
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Using Neural Networks for the derivation of

Runge-Kutta-Nyström pairs for integration of orbits.

Ch. Tsitourasa, I. Th. Famelisb

aTEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece
bTEI of Athens, Dept. of Mathematics, GR12210, Egaleo, Greece

Abstract

In this paper we present Runge–Kutta–Nyström (RKN) pairs of orders 4(3)
and 6(4). We choose a test orbit from the Kepler problem to integrate for a
specific tolerance. Then we train the free parameters of the above RKN4(3)
and RKN6(4) families to perform optimally. For that we form a neural network
approach and minimize its objective function using a differential evolution op-
timization technique. Finally we observe that the produced pairs outperform
standard pairs from the literature for Pleiades orbits and Kepler problem over
a wide range of eccentricities and tolerances.

Keywords: Neural Networks, Runge–Kutta, Kepler problem, Differential
Evolution
PACS: 02.60.Lj 07.05.Mh

1. Introduction

Explicit Runge–Kutta–Nyström pairs are widely used for the numerical so-
lution of the initial value problem

y ′′ = f(x, y), y(x0) = y0 ∈ R
m, y ′(x0) = y ′

0 ∈ R
m, x ∈ [x0, xe]

where f : R × R
m 7→ R

m. We usually use the extended Butcher tableau [1] of
the method’s coefficients :

c A
b, b′

b̂, b̂′

to present the RKN pair. In such a tableau bT , b̂T , b′T , b̂′T , c ∈ R
s and A ∈ R

s×s

is strictly lower triangular.

Email addresses: tsitoura@teihal.gr (Ch. Tsitouras), ifamelis@teiath.gr (I. Th.
Famelis )

URL: http://users.ntua.gr/tsitoura/ (Ch. Tsitouras),
http://users.teiath.gr/ifamelis/ (I. Th. Famelis )

Preprint submitted to Elsevier July 14, 2011

*Manuscript

Administrator
Text Box



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Such a method implementing the following formulae:

yn+1 = yn + hny
′
n + h2

n

s
∑

i=1

bifni

and

ŷn+1 = yn + hny
′
n + h2

n

s
∑

i=1

b̂ifni

advances the solution from xn to xn+1 = xn + hn computing at each step
approximations yn+1, ŷn+1 to y(xn+1) of orders p and p− 1 respectively.

It also produces two approximations y′n+1, ŷ
′
n+1 to y′(xn+1) of orders p and

p− 1, given by

y′n+1 = y′n + hn

s
∑

i=1

b′ifni

and

ŷ′n+1 = y′n + hn

s
∑

i=1

b̂′ifni.

Here

fni = f(xn + cihn, yn + hn

i−1
∑

j=1

aijfnj) ∈ R
m

for i = 1, 2, .., s ≥ p. These embedded form methods (called RKNp(p− 1)) are
implemented with variable step-sizes as we can obtain an estimate

un+1 = max(‖yn+1 − ŷn+1‖∞ ,
∥

∥y′n+1 − ŷ′n+1

∥

∥

∞
)

of the local truncation error of the p− 1 order formula. If this error estimation
is grater than a requested tolerance TOL it is common to apply the step-size
control algorithm

hn+1 = 0.9hn · (TOL

un+1
)1/p,

to compute the next step-size. If it is not, we use the same formula to recompute
the current step. See [12] for more details on the implementation of these type
of step size policies.

2. Derivation of the RKN pairs

The derivation of better RKN pairs is of continued interest the last 30− 40
years, see [11] and references therein. The main framework for the construction
of RKN pairs is matching Taylor series expansions of y(x + h) − yn+1 and
y′(x+ h)− y′n+1 after we have expanded the various fni’s.

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2.1. RKN4(3) pairs

A pair of orders four and three as the one that interests us has to satisfy the
following equations of condition:

b′e = 1, b′c =
1

2
, b′c2 =

1

3
, b′c3 =

1

4
and b′Ac =

1

24
(1)

when we set

Ae =
c2

2
(2)

and
b = b′(e − c) (3)

with e = [1, 1 · · · 1]T ∈ R
s.

Here we consider the family of Dormand et. al. [2] that needs four stages
per step (s = 4). This family uses FSAL (First Stage As Last) device so it
effectively needs only three stages per step. FSAL demands c4 = 1 and a4i = bi,
i = 1, 2, 3. Thus the parameters available for fulfilling the above mentioned five
equations of condition are: c2, c3, b

′
1, b

′
2, b

′
3, b

′
4 and a32. Two of them are free

to choose, namely c2, and c3. The simplifying assumptions define all the other
coefficients.

