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1 Introduction

Explicit Runge-Kutta (RK) pairs are widely used for the numerical solution of the initial

value problem

y

0

= f(x; y); y(x

0

) = y

0

2 <

m

; x 2 [x

0

; x

e

] (1)

where f : < �<

m

7! <

m

. These pairs are characterized by the extended Butcher tableau

[1, 6]:

c A

b

^

b

with b

T

,

^

b

T

, c 2 <

s

and A 2 <

s�s

is strictly lower triangular. The procedure that advances

the solution from (x

n

; y

n

) to x

n+1

= x

n

+ h

n

computes at each step two approximations

y

n+1

, ŷ

n+1

to y(x

n+1

) of orders p and p � 1 respectively, given by

y

n+1

= y

n

+ h

n

s

X

i=1

b

i

f

ni

and

ŷ

n+1

= y

n

+ h

n

s

X

i=1

^

b

i

f

ni

;

with

f

ni

= f(x

n

+ c

i

h

n

; y

n

+ h

n

i�1

X

j=1

a

ij

f

nj

)

for i = 1, 2; ::; s. From this embedded form we can obtain an estimateE

n+1

= ky

n+1

� ŷ

n+1

k

of the local truncation error of the p� 1 order formula. So the step-size control algorithm

h

n+1

= 0:9 � h

n

� (

TOL

E

n+1

)

1=p

;

is in common use, with TOL being the requested tolerance. The above formula is used

even if TOL is exceeded by E

n+1

, but then h

n+1

is simply the recomputed current step.

See [16] for more details on the implementation of these type of step size policies.
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2 Basic theory

The application of a RK method to the test problem

y

0

= i!y; ! 2 <; i =

p

�1; (2)

leads to the numerical scheme

y

n+1

= P (i!h

n

) y

n

;

h

n

= x

n+1

� x

n

, where the function P (iv) = P (i!h) satis�es the relation

P (iv) = 1 + ivb (I � ivA)

�1

e =

1

X

j=0

t

j

(iv)

j

; (3)

and for j � 1, t

j

= bA

j�1

e, t

0

= 1, [9]. The numbers t

j

depend only on the coe�cients of

the method. It must be observed that for explicit methods (that is for A lower triangular),

the summation in the determination of P (iv) above is �nite (speci�cally, j runs from 0

through s).

The phase-lag (or dispersion) order of a RK method is de�ned as the order of approxima-

tion of the argument of the exponential function by the argument of P along the imaginary

axis. Symbolically, the phase-lag order of a method is q, whenever � (v) = O (v

q+1

), for

� (v) = v�arg (P (iv)). For RK methods this notion has been introduced in [19]. The imag-

inary stability interval of a RK method I

I

= (0; v

0

) is de�ned by the relations jP (iv)j < 1

and jP (v

0

+ �)j > 1, for every v 2 I

I

and every suitably small positive �. A method

characterized by a non-vanishing imaginary stability interval is called dissipative.

Although for a RK method the phase-lag property is de�ned for the special problem

(2), as it was shown by the numerical tests presented in [7, 9], RK pairs of high phase-lag

order exhibit a remarkable numerical performance on a much wider class of test problems.

It seems that for a certain class of initial value problems (as those whose solutions are

described by free oscillations or free oscillations of low frequency with forced oscillations of

high frequency superimposed, over long integration intervals), it might be advantageous to
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use pairs of methods of high phase-lag order with minimized their leading truncation error

coe�cients instead of pairs of the same algebraic order as the latter, but with a phase-lag

order equal to the minimal allowed by the number of stages and their algebraic order.

The other interesting property is that of zero dissipation, which can not be applied to

explicit RK methods. On the other hand it is straightforward to derive zero-dissipative

explicit Runge-Kutta-Nystr�om methods [14], for problems of the form

y

00

= f(x; y):

For problems of the type (1) we demand jP (iv)j � 1 = O (v

r+1

) to be as small as possible.

In this case r is the dissipation order of the method, [15].

In both cases it is impossible to achieve q =1 or r = 1: Thinks are better if a good

estimate of the frequency ! is known in advance.

3 Methods with known frequency

The �rst who tried to �t a method to a set of linearly independent trigonometric functions

was Gautschi [5]. Since then a lot of methods trying to do something similar have been

constructed. Here we will exploit the knowledge of v = !h in the direction we discussed in

the previous section.

Observe that

P (iv) = Q (v) + iR (v) =

=

�

1� t

2

v

2

+ t

4

v

4

� t

6

v

6

� � � �

�

+ i

�

v � t

3

v

3

+ t

5

v

5

� t

7

v

7

� � � �

�

:

This series is �nite for explicit methods.

