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Abstract

Every binary relation p on a set H, (card(H) > 1) can define a hypercomposi-
tion and thus endow H with a hypercompositional structure. In this paper the
binary relations are represented by Boolean matrices. With their help, the hy-
percompositional structures (hypergroupoids, hypergroups, join hypergroups)
that derive with the use of the Rosenberg’s hyperoperation, are characterized,
constructed and enumerated using symbolic manipulation packages. Moreover,
the hyperoperation rox ={z € H| (z,2) €p}and zoy=xo0xUyoy, is in-
troduced and connected to Rosenberg’s hyperoperation, which assigns to every
(z,y) the set of all z such that either (z,2) € p or (y,2) € p.
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1. Introduction

A hypercomposition in a non empty set H, is a function from H x H to
the power set P(H) of H. This notion was introduced in Mathematics together
with the notion of the hypergroup, by F. Marty in 1934 during the 8th congress
of the Scandinavian Mathematicians, held in Stockholm, [5].

The axioms that endow the pair (H,), where H is a nonempty set and ” -
is a hypercomposition on H, with the hypergroup structure are:

b2

(i) a(bc) = (ab)c for all a,b,c € H (associativity)
(i) aH = Ha = H for all a € H (reproductivity)

If only (i) is valid then (H,-) is called semi-hypergroup, while it is called
quasi-hypergroup if only (ii) holds. In a hypergroup, the result of the hypercom-
position is always a nonempty set. Indeed, suppose that for two elements a, b in
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H it hold that ab = (). Then H = aH = a(bH) = (ab)H = 0H = (), which is ab-
surd. Thus if (H,-) is not associative and reproductive, then the empty set can
be among the results of the hypercomposition. (H,-) is called hypergroupoid if
xy # 0 for all 2,y in H, otherwise it is called partial hypergroupoid.

Furthermore F. Marty [5] defined the two induced hypercompositions
(the left and the right division) that derive from the hypercomposition, i.e.

a/b={x€H|acxb}and b\a={ye H|a€cby}

When ”-” is commutative, a/b = b\a is valid. In a hypergroup a/b and a\b
are nonempty for all a,b in H and this is equivalent to the reproductive axiom
[8]. A transposition hypergroup [4] is a hypergroup (H,-) that satisfies a
postulated property of transposition i.e. (b\a)N(c¢/d) # 0 = (ad) N (bc) # 0. A
join space or join hypergroup, is a commutative transposition hypergroup.
Here it is worth mentioning that the hypergroup, which is a very general struc-
ture, was progressively enriched with additional (either less or more powerful)
axioms, creating, thus, a significant number of specific hypergroups as the above
mentioned transposition and join ones, their fortifications [4, 14], the canoni-
cals and quasicanonicals ones [7] etc, with many widespread applications e.g.
[6, 14, 12].

Several papers were written on the construction of hypergroups, since hy-
pergroups are much more varied than groups, e.g. for each prime number p,
there is only one group, up to isomorphism, with cardinality p, while there is a
very large number of non isomorphic hypergroups. For example there are 3999
non isomorphic hypergroups with 3 elements [16].

Among others, Rosenberg [15], Corsini [1], De Salvo and Lo Faro [3] stud-
ied hypercompositional structures defined in terms of binary relations. Corsini
constructed partial hypegroupoids by introducing in a non empty set H the
hypercomposition

v-y={z€H| (z,z) Epand (z,y) €p}

where p is a binary relation on H. Obviously such a partial hypergroupoid is
hypergroupoid if for each pair of elements x,y in H, there exists z in H such
that (z,z) € p and (z,y) € p. In [10] it is proved that this hypercomposition
generates only one semihypergroup and only one quasihypergroup which are
coincide with the total hypergroup. Also in [6] it is computed that this hyper-
composition generates 2, 17, 304, 20660 non isomorphic hypergroupoids of order
2, 3, 4, 5 respectively.

De Salvo and Lo Faro introduced in a non empty set H the hypercomposition

z-y={z€cH| (z,2) €p or (z,y) € p}

where p is a binary relation on H and they characterized in [3] the relations p
which give quasihypergroups, semihypergroups and hypergroups.