Similarly, for the coefficients of the lower order formulas after choosing a b̂′4
we solve

b̂′e = 1, b̂′c =
1

2
, b̂′c2 =

1

3

for b̂′1, b̂
′
2, b̂

′
3.

Finally, we set b̂3 = 0.15 and b̂4 = −1/20 and solve

b̂ · e = 1

2
and b̂ · c = 1

6

for b̂i, i = 1, 2. The fixed coefficients for the lower order formulas affect mainly
the step size. For example, smaller values may produce smaller estimations for
the error and in consequence this is equivalent to using more lax tolerances. So
for reasons of comparison we use the ones chosen in [2].

When we solve all the equations we conclude to the following expressions
with respect to c2 and c3 [10]:

a21 =
c22
2
, a31 =

(c3(c
2
2(1− 12c3) + 6c32c3 − c23 + 3c2c3(1 + c3)))

(6c2(1− 3c2 + 2c22))
,

a32 =
((c2 − c3)c3(−c3 + c2(−1 + 3c3)))

(6c2(1− 3c2 + 2c22))
, a41 =

(1− 2c2 − 2c3 + 6c2c3)

(12c2c3)
,

a42 =
(1 − 2c3)

(12c22 − 12c2c3)
, a43 =

(−1 + 2c2)

(12(c2 − c3)c3)
, b′1 =

(1− 2c2 − 2c3 + 6c2c3)

(12c2c3)
,

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

b′2 =
(−1 + 2c3)

(12c2(c22 + c3 − c2(1 + c3)))
, b′3 =

(1− 2c2)

(12(c2 − c3)(−1 + c3)c3)
,

b′4 =
(3 − 4c3 + c2(−4 + 6c3))

(12(−1 + c2)(−1 + c3))
, b̂1 =

−13 + 24c2 + 9c3
60c2

,

b̂2 =
13− 9c3
60c2

, b̂′1 =
4− 5c2 − 5c3 + 8c2c3

6c2c3
, b̂′2 =

4− 5c3
6c22 − 6c2c3

, b̂′3 = − 4− 5c2
6c2c3 − 6c23

.

2.2. RKN6(4) pairs

For the derivation of such type of pairs we need to solve more equations of
condition along with those in (1). If assumptions (2-3) hold, to satisfy algebraic
order five the additional conditions are:

b′c4 =
1

5
, b′Ac2 =

1

60
, b′cAc =

1

30
,

and

b′c5 =
1

6
, b′Ac3 =

1

120
, b′A2c =

1

720
, b′cAc2 =

1

72
, b′c2Ac =

1

36

to satisfy algebraic order six.
We consider again the family studied in [2, 5] that needs six stages per step

(s = 6). This family also uses FSAL device so it effectively needs only five stages
per step. FSAL device enforces c6 = 1 and a6i = bi, i = 1, 2, · · · , 5. Among the
parameters available for fulfilling the above mentioned equations of condition,
we choose c2, c3, and c4 freely. All the other coefficients are defined by the
conditions and the simplifying assumptions. More details and the algorithm are
given in [5].

The lower order weights have to satisfy

b̂′e = 1, b̂′c =
1

2
, b̂′c2 =

1

3
, b̂′c3 =

1

4
and b̂′Ac =

1

24
.

These are five linear equations with six unknowns. We set b̂′5 = − 2
5 [2] and

b̂′6 = b′6 and solve four of the above equations for b̂′1, b̂
′
2, b̂

′
3, b̂

′
4 while we choose

the remaining as in [2]. We finally derive the coefficients of the vector b̂ using

the assumption b̂ = b̂′(e− c)

2.3. On the derivation of the pairs

The main question raising now is how to select the free parameters i.e. c2
and c3 for the 4(3) pair and c2, c3, and c4 for the 6(4) pair. For a p-order
RKN method, the minimization of the p+ 1 order term in the truncation error
expansion seems the best choice for the solution of a general problem. This
technique does not consider the nature of each specific problem we want solved.
Thus many authors considered many other approaches utilizing various proper-
ties of the problems. Such classes of problems are Hamiltonian, orbit, periodic,

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Schrödinger and many others. For example periodic problems have been studied
extensively, when optimizing the numerical procedure for a specific test prob-
lem, and very promising methods have been produced for them [5]. In other
cases we deal with some side properties such as symplectiness [8].