If we require � (v) = v � arg (P (iv)) = 0 then tan v =

R(v)

Q(v)

and �nally

Q (v) tan v = R (v)
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holds, restricting just one t

ji

to some expression of v. A new method can be derived

solving all the order conditions and the equation for the restricted t

ji

: Since the number of

the stages of a method is greater than its order (s > p) when p > 4, then there is always

some free t

j

; j > p to solve for. This method is a phase-�tted method. We note here that

the term phase-�tted was �rst introduced by Raptis and Simos [22].

Then we may ask for jP (iv)j � 1; i.e. Q (v)

2

+ R (v)

2

= 1; leading to a nonlinear

equation which can be solved for some t

j

: Such a method is called zero-dissipative.

Combining both cases above we demand

Q (v) = cos v; R (v) = sin v:

In this case both v � arg (P (iv)) = 0 and jP (iv)j � 1 hold: The method is zero

dissipative and phase-�tted, but we have two separated linear equations to solve. Simple

expressions for some t

ji

and t

j+1

can be derived. Again the order conditions are solved

along with the two new equations.

In the next section we shall seek explicit RK formulas of orders 5(4) and we will derive

coe�cients for the three cases we studied here.

4 Runge-Kutta pairs of orders 5(4)

We are interested for 5(4) pairs, that are the most popular ones [4, 3, 8, 2].

Then (3) takes the form

P =

�

1�

1

2

v

2

+

1

24

v

4

� t

6

v

6

�

+

p

�1

�

v �

1

6

v

3

+ t

5

v

5

�

=

Q (v) + iR (v)

If we have an estimation of v; then there are three choices.

4.1 ( ) = cos and ( ) = sin

This leads to the selection
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t

5

=

sin v � v + v

3

=6

v

5

t

6

=

1� v

2

=2 + v

4

=24 � cos v

v

6

:

Of course t

5

=

1

120

for a �fth order method but observe that the series expansion of t

5

and

t

6

are

t

5

=

1

120

�

1

5040

v

2

+

1

362880

v

4

�

1

3991680

v

6

+O

�

v

8

�

;

t

6

=

1

720

�

1

40320

v

2

+

1

3628800

v

4

�

1

479001600

v

6

+O

�

v

8

�

:

So from the series expansion and since lim

v!0

t

5

=

1

120

; the method satisfying the above

expression is of �fth order.

An FSAL-type pair from the family of Dormand and Prince [3] uses seven stages per

step. Since the �rst is reused in the next step, it e�ectively uses only six stages per step. We

may express all the coe�cients of such a pair with respect to the free parameters c

3

; c

4

; c

5

and

b

b

7

, with the assistance of a symbolic manipulation package [21]: Requiring t

5

= bA

3

c

and t

6

= bA

4

c we concluded to a method with the following coe�cients:

c

2

=

16

75

; c

3

=

8

25

; c

5

=

49

50

;

c

4

=

(15 � (2� 540t

5

+ 36000t

2

5

+ 491t

6

� 55080t

5

t

6

))

(16 � (�1 + 144t

5

)(�1 + 150t

5

))

b

1

=

91 + 352c

4

4704c

4

; b

3

=

15625 � (�19 + 48c

4

)

53856 � (�8 + 25c

4

)

b

4

=

91

12 � (�1 + c

4

) � c

4

� (�8 + 25c

4

) � (�49 + 50c

4

)

b

5

=

62500 � (�7 + 9c

4

)

4851 � (�49 + 50c

4

)

; b

6

= �

�307 + 398c

4

204(�1 + c

4

)
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a

32

=

6

25

; a

42

=

75c

4

� (�75 + 213c

4

� 125c

2

4

+ 9000t

5

� 27000c

4

t

5

+ 18000c

2

4

t

5

)

4 � (�491 + 55080t

5

)

a

43

=

�125c

4

� (�8 + 25c

4

) � (15 � 8c

4

� 1800t

5

+ 1152c

4

t

5

)

16 � (�491 + 55080t

5

)

a

52

=

�147 � (28987 � 32121c

4

� 3031560t

5

+ 3125520c

4

t

5

)

800 � (�7 + 9c

4

) � (�491 + 55080t

5

)

a

53

=

4851 � (1820 + 13391c

4

� 17425c

2

4

� 1180760t

5

� 444824c

4

t

5

+1858200c

2

4

t

5

+ 107956800t

2

5

� 110160000c

4

t

2

5

)

320 � (�7 + 9c

4

) � (�8 + 25c

4

) � (�491 + 55080t

5

)

a

54

=

1617 � (�49 + 50c

4

) � (�1 + 150t

5

)

