
Symbolic Derivation of

Runge–Kutta–Nyström Order Conditions.

Ch. Tsitouras ∗
Department of Applied Sciences, TEI of Chalkis, GR 34400 Psahna, Greece

I.Th. Famelis

Department of Mathematics, TEI of Athens, GR12210 Egaleo, Greece

Abstract

Runge–Kutta–Nyström methods possess a separate theory from the classical Runge–
Kutta schemes for the derivation of their order conditions and principal truncation
error terms. A new code using the Mathematica programming language properties
and tensor products is proved very efficient in this task.

Key words: Rooted trees, integer partitions, truncation error, Mathematica.

1991 MSC: 65L05, 68W30, 05C05, 05A17

1 Introduction

Second order ordinary differential equations (ODEs) are widely used to model
physical problems. Thus, methods for the numerical treatment of such ODEs
are of great importance. There exist various classes of methods for the numer-
ical solution of second order ODE problems and the class of Runge–Kutta–
Nyström (RKN) methods are amongst the most popular ones. The construc-
tion of such methods require the derivation and the solution of equations called
”order conditions”. Such a procedure is a tedious task since the number of the

∗ Corresponding author.
Email addresses: tsitoura@teihal.gr (Ch. Tsitouras), ifamelis@teiath.gr

(I.Th. Famelis).
URLs: http://users.ntua.gr/tsitoura/ (Ch. Tsitouras),

http://www.teiath.gr/stef/mathematics/ifamelis/ (I.Th. Famelis).

Preprint submitted to Elsevier 9 January 2007

nonlinear order conditions to be solved increases as the order of a method
increases.

Thus, the use of a computer algebra system, such as Mathematica, for both
the derivation and the solution of the order conditions is needed. Here, our
concern is to furnish a code for the construction of the order conditions. There
have only been codes for the case of Runge–Kutta methods. Keiper [12] was
probably the first who wrote a package for the symbolic manipulation pro-
gram Mathematica. However that first package was limited in deriving low
order conditions. Later, around 1993-94 four researchers presented their pro-
posal about this subject. In Hosea [11], a recurrence due to Albrecht [1] for
generating order conditions is refined to produce truncation error coefficients.
His code written in ANSI C, is RKTEC and is available from Netlib. Harrison
[10], and Papakostas [17] suggested the tensor notation deriving very interest-
ing symbolic codes. That early package due to Papakostas helped a lot for the
truncation error calculations in a series of papers of our group [20,23,19,24].
Later Sofroniou [21], gave an integrated package for deriving Runge–Kutta
order conditions. Then Papakostas [18], proposed to avoid the derivation of
trees in a such a package. Finally Famelis et. al. [6], presented a very efficient
code for the derivation of Runge–Kutta order conditions and our present work
is an extension of that work. The only code for generating RKN trees that we
are aware is due to Okunbor [15]. His program was build in the lines of Keiper
code and does not compete the software presented here since it fails at high
orders.

In the following section we outline the theory of RKN order conditions. Then
we present the elements of Combinatorial Mathematics and Tree Theory have
been used to approach the construction of a powerful and efficient symbolic
package for the derivation of Runge–Kutta–Nyström order conditions and
principal truncation error terms. In our approach the tree construction as
matrix products produces a very fast and portable package which is cheap in
memory usage too.

2 Runge–Kutta–Nyström Order Conditions

Runge–Kutta–Nyström methods are used to solve second order ODE problem

y′′ = f(t, y(t)) , t ≥ t0,

y(t0) = y0, y′(t0) = y′0,

These methods make no use of the past approximations and after getting
the value yn and y′n as the numerical approximations of y (tn) and y′ (tn)the

2

methods proceed to the evaluation of yn+1 and y′n+1 as an estimation of y (tn+1)
=y (tn + hn) and y′ (tn+1) =y′ (tn + hn) respectively, according to the following
formulae:

yn+1 = yn + hny′n + h2
n

s∑

j=1

bjfj

y′n+1 = y′n + hn

s∑

j=1

b′jfj

fj = f(tn + cjhn, yn + cjhny′n + h2
n

s∑

k=1

aikfk).

This is the s−stage Runge–Kutta–Nyström method. The method’s coefficients
are usually represented by the Butcher tableau

c1 a11 a12 a1s

c2 a21 a22 a2s

...

cs as1 as2 ass

b1 b2 · · · bs

b′1 b′2 · · · b′s

,

or in matrix form

c A

bT

b
′T

with c∈ <s, b, b′∈ <s, and A∈ <s×s.