On the other hand Rosenberg introduced in a non empty set H the hyper-
composition

zex={z€H| (x,z)€p} and rey=xexUyey



where p is a binary relation on H.

This paper deals with the Rosemberg-type hypercompositional structures,
the properties of their generative binary relations and their representations by
Boolean matrices. Some conclusions from [15] are restated with the use of
Boolean Matrices, in order to develop Mathematica programs, which enumerate
the hypergroupoids, the hypergroups and the join hypergroups with 2, 3, 4 and
5 elements. During the preparation of this paper, the authors became familiar
with [2], where an extensive program written in C#, computes the Rosemberg
hypergroups with 2, 3 and 4 elements. Regarding the hypergroups with 2, 3
and 4 elements (which both papers enumerate), the results are the same, even
though they are reached through completely different (in software and size)
computational methods.

2. The Rosemberg—type hypercompositional structures
Let H be a non empty set and p a binary relation on H. As usual:

0= {(z,y) | (z,2),(z,y) € p, forsome z € H}

An element x of H is called outer element of p if (z,2) ¢ p? for some 2z € H,
otherwise x is called inner element. The domain of p is the set

D={xecH| (z,2) €p, forsome z€ H}
and the range of p is the set
R={zxe H| (2,x) € p, forsome z€ H}.
Rosenberg introduced in H the hypercomposition
zex={z€H| (z,2)€p} and zey=zexUyey

and he observed that H, = (H, e) is a hypergroupoid if and only if H is the
domain of p and that H, is a quasihypergroup if and only if H is the domain
and the range of p. Also he proved that:

Proposition 1. [15] H, is a semihypergroup if and only if:

(i) H is the domain of p

(i) p Cp°

(iii) (a,x) € p*> = (a,x) € p whenever x is an outer element of p

From the last two elements of this proposition it derives that whenever x is
an outer element of p for some a € H,, then (a,y) is in p, if and only if (a,y) is
in p2. Thus one can easily observe that Proposition 1 is equivalent to

Proposition 2. H, is a semihypergroup if and only if:



(i) H is the domain of p

(ii) (y,z) € p* & (y,z) € p for all y € H, whenever z is an outer element of p.
Thus:

Proposition 3. H, is a hypergroup if and only if:

(i) H is the domain and the range of p

(i) (y,z) € p* & (y,z) € p for all y € H, whenever z is an outer element of p.

On the other hand the binary relation p can define in H another hypercompo-
sition, which is the following one:

zox={z€H| (z,z)€p} and zoy=zo0xUyoy

Proposition 4. If p is symmetric, then the hypercompositional structures (H, o)
and (H, o) are coincide.

One can easily observe that (H, o) is a hypegroupoid if and only if H is the
range of p. For (a,b) € p, a is called a predecessor of b and b a successor of a
[15]. Following Rosenberg’s terminology an element x will be called predecessor
outer element of p if (x,2) ¢ p? for some z € H.

The following two Propositions are proved in a similar way as Propositions
1 and 2.

Proposition 5. (H, o) is a semihypergroup if and only if:
(i) H is the range of p

(i) (z,y) € p* & (x,y) € p for all y € H, whenever z is a predecessor outer
element of p.

Proposition 6. (H, o) is a hypergroup if and only if:
(i) H is the domain and the range of p

(ii) (z,y) € p* & (z,y) € p for all y € H, whenever z is a predecessor outer
element of p

From the definitions of the two above hypercompositions it derives that the
hypercompositional structures constructed through them are always commuta-
tive. Since ”e” is commutative, the two induced hypercompositions ” /7 and ”\”
are coincide. The same holds for the hypercomposition ”o”.

Proposition 7. If H, = (H, e) is a hypergroup, then it holds:



_H  if(ya)ep
=L son, i (y,0) ¢ p

for all z, y in H
Proof: x/y={veH|zcveyt={veH|zcvevUyey} =
={veH| (v,z)Epor (y,z) €p}

which is equal to H, if (y,z) € p or equal to x oz, if (y,z) & p.

