1000�; for the three RKN pairs under consider-

ation.

digit. On the other hand both 8th order RKN pairs reveal higher accuracy than

NEW10 for about 5� 6 decimal digits. There is a possibility of comparable results if

we integrate 8(6) pairs up to 10

9

�; as well. Then at a cost of 1:5345 � 10

12

function

evaluations mentioned before we will normally observe only 1�2 digits of accuracy. As

a conjecture NEW10 outperforms conventional eighth order nonsymplectic variable

steplength integrators when using very small stepsizes at extremely long integrations.

The pair DEP12(10) is far more e�cient than all the other methods. There is no

possibility to compete it with a 10th order symplectic method since decreasing the

step-size we simply increase the di�erence of accuracy in favor of DEP12(10): Finally

twelfth order symplectic methods require too many stages per step, and there is a

doubt if such methods are able to cover the e�ciency superiority of DEP12(10).

4. Discussion.

A new 10th order symplectic Runge-Kutta-Nystr�om method at a cost of 33 stages per

step is presented for �rst time in this article. Numerical results show its advantage

when high accuracy is requested, compared to lower order methods of this category.

According to the discussion in [2] there is a possibility to throw away one of the

last four equations of ninth order in table 1. Then the number of the remaining

equations coincides with the number reported by McLachlan [8] and Suzuki [12]. In

these papers it seems to be a contradiction in the number of the equations needed

for constructing higher order methods, but both agree that 31 stages are required

for a 10th order method. According to McLachlan s

10

= 31; s

12

= 67; s

14

= 147;

s

16

= 326; while according to Suzuki s

14

= 135; s

16

= 277: Suzuki lists the equations

up to 11th order in [12]. Later he solved them correctly in order to derive some 31
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stage 10th order methods [13]. Unfortunately, these methods are only of 8th order

of accuracy according to our RKN-type implementation, since they fail to solve six

of the nine equations of order nine, given in Table 1. So, the relevant theory needs

reconsideration. Perhaps s

10

= 31 or s

12

< 79 holds after a careful interpretation of

the results in [2], but the true conditions seem to di�er than those given in [12].
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