As in Hairer et. al. [8] we may restrict ourselves to systems of autonomous
differential equations

(yJ)′′ = fJ(y1, . . . , ym),

In order to derive the Runge–Kutta–Nyström order conditions we must ex-
pand the theoretical solutions y (tn + hn) and y′ (tn + hn) and the numerical

3

solutions yn+1 and y′n+1, as Taylor Series about the point (tn, tn). Considering

ε =

y(tn + hn)− yn+1

y′(tn + hn)− y′n+1

we get expressions for the local truncation error of the method. For a method
to be of order p, we must select the coefficients of the method so that

ε = Λ̄hp+1 + O(hp+2),

where Λ̄ = [Λ, Λ′]T is called principal local truncation error term. The equa-
tions that the coefficients of a method must fulfill so that a method attains a
desired order are called order conditions.

The Taylor expansion of the theoretical solution expressions involve derivatives
of yJ . The six first derivatives are the following.

(yJ)(1) = y′J

(yJ)(2) = fJ(y)

(yJ)(3) =
∑

K

∂fJ

∂yK
(y) y′K

(yJ)(4) =
∑

K,L

∂2fJ

∂yK ∂yL
(y) y′K y′L +

∑

L

∂fJ

∂yL
(y) fL(y)

(yJ)(5) =
∑

K,L

∂3fJ

∂yK ∂yL ∂y
(y) y′K y′L y′ +

3
∑

M,L

∂2fJ

∂yM ∂yL
(y) fM(y) y′L +

∑

M,L

∂fJ

∂yL
(y)

∂fL

∂yM
(y) y′M

In a more concise notation [7], we can write the above as

y(3) = f ′(y)y′, y(4) = f ′′(y)(y′, y′) + f ′(y)f(y),

y(5) = f ′′′(y′, y′, y′) + 3f ′′(y)(f(y), y′) + f ′(y)f ′(y)y′, etc.

When we try to expand the numerical solution we get even more complicated
expressions.

J. C. Butcher established in the 60’s a theory based in tree theory for deriving
the order conditions of a Runge–Kutta method. His book [2], is recommended
for the interested reader. A simplified version of that theory can be found in
Lambert [13]. The extension of the tree theory for the case of Runge–Kutta–
Nyström methods can be found in [8] where the SN-trees (Special Nyström
trees) are defined. Coleman [5], in the derivation of order conditions for two

4

step hybrid methods, chooses a slightly different family of trees. T2 trees are
each of the SN-Trees grafted onto a meagre root. This approach is similar to
the one given in [9]. In both cases the results are the same with slight modifi-
cations in the notation. For the presentation of our code we follow Coleman’s
approach.

The rooted trees of T2 have two kind of vertices, meagre vertices which are
represented by a point and fat vertices which are represented by a larger dot,
•. Following Coleman, let ∅ be the empty tree, τ ′ the single meagre vertex tree
and τ the following tree:

S
S
sτ

be members of set of trees T2. We then define the rest of the trees recursively
so that t = [t1, t2, . . . , tm]2 ∈ T2 if t1, t2, . . . , tm ∈ T2. The root of such a tree is
a meagre vertex and the tree is obtained by connecting the roots of the trees
t1, t2, . . . , tm to a new fat vertex, and then connecting that vertex to a new
meagre root.

c
cc
s

S
S
s

¶
¶

#
##

S
S s S

S s
¶
¶

s

S
S

¢
¢

HHHH
Q

QQ
s

For example for the above tree we may write t = [τ, τ, t31, t42]2 = [τ 2, t31, t42]2
where

c
cc
sτ

S
S
sτ

¶
¶

#
##

S
S s

t31 = [τ ′]2

S
S s
¶
¶

st42 = [τ]2

Now, we can define some functions on T2 rooted trees:

• Order r(t):

r ([tn1
1 , tn2

2 , · · · , tnk
k]2) = 2 + n1r(t1) + . . . + nkr(tk)

5

with r(∅) = 0,r(τ ′) = 1 and r(τ) = 2

• Symmetry σ(t):

σ ([tn1
1 , tn2

2 , · · · , tnk
k]2) = n1! · · ·nk!σ (t1)

n1 · · · σ (tk)
nk

with σ(∅) = 1,σ(τ ′) = 1 and σ(τ) = 1

• Density γ(t):

γ ([tn1
1 , tn2

2 , · · · , tnk
k]2) = r ([tn1

1 , tn2
2 , · · · , tnk

k]2) · (r ([tn1
1 , tn2

2 , · · · , tnk
k]2)− 1) ·

·γ (t1)
n1 · · · · γ (tk)

nk

with γ(∅) = 1,γ(τ ′) = 1 and γ(τ) = 2

• Elementary weights Ψ (t) :

Ψ([tn1
1 , tn2

2 , · · · , tnk
k]) = (Ψ(t1)

n1) ∗ (Ψ(tn2
2)) ∗ · · · ∗ (Ψ(tk)

nk)

with ψ(τ ′) = c and ψ(τ) = Ae where e = [1, 1, · · · , 1]T ∈ <s.