Corrolary 1. If p is reflexive, then xz/x = H, for each x € H

From Proposition 7 directly derives

Proposition 8. Letx, y, 2z, w be in H. If x/yNw/z # 0, then there are three
cases:

(i) z/yNw/z = H, when (y,z) € p and (z,w) € p

(ii) z/yNw/z=xox, when (y,z) ¢ pand (z,w) € p or
x/yNw/z=wow , when (y,z) € p and (z,w) ¢ p

(iii) z/yNw/z=xoxNwow, when (y,z) ¢ pand (z,w) ¢ p

Lemma 1. If p is reflexive, then the transposition axiom is fulfilled in the cases
(i) and (i) of Proposition 8.

Proof: (i) Consider the intersection zezNwey. It is xezNwey = (x ez U z e 2)N
(wewUyey). Since (y,z) € p, it derives that x € yey. Also (x,z) € p, because
p is reflexive. Thus z € x @ . Consequently z @ z N w ey # (). Similar is the
proof of (ii).

Lemma 2. If p> = p, then the transposition axiom is fulfilled in the cases (i)
and (ii) of Proposition 8.

Proof: (i) Consider the intersection zz N wy which is equal to (rez U ze2)N
(wewUyey). Suppose that (z,w) € p. Since H is the domain and the range
of p, there exists ¢t € H such that (w,t) € p. Thus t € w e w. Next (z,t) € p?,
because (z,w) € p and (w,t) € p. But p? = p, hence (z,t) € p and therefore
t € zez. Consequently ¢t € x e zNw ey, so the intersection is non void. Similar
is the proof of (ii).

Corrolary 2. If p is transitive, then the transposition axiom is fulfilled in the
cases (i) and (ii) of Proposition 8.

Proof: If p is transitive, p> C p. Since H, is a hypergroup it holds p C p?.
Thus p? = p.

Proposition 9. If p is compatible (i.e reflexive and symmetric), then the trans-
position axiom is valid in H,.



Proof: Since p is reflexive, according to Lemma 1 the transposition axiom is
valid in the cases (i) and (ii) of Proposition 8. Now for the case (iii) suppose that
x/yNw/z # (. Since x/yNw/z = xoxNwow, it derives that the intersection
roxNwow is non empty. But rozNwow = x exNwew, because p is
symmetric. Thus zexNwew # (. Next the inclusion zezNwew C rezNwey
holds. Hence x @ zNw ey # () and so the transposition axiom is valid.

Also from the above Lemmas it derives that:

Proposition 10. If p is reflexive or transitive and the implication:
zozxNwow#D=xezxNwew#{
holds, for all x, w in H, then the transposition axiom is valid in H,.

The implication roz Nwow # @ = z -z Nw - w # () means that a pair of
elements with common predecessor has a common successor.

Proposition 11. If (y,z) € p and z e x contains an outer element, then
r/yNw/z#0=zezNwey#0

Proof: Let (y,z) € p and let ¢t be an outer element in x @ x. Then (x,t) € p.
Therefore (y,t) € p?. But t is an outer element, so (y,t) € p. Thus t € y e y.

The two hypercompositions ”e” and ”o” can be seen in the case of graphs. A
directed graph consists of a finite set V', whose members are called vertices and
a subset A of V x V whose members are called arcs. Thus A is a binary relation
in V and so through A the two hypercompositions ”e”’and o can be defined.
Then x e x consists of all vertices z for which an arrow exists pointing from x to
z, while x o z consists of all vertices z for which an arrow exists pointing from
z to x (see also [9]).

3. Boolean matrices and finite hypergroupoids
The Boolean domain B = {0,1} becomes a semiring under the addition
0+1=14+0=1+1=1,0+0=0
and the multiplication:
0-0=0-1=1-0=0,1-1=1.