Unfortunately in most cases analytical consideration of test problems to be
solved produces complicated algebra and enforces us to proceed after making
oversimplifications.

Our purpose here is to produce a RKN4(3) and a RKN6(4) pair that have
optimal performance for the two body problem. Unfortunately, it is very difficult
to derive simple algebraic formulas for the coefficients that may produce better
pairs for this problem.

An interesting alternative can be the consideration of Runge-Kutta type
neural networks, where the various new families pairs are tested on some model
problems to give good predictions for their coefficients.

3. The new Runge–Kutta–Nyström pairs

We consider the well known Kepler problem

y′′1 = − y1√
y2

1
+y2

2

3

y′′2 = − y2√
y2

1
+y2

2

3

x ≥ 0, y (0) = [1− ǫ, 0]T , y′(0) = [0,
√

1+ǫ
1−ǫ ]

T with ǫ the eccentricity of the orbit.

We construct a Neural Network (NN) similar to the one given in [9] for
Runge–Kutta methods. In the input we give the eccentricity ǫ, the tolerance
TOL, the integration interval endpoint xe and the two parameters c2 and c3 (or
c2, c3 and c4 for the 6(4) pair). Then the corresponding problem is integrated
and we record the error ge and the total number of the function evaluations N .
Here with ge we denote the maximum of the norm of the global error on the
mesh points of the whole interval of integration. The output is a measure of the
numerical method efficiency. We use

eff = N · (ge) 1

4 , (4)

for the 4(3) pair and

eff = N · (ge) 1

6 ,

for the 6(4) pair. For this pair we choose the step-changing algorithm presented
in [12].

We test DEP4(3) pair for c2 = 0.25, c3 = 0.7, TOL= 10−4 and xe = 20π. We
chose ǫ = 0.25 as representative eccentricity. This seems to be natural choice as
it is the mean value of the existing asteroids in the solar system. Higher order
pairs perform better when we choose stringent tolerances. Running with low
tolerances, a case that a 4(3) pair is preferable, we experience large errors after
some integration point. Increasing the eccentricity we get even larger errors.

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Thus such pairs are better suited for crude tolerances, small eccentricities and
small integration intervals.

We record
effDEP43(TOL = 10−4, ǫ = 0.25) = 289.87

Then we train the coefficients for the NN described above. We set b̂3 = 3
2 ,

b̂4 = − 1
20 and b̂′4 = 0.19 similar to DEP43. These values do not affect seriously

the efficiency of the pairs but it is important to tune the error estimator in a
way so the various 4(3) pairs have similar costs for similar tolerances. In such
a case efficiency is more influenced by the global error achieved.

When doing so, we get

effNEW43(TOL = 10−4, ǫ = 0.25) = 164.50

for

c2 =
50

99
and c3 =

19

40
.

We list the coefficients of the new pair in Table-1.

Table 1: Coefficients of NEW4(3)
0

50

99

1250

9801

19

40
−

5935429

44800000

10989429

44800000

1 949

5700

3267

11900

400

6783

b 949

5700

3267

11900

400

6783

b′ 949

5700

323433

583100

16000

142443

514

3087

b̂ 4483

40000

11517

40000

3

20
−

1

20

b̂′ 13399

95000
−

153549

595000

2096

2261

19

100

The main issue of our effort is to get a method using the least information.
A sole integration is expected to give a pair that performs best over all eccen-
tricities and tolerances. TOL was not included in the definition of eff since it
is not a qualification output for the pairs. Another approach could be to define
eff as an average of a variety of combinations of e and TOL.

The neural networks are actually nonlinear optimizers. There exist other
nonlinear optimization techniques like conjugate gradient, back-propagation, or
other Newton-type methods based on some kind estimation of derivatives. Such
”standard” techniques are not worth here to be used in our case where we
optimize a whole integration over the coefficients of a method. The derivatives
(i.e. Jacobians) of the object functions are really difficult to estimate. A two-
dimensional curve of eff with respect to c2 and c3 is too expensive though is
not informative since there are very small regions where peaks in eff can not be
observed.

Thus we use a differential evolution (DE) technique for this purpose. DE
is a population based method which seems to perform better here, where the

6



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

output comes after a complete run of the Initial Value Problem. We implement
DeMat software for Matlab as DE method, see [6].