• Elementary differentials F (t) :

F ([tn1
1 , tn2

2 , · · · , tnk
k]) = f (n1+···+nk)

F (t1) , · · · , F (t1)︸ ︷︷ ︸

n1 times

, · · · , F (tk) , · · · , F (tk)︸ ︷︷ ︸
nk times

with F (∅) = y,F (τ ′) = y′ and F (τ) = f(y), while “ * ” denotes the component–
wise product between vectors:

[u1 u2 · · · un]T ∗ [v1 v2 · · · vn]T = [u1v1 u2v2 · · · unvn]T .

This operation has the less priority. Parentheses, powers and dot products
are always evaluated before ”*”. In the same sense powers follow the present
definition e.g. c2 = c ∗ c, c3 = c ∗ c ∗ c, etc.

A Runge–Kutta–Nyström method is of order p if and only if

X (t) =
1

σ (t)

(
bΨ (t)− 1

γ (t)

)
= 0, (1)

for every t ∈ T2 with r (t) ≤ p and

X ′ (t) =
1

σ (t)

(
b′Ψ (t)− r (t)

γ (t)

)
= 0, (2)

6

for every t ∈ T2 with r (t) ≤ p + 1 . The above relations define the order
conditions, which are linear in the components of b and b′ and nonlinear in
the components of A, c and relates them to set of the rooted trees T2. Under
the assumption

bT = b′T ∗ (e− c),

condition (2) implies (1).

The number of order conditions increases rapidly as desired order increases.
The formation of expressions of order conditions or principal local trunca-
tion error term is a tedious task when is done by hand, even if we follow the
Butcher’s theory. Simplifying conditions reduce the number of order condi-
tions.

Let two trees t1 and t2 of T2 which differ only in the part which is outside the
circle

t1

&%

'$sS
S

¶
¶

t2

&%

'$sS
S
¶
¶

s

Under the assumption that

Ae =
c2

2
, (3)

holds then the order conditions coming from these two trees are the same.
Using this assumption for a method of order 5 we have to solve only 8 equations
given in Table 1.

If we want to compute the coefficients for the local truncation error terms we
have to consider all the order conditions for both b and b′.

The number of order conditions are given in Table 2. There are actually two
series of numbers shown in the second and fourth rows of this table. Enumer-
ation formulas for Nyström trees can be found in [3,4].

7

Table 1
Order conditions from 1 to 5.

Order Equation

1 b
′T · e = 1

2 b
′T · c = 1

2 ,

3 b
′T · c2 = 1

3 ,

4 b
′T · c3 = 1

4 ,

4 b
′T ·A · c = 1

24 ,

5 b
′T · c4 = 1

5 ,

5 b
′T ·A · c2 = 1

60 ,

5 b
′T · (c ∗A · c) = 1

30 .

Table 2
Total number of conditions to achieve order p.

Order p 1 2 3 4 5 6 7 8 9 10

Number of conditions for y 0 1 2 4 7 13 23 43 79 151

Number of conditions for y′ 1 2 4 7 13 23 43 79 151 288

Number of conditions for y using (3) 0 1 2 3 5 8 13 22 37 64

Number of conditions for y′ using (3) 1 2 3 5 8 13 22 37 64 112

3 Tree Theory and Partitions

A tree is a mathematical object defined to be a connected linear graph which
contains no cycles. A tree with one node, the root, distinguished from all other
nodes is called a rooted tree. We have considered a specific class of rooted trees
the T2 trees. According to the existing theory, an one-to-one relation can be
defined between the set of order p conditions and the T2 rooted trees with p
and p+1 nodes. So, the formation of the trees with p+1 nodes (and p nodes)
can lead us to the corresponding order conditions of order p.

To understand the procedure of constructing all T2 trees of order p + 1 we
will need elements from combinatorial mathematics and the fact that such
a tree with p + 1 nodes (of order p + 1) can be constructed by taking trees
with cumulative order p− 1 obtained and connecting their roots to a new fat
vertex, and then connecting that vertex to a new meagre root. In other words,
the set of trees with p + 1 nodes can be formed by taking combinations with
repetition of k trees with cumulative order p− 1.

8

1 2 . . . k
. . .c c c c
c

cc
S

S
¶
¶

#
##s

A very important concept is generating functions [14]. Let (α0, α1, . . . , αr, . . .)
be a symbolic representation of a sequence of events (or in more simple situ-
ations a sequence of numbers). The function

F (x) = α0µ0(x) + α1µ1(x) + · · ·+ αrµr(x) + . . .

is called the ordinary generating function of the sequence (α0, α1, . . . , αr, . . .)
where the (µ0, µ1, . . . , µr, . . .) is a sequence of functions of x that are used as
indicators. The indicator functions are usually chosen in such way that no
two distinct sequences will yield the same generating function. Generating
functions are usually used to enumeration problems of combinatorial math-
ematics, such as in combinations of objects, but can be used to construct
(generate) the elements of the sequence (α0, α1, . . . , αr, . . .) as well.