This semiring is called binary Boolean semiring. A Boolean matrixz is a matrix
with entries from the binary Boolean semiring. Every binary relation p in a
finite set H with cardH = n # 0, can be represented by a Boolean matrix
M, and conversely every n X n square Boolean matrix defines on H a binary
relation. Indeed, let H be the set {aj, ..., a,}. Then a n x n Boolean matrix
is constructed as follows: the element (4, j) of the matrix is 1, if (a;, a;) € p



and it is 0 if (a;, a;) ¢ p and vice versa. Hence in every set with n elements,

o’ partial hypergroupoids can be defined. The element a; of H is an outer
element of p if the k column of M,: has a zero entry. If all the entries of the

k column are 1, then ay is an inner element of p. Moreover M,» = (Mp)2. A
square Boolean matrix is called total if all its entries are equal to 1. A Boolean
matrix is called good if its square is the total matrix [1], i.e. the good matrices
are the square roots of the total matrix [11]. Basic Boolean matrix is a good
matrix which is converted to a not good one, through the replacement of any
unit entry to 0 [11]. It is proved that all the good matrices are generated from
the basic ones [11]. A nzn Boolean matrix which has all the entries of its ¢ row
and its ¢ column equal to 1, i =1,...,n, is called minimum basic matrix [11].

Let H, denotes the above mentioned partial hypergroupoid, which is defined
by a binary relation p through the hypercomposition ”e”. Then the Propositions
of the previous paragraph can be restated using Boolean matrices. Thus

Theorem 1. H, is a hypergroupoid if and only if M, has no zero rows.

Theorem 2. H, is a quasihypergroup if and only if M, has no zero rows and
no zero columns.

From Proposition 2 it derives that

Theorem 3. H, is a semihypergroup if and only if

(i) M, consists only of non zero rows

(ii) if a column of the matrix M,> has a zero entry, then it coincides with the
same column of M,.

Also from Proposition 3 it derives that

Theorem 4. H, is a hypergroup if and only if

(i) M, consists only of non zero rows and non zero columns

(i) whenever a column of the matrix M,» has a zero entry, it coincides with
the same column of M,.

Since the square roots of the total Boolean matrices consists only of non zero
rows and non zero columns [11], it derives that

Theorem 5. The square roots of the total Boolean matrices give Rosenberg
hypergroups.

Moreover from Proposition 10 it derives that
Theorem 6. A hypergroup H, is a join one, if

(i) all the elements on the main diagonal of M, are equal to 1 or M, = M,



(ii) the entrywise product of two rows a;, and aj, of M, contains a non zero
entry whenever the entrywise product of the corresponding columns a ;
and a,; contains a non zero entry.

More generally if (a;« ) (a;.) is the entrywise product of the two rows a;. and
aj, then from Proposition 8 it derives that:

Theorem 7. A hypergroup H, is a join one, if and only if

(i) whenever an entry (j,4) is 1, then the row vector (a; + aix) (aj« + ars) is
not the zero one, for all the row vectors aj., ags of M.

(ii) the entrywise product of two rows a;. and a;.« of M, contains a non zero
entry whenever the entrywise product of the corresponding columns a ;
and a,; contains a non zero entry.

Corrolary 3. The Rosenberg hypergroup which derives from the minimum basic
matrix is a join one.

Relevant Propositions hold for the hypercompositional structures which are

defined by a binary relation p through the hypercomposition "o” e. g. from
Proposition 6 it derives that:

Theorem 8. (H,o) is a hypergroup if and only if
(i) M, consists only of non zero rows and non zero columns

(ii) whenever a row of the matrix M > has a zero entry, it coincides with the
same row of M,.

Thus a principle of duality folds between the two hypercompositions ”e” and
” 077 .

Given a theorem, the dual statement, which results from the interchanging
of one hypercomposition with the other, is also a theorem.

Hence:
Theorem 9. The hypergroup (H, o) is a join one, if and only if

(i) whenever an entry (¢, 7) is 1, then the column vector (a.; + a«) (asj + auk)
is not the zero one, for all the column vectors a.;, a., of M,.

(ii) the entrywise product of two columns a,; and a.; of M, contains a non
zero entry whenever the entrywise product of the corresponding rows a;.
and aj. contains a non zero entry.

Next, as to when two hypergroupoids generated by binary relations, are
isomorphic, the answer has been given in [10] by the following Proposition and
Theorem:



Proposition 12. Ifin the Boolean matrixz M, the ¢ and j rows are interchanged
and, at the same time, the corresponding i and j columns are interchanged as
well, then the deriving new matrix and the initial one, give isomorphic hyper-
groupoids.