Finally we test the new pair for a wide range of tolerances and eccentricities.
Actually for

TOL = 10−2, 10−3, 10−4, 10−5, 10−6

and
ǫ = 0.00, 0.05, 0.10, · · · , 0.70

we record the values effDEP43(TOL, ǫ) for DEP4(3) pair and effNEW43(TOL, ǫ)
for the new pair. We avoided larger eccentricities because they rarely occur in
practice. The corresponding quotients

effNEW43(TOL, ǫ)/effDEP43(TOL, ǫ)

are given in Table-2. The average ratio is 1.32 which means that the new pair
is about 32% more efficient in the family of Kepler problems. In this table the
underlined number 1.76 ≈ 289.87

164.50 .

Table 2: effDEP43(TOL, ǫ)/effNEW43(TOL, ǫ)

ǫ
TOL 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
10−2 0.98 1.15 1.17 1.06 1.09 1.19 1.34 1.76 2.44 1.87 1.65 1.60 1.80 2.96 1.57

10−3 1.01 1.02 1.18 1.25 1.27 1.43 1.58 1.87 1.76 1.50 1.42 1.43 1.58 2.59 1.64
10−4 1.02 1.02 1.08 1.18 1.33 1.76 1.61 1.31 1.20 1.16 1.15 1.15 1.17 1.29 1.61
10−5 1.03 1.02 1.02 1.06 1.12 1.27 1.50 1.39 1.16 1.06 1.01 0.99 1.01 1.08 1.37
10−6 1.03 1.01 1.00 1.01 1.01 1.04 1.13 1.22 1.30 1.28 1.12 1.06 1.06 1.13 1.47

We proceed testing DEP6(4) pair for c2 = 0.1, c3 = 0.3, c4 = 0.7, TOL =
10−6 and xe = 20π. We tried here ǫ = 0.35 since the pair is of higher order and
is expected to perform better for large eccentricities and smaller tolerances. We
find

effDEP64(TOL = 10−7, ǫ = 0.35) = 335.86

Then we train the free parameters of this family for this NN in the lines described
for the previous case keeping the same values of b̂′5, b̂

′
6 as in DEP6(4) for tuning

reasons and get

effNEW64(TOL = 10−7, ǫ = 0.35) = 138.33

for

c2 =
2

11
, c3 =

4

9
and c4 =

5

8
.

The coefficients of the new pair are listed in Table-3.
Finally, we test the new pair for a wide range of tolerances and eccentricities.

Actually for
TOL = 10−4, 10−5, · · · , 10−9

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 3: Coefficients of NEW6(4)
0

2

11

2

121

4

9

404

67797

6292

67797

5

8

1056145

77201408

5544825

38600704

2932605

77201408

163

244

328961

14300210

6078447

41566085

3270629

65455319

444237

113127028

1 8707

130400

3059969

17643600

745767

2655328
−

150784

266175

221533456

406167475

b 8707

130400

3059969

17643600

745767

2655328
−

150784

266175

221533456

406167475

b′ 8707

130400

33659659

158792400

6711903

13276640
−

1206272

798525

54054163264

32899565475

1

12

b̂ −

5337191

43580352

4180502689

6137566240
−

1158531525

2455026496

62835974

115079367
−

81

610

b̂′ −

5337191

43580352

45985529579

55238096160
−

2085356745

2455026496

502687792

345238101
−

2

5

1

12

and ǫ = 0.00, 0.05, 0.10, · · · , 0.70 we record the values effDEP64(TOL, ǫ) for
DEP6(4) pair and effNEW64(TOL, ǫ) for the new pair. Here we integrated for
a longer period, xend = 60π. For even longer periods it is better to use lower
tolerances and in consequence higher order pairs. The corresponding quotients

effDEP64(TOL, ǫ)/effNEW64(TOL, ǫ)

are shown in Table-4. The average of these ratios is 1.45 which means that the
new pair is about 45% more efficient in the family of Kepler problems.

Table 4: effNEW64(TOL, ǫ)/effDEP64(TOL, ǫ)

ǫ
TOL 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
10−4 1.13 1.09 1.15 1.16 1.23 1.33 1.53 1.86 1.34 1.34 1.40 1.19 1.19 1.22 1.23
10−5 1.20 1.12 1.13 1.19 1.24 1.28 1.39 1.87 1.60 1.53 1.57 1.51 1.46 1.46 1.39
10−6 1.32 1.20 1.10 1.16 1.31 1.44 1.50 1.60 1.69 1.90 2.46 2.18 1.87 1.62 1.51
10−7 1.45 1.38 1.16 1.13 1.19 1.37 1.58 2.23 1.74 1.57 1.66 1.71 1.73 1.76 1.70
10−8 1.31 1.34 1.29 1.17 1.21 1.31 1.44 1.77 1.84 1.56 1.51 1.49 1.47 1.46 1.53
10−9 1.19 1.21 1.32 1.28 1.26 1.34 1.45 1.66 2.13 1.59 1.49 1.45 1.41 1.37 1.33

We note that when integrating the two body problem, the ratio of the global
error of methods can be sensitive to small changes in eccentricity, [7]. Complete
smoothness of the ratios is not guaranteed.