If we set as T i = {ti#|where ti# is a T2 rooted tree of order i} , and as Fi(x)
the generating function of combinations objects taken from Ti with repetition
then

Fi(x) =
∏

ti#∈T i

(1 + ti#x + t2i#x2 + · · ·+ tni#xn + · · ·).

In this case the sequence (α0, α1, . . . , αr, . . .) is the set T i. Expanding this
relation can be written as

Fi(x) = 1 + C(i, 1)x + C(i, 2)x2 + · · ·+ C(i, n)xn + · · · .

where C(i, k) is an expression for the combinations with repetition of order
i objects (e.g. trees) in k positions. This is given as a sum of all possible
combinations where each combination of objects is represented as a product
of these objects, [14, p 30]. For instance

F3(x) = (1 + t31x + t231x
2 + · · ·)(1 + t32x + t232x

2 + · · ·)
= 1 + (t31 + t32)x + (t231 + t232 + t31t32)x

2 + · · ·
= 1 + C(3, 1)x + C(3, 2)x2 + · · ·+ C(3, n)xn + · · · .

This approach can be used, as well, in the the case of rooted trees enumeration
problems. For that purpose we set ti# = 1 in the above relations and so C(i, n)

9

is a number [14, pp 31-32], [16, pp 125-126].

In our case, using the above theory, we can form the generating function of the
set of rooted trees. Taking into consideration that every tree can be formed by
taking combinations with repetition of other trees and grafting them together
and then adding the root, then the generating function of rooted trees is

F (x) = x2
∏

Fi(x)

= x2(1 + C(1, 1)x + C(1, 2)x2 + · · ·+ C(1, n)xn + · · ·)
(1 + C(2, 1)x + C(2, 2)x2 + · · ·+ C(2, n)xn + · · ·)
(1 + C(3, 1)x + C(3, 2)x2 + · · ·+ C(3, n)xn + · · ·) · · · .

Expanding the above product and collecting the proper powers of x, all trees
of order p + 1, that are produced by the grafting of k other trees, can be
determined by the term x2 ∑p−1

k=1 C̃kx
k where the C̃k is the sum of products of

k trees with cumulative order p − 1 (or equivalently the combinations with
repetition of k trees with cumulative order p − 1). So, for our purpose, it is
essential to form the products ti1π1#ti2π2# · · · tikπk# where tπj# ∈ T πj and i1π1 +
i2π2 + · · ·+ ikπk = p− 1, k = 1, 2, . . . , p− 1. This connects our problem with
the set of unrestricted partitions of an integer. The term x2 that multiplies the
sum represents the grafting of the trees that are combined in the k positions
onto a new root.

An unrestricted partition of an integer p, is by definition, a collection of
integers, without regard of order, whose sum is p. For example, an unrestricted
partition of 5 is 1, 1, 1, 2. This is usually written as 132. So, an unrestricted
partition of p has the form πi1

1 πi2
2 · · · πik

k where i1π1 + i2π2 + · · ·+ ikπk = p, a
notation similar to the one used for the trees.

In conclusion, in order to construct all the rooted trees of order p + 1 we have
to find all the unrestricted partitions of p − 1 and for each of them to form
all the corresponding combinations with repetition ti1π1#ti2π2# · · · tikπk# selecting
tπj# from T πj .

In order to program the procedure mentioned above in a symbolic compu-
tation environment, such as Mathematica, the tree oriented notation is not
the best choice. In a programming point of view the best way is to work by
forming the matrix notation products of the expressions involving the method
coefficients following the lines of the previous section. This simplifies the whole
procedure and produces a faster code. Moreover, the main concern is neither
the derivation of the trees themselves nor the order condition expressions with
the elementary differentials. The main consideration is to produce the order
conditions or the principal error terms. So, in the code, that will be presented

10

in the next section, the tij are not the trees but the corresponding matrix mul-
tiplication expressions Ψ(tij). Moreover the outer products is formed based on
pointwise multiplication.

4 The Symbolic Code

Following [6], we have build a package with the name RKN for the symbolic
environment of Mathematica. The backbone of the package are the modules
T1, T0, G1, G0 and S.

The functions T1 and T0 call the module T to produce a list of the method co-
efficient matrix notation products corresponding to the rooted trees of a given
order. This is done recursively. To achieve that T applies exactly the ideas
of tree construction from the previous section. The functions need Partition
of Mathematica package Combinatorica to build the unrestricted partitions
of an integer and the modules Combinations and Combinations2 to form
combinations without repetition.