Theorem 10. If the Boolean matriz M, derives from M, by interchanging
rows and the corresponding columns, then the hypergroupoids H, and H, are
isomorphic.

4. Mathematica packages

The Mathematica [17] packages follow

4.1. Counting all HyperGroups

The function Good[di] returns the Boolean matrices that form a hyper-
groupoid

Good[di_] :=
Module[{c, i1, z},
c Tuples[Tuples[{0, 1}, dil, dil;
z = Table[Min[Flatten[
- c[[i1]] + Sign[c[[i1]1].c[[i1]1]111]*2~(di*di)
+ Length[Position[c[[i1]], Table[0, {i2, 1, di}]11],
{i1, 1, 2°(di*di)}];
Return[c[[Flatten[Position[z, 0]]11]]

1;

For example the 8 Boolean matrices of 2nd order that give hypergroupoids are
the following ones

In[1] :=Good [2]

Out [1] :={{{0, 1}, {0, 1}}, {{o, 1}, {1, 1}3},
{{1, o}, {0, 13}, {{1, 03}, {1, 03},
{{1, o}, {1, 13}, {{1, 1}, {0, 11}},
{1, 1}, {1, 03}, {{1, 13}, {1, 1}}}

The results of the enumeration of hypergroupoids of order 2, 3, 4, 5 are as
follows

In[2] := Length[Good[2]]
Out[2]= 8

In[3]:= Length[Good[3]]
Out [3]= 236

In[4]:= Length[Good[4]]
Out [4]= 28023

In[5]:= Length[Good[5]]

Out [6]= 13419636

The code that follows constructs a hypergroupoid from a Boolean Matrix



HyperGroupoid[a_List, order_] :=
Table[Table [Complement [
Union[Signl[al[[i1]] + al[[i2]]1]1*Table[j3,
{j3, 1, order}]
1, {031,
{i2, 1, order}],
{i1, 1, order}l;

Example: The 99th Boolean matrix of 3rd order that results to a hyper-
groupoid is the following one

In[6] :=Good[3] [[99]] // MatrixForm

100
outfe]=| 1 1 0
10 1

The hypergroupoid which derives from the above matrix is the next one

In[7] :=HyperGroupoid[Good [3] [[99]], 3] // MatrixForm

{13 {12} {13}
out[7] = | {1,2} {1,2} {1,2,3}
{1,3} {1,2,3} {1,3}

The function GoodH[di] returns the Boolean matrices that form a hypergroup.

GoodH[di_] :=
Module([{c, il, z, h2, outer, indexes},
¢ = Tuples[Tuples[{0, 1}, dil, dil;
z = Table[ Min[Flatten[-c[[i1]]
+ Signlcl[i1]1].c[[i111111%2" (di*di)
+ Length[Position[c[[i1]], Table[0, {i2, 1, di}]]]
+ Length[Position[Transposel[c[[i1]11],
Table[0, {i2, 1, di}]]], {i1, 1, 27(di*di)}];
h2 = c[[Flatten[Position[z, 0]1]]1;
outer = Table[Complement [
Sign[di - Totall[Sign[h2[[j11].h2[[j111111*
Table[j3, {j3, 1, di}], {0}], {j1, 1, Length[h2]}];
indexes = Complement [Range[1, Length[h2]],
Flatten[Position[
Table [Max [
Sign[h2[[j1]1].h2[[j111]1[[A11l,outer[[j1]1]1]]
- h2[[j11]1[[Al11l, outer[[j11111],
{j1, 1, Length[h2]1}], 1]]
1;
Return[h2[[indexes]]]
1;

For example we get the 6 Boolean matrices of 2nd order that form a hypergroup

In[8] :=GoodH[2]
Out [8]:={{{0, 1}, {1, 1}}, {{1, o}, {0, 1}}, {{1, o}, {1, 1}},
{1, 13}, {0, 13}, {{1, 1}, {1, 03}, {{1, 1}, {1, 13}}}

Enumeration of hypergroups
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In[9]:= Length[GoodH[2]]

Out[9]= 6

In[10] := Length[GoodH[3]]
Out[10]= 149

In[11]:= Length[GoodH[4]]
Out[11]= 9729

In[12]:= Length[GoodH[5]]

Out [12]= 2921442

These are the only hypergroups that derive from the hypercompositions which
are defined from binary relations.