We extend our tests for the well known orbit Pleiades taken from [4]. This
is a celestial mechanics problem of seven stars in the plane of coordinates xi, yi
and masses mi, (i = 1, · · · , 7) which has the form:

z′′ = f(z), z(0) = z0, z
′(0) = z′0

with
z ∈ R

14, 0 ≤ t ≤ 3.

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Defining z := (xT , yT )T , x, y ∈ R
7, the function f : R14 → R

14 is given by
f(z) = f(x, y) = (f (1)(x, y)T , f (2)(x, y)T )T where f (1,2) : R14 → R

7 read

f
(1)
i =

∑

i6=j

mj(xj − xi)/r
3

2

ij , f
(2)
i =

∑

i6=j

mj(yj − yi)/r
3

2

ij ,

where, mi = i and
rij = (xj − xi)

2 + (yj − yi)
2.

The initial values are z0 = (3, 3,−1,−3, 2,−2, 2, 3,−3, 2, 0, 0,−4, 4)T and
z′0 = (0, 0, 0, 0, 0, 1.75,−1.5, 0, 0, 0,−1.25, 1, 0, 0)T and the reference solution at
the end of the integration interval can be found in [3].

For this problem, for the 4(3) pairs the average ratio of

effNEW43(TOL)/effDEP43(TOL)

for
TOL = 10−2, 10−3, 10−4, 10−5, 10−6

is 1.14 which means that the new pair is about 14% more efficient in this specific
problem.

For the 6(4) pairs the average ratio of

effNEW64(TOL)/effDEP64(TOL)

for
TOL = 10−4, 10−5, · · · , 10−9

is 1.22 which means that the new pair is about 22% more efficient in this specific
problem.

4. Conclusion

We present a fairly new general technique in this paper. We construct nu-
merical methods tuned to integrate specific classes of nonlinear problems. This
is achieved by training their coefficients to perform optimally at a chosen repre-
sentative of this class. We record some first promising results for Runge–Kutta–
Nyström pairs which solve orbits and especially the Kepler problem.

References

[1] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
John Wiley & Sons Inc., New York (1987).

[2] J. R. Dormand, M. E. El-Mikkawy and P. J. Prince, Families of Runge-
Kutta-Nyström formulae, IMA J. Numer. Anal., 7, 235-250 (1987).

[3] Francesca Mazzia and Cecilia Magherini, Test Set for Initial Value Problem
Solvers Release 2.4, Report 4/2008, Department of Mathematics University
of Bari.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[4] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, Springer-Verlag, 2nd ed. Berlin (1993).

[5] S. N. Papakostas and Ch. Tsitouras, High Phase-Lag-Order Runge–Kutta
and Nyström Pairs, SIAM J. Sci. comput., 21, 747-763 (1999).

[6] K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A
practical approach to global optimization, Springer, Berlin (2005).

[7] P.W Sharp, J.C. Castillo-Rogezb, K.R. Grazier, The performance of phase-
lag enhanced ERKN pairs on N-body problems, J. Comput. Appl. Maths, to
appear.

[8] Ch. Tsitouras, A Tenth Order Symplectic Runge–Kutta–Nyström Method,
Cele. Mech. Dynam. Astron. 74, 223-230 (1999).

[9] Ch. Tsitouras, Neural Networks with multidimensional transfer functions,
IEEE T. Neural Networks, 20, 222-228 (2002).

[10] Ch. Tsitouras, Using Neural Networks for the Derivation of Runge-Kutta-
Nystrom pairs, Amer. Inst. Phys., CP-1048, 1034-1036 (2008).

[11] Ch. Tsitouras and I. Th. Famelis, Symbolic derivation of Runge-Kutta-
Nyström order conditions. J. Math. Chem., 46, 896-912 (2009).

[12] Ch. Tsitouras and S. N. Papakostas, Cheap Error Estimation for Runge-
Kutta pairs, SIAM J. Sci. Comput., 20, 2067-2088 (1999).

10