Using the same ideas and the formulae given in section 2, module S builds a
list with elements the values of symmetry of the rooted trees of a given order
and G0, G1 and G a list of the corresponding density values.

After setting as working directory the directory which the package file is stored
the package can be loaded by giving the following input:

In[1]:=<<RKN

Using the package functions we can either form the order conditions that
should be fulfilled so that a Runge–Kutta–Nyström method attains a given
order or the principal truncation error terms of a method of a given order.

To get the list of the order conditions the following commands should be typed
in the Mathematica environment:
BOC[a,b,c,e,order] and DBOC[a,db,c,e,order]

In the above commands a, b, c, e, db can be Mathematica symbols and
order a number for the desired order. The symbols a, b, db and c correspond
to the method matrices according the Butcher Tableau notation, where db

corresponds to b′ and e to an array of ones with dimension the number of
stages of the method.

In the following example we get as an outcome a list with elements lists of

11

order 1 to 5 conditions.

In[2]:=BOC[a, b, c, e, 5]

Out[2]:={{}, {-1/2 + b.e}, {-1/6 + b.c}, {-1/12 + b.c^2, -1/24 +

b.a.e}, {-1/20 + b.c^3, -1/40 + b.(c*a.e), -1/120 + b.a.c}}

In[3]:=DBOC[a, db, c, e, 5]

Out[3]:={{-1 + db.e}, {-1/2 + db.c}, {-1/3 + db.c^2, -1/6 + db.a.e},

{-1/4 + db.c^3, -1/8 + db.c*a.e, -1/24 + db.a.c}, {-1/5 + db.c^4,

-1/30 + db.c*a.c, -1/10 + db.c^2*a.e, -1/20 + db.a.e^2,

-1/60 + db.a.c^2, -1/120 + db.a.a.e}}

Moreover, a, b, c, e, db can be matrices in the Mathematica notation of
lists. These matrices may have either symbolic or numeric entries. In the for-
mer case the outcome is going to be the analytic expressions of the order
conditions that should become zero to attain the desired order. In the latter
case the output is a list of the quantities that the method fail to fulfill the
order conditions.

Changing in the lines of the code the value of the variable s from 0 to 1 we
can get the order conditions when we assume that the simplifying assumption
(3) holds. If we do so the results are the following:

In[4]:=BOC[a, b, c, e, 5]

Out[4]:={{}, {-1/2 + b.e}, {-1/6 + b.c}, {-1/12 + b.c^2},

{-1/20 + b.c^3, -1/120 + b.a.c}}

In[5]:=DBOC[a, db, c, e, 5]

Out[5]:={{-1 + db.e}, {-1/2 + db.c}, {-(1/3) + db.c^2}, {-1/4 +

db.c^3, -1/24 + db.a.c}, {-1/5 + db.c^4, -1/30 + db.(c*a.c),

-1/60 + db.a.c^2}}

To get the list of the principal truncation error terms the following command
should be typed in the Mathematica environment:
BTR[a,b,c,e,order] and DBTR[a,db,c,e,order]

In the above command a, b, c, e, db can be Mathematica symbols and
order a number for the desired order or matrices with symbolic or numeric
entries as mentioned above.

In the following example we get as an outcome a list with elements of the
principal truncation error terms for a method of order 5.

In[6]:=BTR[a, b, c, e, 5]

Out[6]:={-1/720 + b.a.a.e, 1/2*(-1/360 + b.a.c^2),

-1/180 + b.(c*a.c), 1/2*(-1/120 + b.(a.e)^2),

12

1/2*(-1/60 + b.(c^2*a.e)), 1/24*(-1/30 + b.c^4)}

In[7]:=DBTR[a, db, c, e, 5]

Out[7]:={-1/720 + db.a.a.c, -1/240 + db.a.(c*a.e), 1/6*(-1/120 +

db.a.c^3), -1/144 + db.(c*a.a.e), 1/2*(-1/72 + db.(c*a.c^2)),

-1/72 + db.(a.c*a.e), 1/2*(-1/36 + db.(c^2*a.c)),

1/2*(-1/24 + db.(c*(a.e)^2)), 1/6*(-1/12 + db.(c^3*a.e)),

1/120*(-1/6 + db.c^5)}

Moreover, a, b, c, e, db can be matrices in the Mathematica notation of
lists. These matrices may have either symbolic or numeric entries. In the former
case the outcome is going to be the analytic expressions of the order conditions
that should become zero to attain the desired order. In the latter case a list
of the quantities that the method fail to fulfill the order conditions.