With a small modification of the above codes we found the join hypergroups
of orders 2,3,4, and 5 to be 5,106,6979 and 2122681 respectively.

4.2. Counting Nonlsomorphic Hypergroups
The packages that enumerate the NonIsomorphic classes follow. IsomorphTest1
returns all isomorphisms of a Matrix.

IsomorphTestl[a_List] :=
Module[{p, al},
p = Permutations[Range[1, Length[all]l;
Return[Table[al a;
al ReplaceAll[al, al[[All, Table[j2,
{j2, 1, Length[a1]}]1]1] ->
al[[All, p[[j11111]1;
ReplaceAll[al, al[[Tablel[j2,
{j2, 1, Length[a]l}]]] ->
at[[pl[31111]1],
{j1, 1, Length[pl}]

1]
Let’s see the six permutations of the matrix

1 0 1
M,=1110
0 1 1
which are defined by corresponding binary relations, that give isomorphic hy-
pergroupoids:

In[13]:= IsomorphTestl[{{1, O, 1}, {1, 1, 0}, {0, 1, 1}}]

Out[13]:= {{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}},
{{1,1,0}, {0,1,1}, {1,0,13}}, {{1,0,1}, {1,1,0}, {0,1,1}},
{{1,0,1}, {1,1,0}, {0,1,1}}, {{1,1,0}, {0,1,1}, {1,0,1}3}}

Now we count the isomorphic classes of the hypergroupoids

Cardin[d_] :=
Module[{h2, cardinalities, len, templ, temp},
h2 = Good[d];
cardinalities = Table[0, {j1, 1, Factoriall[dl}];
While[Length[h2] > O,
temp = Union[IsomorphTest1[h2[[1]]1]];
len = Length[Union[temp]];
cardinalities[[len]] = cardinalities[[len]] + 1;
h2 = Complement [h2, temp]
1;

Return([cardinalities]]

11



Then we get

In[14]:= Cardin[2]

Out[14]:= {2, 3}

In[15] := Totall[%]

Out[15]:= 5

In[16]:= Cardin[3]

Out[16]:= {3, 1, 13, 0, 0, 32}
In[17]:= Totall[%]

Out [17]:= 49

In[18] := Cardin[4]

Qut[18]:= {3, 0, 2, 17, O, 15, 0, 8, O, O, O, 238,
0, 0,0,0,0,0,0,0,0, 0,0, 1039}
In[19]:= Totall[%]

Out[19] := 1322

In[20] := Cardin[5]

Out[20]= ...

In[21]:= Totall[%]

Out[21]= 117534

By changing the line h2=Good[di] in the above function Cardin[] with the
line h2=GoodH[di] we get the isomorphic classes of the Hypergroups.

In[22]:= Cardin[2]

Out [22]= {2, 2}

In[23]:= Totall%]

Out[23]= 4

In[24] := Cardin[3]

Out[24]= {3, 1, 10, O, O, 19}

In[25]:= Totall%]
Out [25]= 33
In[26] := Cardin[4]

Out[26]= {3, 0, 2, 11, 0, 1
o, 0, 0, 0, 0, 0, O, O, O,
In[27]:= Totall[%]

Out [27]= 501

In[28]:= Cardin[5]

Out[28]= ...

In[29]:= Totall[%]

Out [29]= 26409

2, 0, 5, 0, 0, O, 139,
0, 0, 329}

5. Conclusion

This paper shows that there exist lots of Rosenberg-type hypercompositional
structures, the number of which is calculated with the use of Mathematica pack-
ages that are constructed for this purpose. The results of these calculations are
given in the cumulative Table-1 below for the orders 2, 3, 4 and 5. Because of
the principle of Duality enunciated above, the same number of hypercomposi-
tional structures exists for the dual hypercomposition
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