Once again, changing the value of the variable s from 0 to 1 in the code we
can get the coefficients when we assume that the simplifying assumption (3)
holds. As we have mentioned in such a case all the trees should be considered.
Now the output is the following:

In[8]:=BTR[a, b, c, e, 5]

Out[8]:={1/2*(-1/360 + b.a.c^2), 1/2*(-1/360 + b.a.c^2),

-1/180 + b.(c*a.c), 1/8*(-1/30 + b.c^4), 1/4*(-1/30 + b.c^4),

1/24*(-1/30 + b.c^4)}

In[9]:=DBTR[a, db, c, e, 5]

Out[9]:={-1/720 + db.a.a.c, 1/2*(-1/120 + db.a.c^3),

1/6*(-1/120 + db.a.c^3), 1/2*(-1/72 + db.(c*a.c^2)),

1/2*(-1/72 + db.(c*a.c^2)), 1/2*(-1/36 + db.(c^2*a.c)),

1/2*(-1/36 + db.(c^2*a.c)), 1/8*(-1/6 + db.c^5),

1/12*(-1/6 + db.c^5), 1/120*(-1/6 + db.c^5)}

The algorithm presented here is competitive to the one given in [6] for RK
methods. In Table 3 we present computation times for our algorithms for
RK and RKN methods and the corresponding number of trees for various
orders. Actually we used the RKTrunc function implemented in [6] and DBTR
function of our new package. The RK algorithm was incapable for deriving
19−th order conditions due to memory limitations. The comparison with the
method given in [15] is not presented since it fails for orders greater than 12.

The comparisons were performed in the Mathematica 5.1 environment [25]
on a Pentium 2.4 MHz system having 512 Mbytes RAM memory which was
running Windows XP–SP2 Operating System.

13

Table 3
Number of trees and computation times (in seconds) for RK and RKN symbolic
derivation algorithms

Runge-Kutta Runge–Kutta–Nyström

time trees order trees time

0 20 6 10 0

0.02 48 7 20 0.01

0.02 115 8 36 0.02

0.03 286 9 72 0.02

0.09 719 10 137 0.05

0.13 1842 11 275 0.08

0.28 4766 12 541 0.11

0.61 12486 13 1098 0.17

1.45 32973 14 2208 0.28

4.00 87811 15 4521 0.41

10.47 235381 16 9240 0.72

29.50 634847 17 19084 1.24

80.44 1721159 18 39451 2.19

- - 19 82113 4.13

- - 20 171240 8.02

- - 21 358794 16.47

- - 22 753460 33.19

5 Conclusions

In this paper we have presented, for the first time, a set of very efficient routines
for the symbolic derivation of Runge–Kutta–Nyström order conditions and
principal local truncation error coefficients. The code is fast and economical
in computer memory. Finally, another remarkable fact is that the source code
of the new package covers a little more than two journal pages and this helps
in the direction of better and easier understanding.

14

Appendix

The Mathematica package implementing the code:

BeginPackage["RKN‘",{"DiscreteMath‘Combinatorica‘"}];
Clear["RKN‘*"]

DBTR::usage = " DBTR[a,db,c,e,order,s] finds RKN principal
truncation error of order order+1 for DB. "

BTR::usage = " BTR[a,b,c,e,order,s] finds RKN principal
truncation error of order order+1 for B. "

DBOC::usage = " DBOC[a,db,c,e,order,s] finds RKN order
conditions of orders 1 to order. "

BOC::usage = " DBOC[a,b,c,e,order,s] finds RKN order conditions
of orders 1 to order. "

Begin["‘Private‘"]; Clear["RKN‘Private‘*"];

DBTR[aa_,dbb_,cc_,ee_,orderr_]:=
1/S1[orderr+1]*(T1[aa,dbb,cc,ee,orderr+1]- G1[orderr+1]);

BTR[aa_,bb_,cc_,ee_,orderr_]:=
1/S0[orderr+1]*(T0[aa,bb,cc,ee,orderr+1]- G0[orderr+1]);

DBOC[aa_,dbb_,cc_,ee_,orderr_]:=
Table[Map[First,Split[Sort[(T1[aa,dbb,cc,ee,j]-G1[j])]]],{j,1,orderr}];

BOC[aa_,bb_,cc_,ee_,orderr_]:=
Table[Map[First,Split[Sort[(T0[aa,bb,cc,ee,j]-G0[j])]]],{j,1,orderr}];

RunLengthEncode[x_List] := (Through[{First,Length}[#1]]&) /@ Split[x];
Combinations[list_, num_] :=
Module[{i},

Table[Map[Prepend[#, list[[i]]]&,
Flatten[Combinations[list, num - 1]

[[Array[Identity, Length[list]- i +1, i]]], 1
], {1}],

{i, 1, Length[list]}]]/; (num > 1) ;
Combinations[list_, 1] := Combinations[list, 1] = Map[{{#}}&, list];
Combinations2[list_, num_] :=
Apply[Times, Flatten[Combinations[list, num], 1], {1}]/; (num > 1);

Combinations2[list_, 1] := list;
(*--*)
s=0; T[a_,c_,e_,1] = {c}; T[a_,c_,e_,2] = {a.e}; G[1] = {1};
G[2] = {1/2}; S[1] = {1}; S[2]={1}; Switch[s,1, T[a_,c_,e_,2]={c^2};
G[2] = {1}; S[2]={2};];
G[order_] := G[order] =
Module[{temp},

15

temp = Map[Combinations2[G[#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#]&, Partitions[order-2], {1}], {2}];

temp = Apply[Times, temp, {3}];
temp = Map[Prepend[#, Times]&, temp, 1];
temp = Apply[Outer, temp, {1}];
temp = Flatten[temp];
temp = (1/((order-1)*order)) * temp
];

T[a_,c_,e_,order_] := T[a,c,e,order] =
Module[{temp},

temp = Map[Combinations2[T[a,c,e,#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#]&, Partitions[order-2], {1}], {2}];

temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];
temp = temp /. CoverList[every_] -> every;
temp = Map[(a . #)&, temp, {1}]
];

MyOuter[lists__] := Flatten[Outer[Times, lists], Length[{lists}] - 1];

S[order_] := S[order] =
Module[{temp},

temp = Map[Combinations2[MapIndexed[ff, S[#[[1]]]], #[[2]]] &,
Map[RunLengthEncode[#] &, Partitions[order-2], {1}], {2}];

temp=temp /. {ff[a_, b_]^p_ -> Factorial[p]*a^p, ff[a_, b_] -> a};
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1]

];

T1[a_,db_,c_,e_,1] ={db.e}; G1[1] = {1};
T1[a_,db_,c_,e_,order_] :=T1[a,db,c,e,order] =
Module[{temp},

temp = Map[Combinations2[T[a,c,e,#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#] &, Partitions[order-1], {1}], {2}];

temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];
temp = temp /. CoverList[every_] -> every;
temp = Map[(db . #)&, temp, {1}]
]

G1[order_] := G1[order] =
Module[{temp},

temp = Map[Combinations2[G[#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#]&, Partitions[order-1], {1}], {2}];

16

temp = Apply[Times, temp, {3}];
temp = Map[Prepend[#, Times]&, temp, 1];
temp = Apply[Outer, temp, {1}];
temp = Flatten[temp];
temp = (1/order) * temp
];

S1[order_]:=S[order+1];
T0[a_,b_,c_,e_,1] = {}; G0[1] = {}; T0[a_,b_,c_,e_,2] = {b.e};
G0[2] = {1/2};
T0[a_,b_,c_,e_,order_] := T0[a,b,c,e,order] =
Module[{temp},

temp = Map[Combinations2[T[a,c,e,#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#] &, Partitions[order-2], {1}], {2}];

temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];
temp = temp /. CoverList[every_] -> every;
temp = Map[(b . #)&, temp, {1}]
]

G0[order_] := G0[order] =
Module[{temp},

temp = Map[Combinations2[G[#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#]&, Partitions[order-2], {1}], {2}];

temp = Apply[Times, temp, {3}];
temp = Map[Prepend[#, Times]&, temp, 1];
temp = Apply[Outer, temp, {1}];
temp = Flatten[temp];
temp = (1/((order-1)*order)) * temp
];

S0[order_]:=S[order];
End[]; EndPackage[];

A brief description of the code above:

MyOuter: Performs outer products of elements of lists.
Combinations: Produces the non ordered combinations without repetition of

n objects taken form the elements of a list.
Combinations2: Returns the products of the elements taken from Combina-

tions.
RunLengthEncode: Gives a list of pairts (x, y) which correspond to of element

x of length y in a list.
T: This function applies the main ideas of our approach. Using Combinations2

and recursion produces a list with all the possible matrix expressions which

17

correspond to trees with cumulative order p − 1. The function CoverList
is a dummy function which is used to protect from the outer product, the
elements of the lists (in levelspec 3) which are produced by the recursion.
These elements which are expressions that correspond to the branches of
each tree are multiplied using MyOuter and the list is flattened to produce
the full list needed. Then the CoverList protection is taken out and the
expressions are multiplied by a to meet the fact that a new node is added
to each tree.

s: s = 0 no simplifying assumptions, s = 1 for Ae = c2

2

T1: Taking the results of T gives a list with the expressions for y′ which
corresponds to the grafting of the trees with cumulative order p into a new
fat vertex and connecting that vertex to a new meagre root.

T0: Taking the results of T gives a list with the expressions for y which
corresponds to the grafting of the trees with cumulative order p− 1 into a
new fat vertex and connecting that vertex to a new meagre root.

G: Using Combinations2 and recursion produces a list with all the values of
density function γ(t) which correspond to all possible trees with cumulative
order p− 1.

G0: Taking the results of G gives a list with the density values for y′ which
corresponds to the grafting of the trees with cumulative order p− 1 into a
new fat vertex and connecting that vertex to a new meagre root.

G1: Taking the results of G gives list with the density values for y which
corresponds to the grafting of the trees with cumulative order p into a new
fat vertex and connecting that vertex to a new meagre root.

S: Using Combinations2 and recursion produces a list with elements all the
values of symmetry function σ(t) which correspond to all possible trees with
cumulative order p− 1.

S0: The list of the symmetries for the trees corresponding to y′ after the
grafting is the same as the list of symmetries of all possible trees with
cumulative order p

S1: The list of the symmetries for the trees corresponding to y after the
grafting is the same as the list of symmetries of all possible trees with
cumulative order p + 1.

References

[1] Albrecht, P., Numerical treatment of O.D.E.s: the theory of A-methods, Numer.
Math. 47 (1985) 59 -87.

[2] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations,
Wiley, Chichester, 1987.

[3] Calvo, M. P. and Sanz-Serna, J. M., Order conditions for canonical Runge-
Kutta-Nyström methods, BIT 32 (1992) 131 -142.

18

[4] Calvo, M. P. and Sanz-Serna, J. M., High order symplectic Runge-Kutta-
Nyström methods, SIAM J. Sci. Comput. 14 (1993) 1237 -1252.

[5] Coleman, J. P., Order conditions for a class of two-step methods for y′′ =
f(x, y), IMA J. Numer. Anal. 23 (2003) 197 -220.

[6] Famelis, I. Th., Papakostas, S. N. and Tsitouras, Ch., Symbolic derivation of
Runge-Kutta order conditions, J. Symb. Comput. 37 (2004) 311 -327.

[7] Hairer, E., Lubich, C. and Wanner, G., Geometric Numerical Integration,
Springer-Verlag, Berlin, 2002.

[8] Hairer, E., Nørsett, S.P., Wanner, G., Solving Ordinary Differential Equations
I, second edition, Springer, Heidelberg, 1993.

[9] Hairer, E. and Wanner, G., A theory of Nyström methods, Numer. Math. 25
(1976) 383 -400.

[10] Harrison, A. J., Runge-Kutta Order Conditions Package, http://library.wol -
fram.com/infocenter/MathSource/1524/

[11] Hosea, M. E., A new recurrence for computing Runge-Kutta truncation error
coefficients, SIAM J. Numer. Anal. 32 (1997) 1989 -2001.

[12] Keiper, J., NumericalMath‘Butcher‘.m, Ver. 1.2, Wolfram Research Inc., 1989.

[13] Lambert, J. D., Numerical methods for ordinary differential systems, Wiley,
Chichester, 1991.

[14] Liu, C. L., Introduction to Combinatorial Theory, Mac Grow–Hill, 1968.

[15] Okunbor, D. I., Canonical integration methods for Hamiltonian dynamical
systems, Report UIUCDS-R-92-1885, Univ. Illinois, Urbana, 1992.

[16] Papaioannou, A., Enumeration of Graphs (in Greek), NTUA, Athens, 2000.

[17] Papakostas, S. N., Unpublished software, 1992-1993.

[18] Papakostas, S. N., Algebraic analysis and the development of numerical ODE
solvers of the Runge–Kutta type (in Greek), Ph.D. Dissertation, Athens, 1996.

[19] Papakostas, S. N. and Tsitouras, Ch., High algebraic order, high phase-lag order
Runge-Kutta and Nyström pairs, SIAM J Sci. Comput. 21 (1999) 747 -763.

[20] Papakostas, S. N., Tsitouras Ch., and Papageorgiou G., A general family of
explicit Runge-Kutta pairs of orders 6(5), SIAM J Numer. Anal. 33 (1996)
917 -936

[21] Sofroniou, M., Symbolic Derivation of Runge–Kutta methods J. Symbol.
Comput. 18 (1994) 265 -296.

[22] Tsitouras, Ch., A parameter study of a Runge–Kutta pair of orders 6(5), Appl.
Math. Lett. 11 (1998) 65 -69.

19

[23] Tsitouras, Ch. and Papakostas, S. N., Cheap error estimation for Runge–Kutta
pairs, SIAM J Sci. Comput. 20 (1999) 2067 -2088.

[24] Tsitouras, Ch., Optimal Runge–Kutta pairs of orders 9(8), Appl. Numer. Math.
38 (2001) 123 -134.

[25] Wolfram, S., The Mathematica Book, 5th ed., Wolfram Med., 2003.

20