1250 � c

4

(�7 + 9c

4

)(�8 + 25c

4

)

a

62

=

�75 � (14650 � 15833c

4

� 1530000t

5

+ 1530000c

4

t

5

)

4 � (�307 + 398c

4

)(�491 + 55080t

5

)

a

63

=

2125 � (453650 + 2403463c

4

� 3214470c

2

4

� 248144400t

5

� 60259752c

4

t

5

+341485200c

2

4

t

5

+ 21811680000t

2

5

� 21811680000c

4

t

2

5

)

528 � (�8 + 25c

4

)(�307 + 398c

4

)(�491 + 55080t

5

)

a

64

=

17 � (�1 + c

4

) � (9891 � 10000c

4

� 1470000t

5

+ 1500000c

4

t

5

)

c

4

(�8 + 25c

4

)(�49 + 50c

4

)(�307 + 398c

4

)

a

65

=

�85000 � (�1 + c

4

)(�7 + 9c

4

)

1617 � (�49 + 50c

4

)(�307 + 398c

4

)

b

b

3

=

125 � (�1218800 + 4435431c

4

� 3610497c

2

4

+ 133260000t

5

�482280000c

4

t

5

+ 388170000c

2

4

t

5

)

107712 � (�8 + 25c

4

)(235 � 289c

4

� 25800t

5

+ 31200c

4

t

5

)

b

b

4

= �

�316400 + 505671c

4

� 142497c

2

4

+ 34188000t

5

� 52872000c

4

t

5

+ 13770000c

2

4

t

5

120 � (�1 + c

4

)c

4

(�8 + 25c

4

)(�49 + 50c

4

)(235 � 289c

4

� 25800t

5

+ 31200c

4

t

5

)
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b

b

5

=

125 � (�7 + 9c

4

)(102850 � 128667c

4

� 11370000t

5

+ 14070000c

4

t

5

)

4851 � (�49 + 50c

4

)(235 � 289c

4

� 25800t

5

+ 31200c

4

t

5

)

b

b

5

= �

(�307 + 398c

4

)(2055 � 2569c

4

� 227400t

5

+ 281400c

4

t

5

)

2040 � (�1 + c

4

)(235 � 289c

4

� 25800t

5

+ 31200c

4

t

5

)

b

b

7

=

1

40

;

b

b

1

=

39

40

�

b

b

3

�

b

b

4

�

b

b

5

�

b

b

6

a

21

= c

2

; a

31

= c

3

� a

32

; a

41

= c

4

� a

42

� a

43

; a

51

= c

5

� a

52

� a

53

� a

54

;

a

61

= 1 � a

62

� a

63

� a

64

� a

65

; a

7i

= b

i

; i = 1; 2; :::; 6:

4.2 = arg ( ( )) Phase-�tted pair

Now we �x t

5

=

1

120

; getting

t

6

=

120 � 60v

2

+ 5v

4

+ cot v � (�120v + 20v

3

� v

5

)

120v

6

The corresponding series expansion (useful when say v < :05) is

t

6

=

1

840

+

1

22680

v

2

+

1

267300

v

4

+

373

1021620600

v

6

+O

�

v

8

�

:

The coe�cients of the pair are now even simpler expressions. The new coe�cients are:

c

4

= 600t

6

a

42

= �2531250t

2

6

(�1 + 1250t

6

)

a

43

= 1125000t

2

6

(�1 + 1875t

6

)

a

52

=

�147 � (�931 + 911250t

6

)

6400 � (�7 + 5400t

6

)

a

53

=

1617 � (49 � 114420t

6

+ 65475000t

2

6

)

2560 � (�1 + 1875t

6

) � (�7 + 5400t

6

)

a

54

=

539 � (�49 + 30000t

6

)

8000000t

6

� (�1 + 1875t

6

) � (�7 + 5400t

6

)
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a

62

=

�1875 � (�19 + 18498t

6

)

32 � (�307 + 238800t

6

)

a

63

=

10625 � (311 � 724872t

6

+ 414855000t

2

6

)

2112 � (�1 + 1875t

6

) � (�307 + 238800t

6

)

a

64

=

17 � (�1 + 600t

6

) � (�2359 + 1500000t

6

)

4800t

6

� (�1 + 1875t

6

) � (�49 + 30000t

6

) � (�307 + 238800t

6

)

a

65

=

�85000 � (�1 + 600t

6

) � (�7 + 5400t

6

)

1617 � (�49 + 30000t

6

) � (�307 + 238800t

6

)

b

b

3

=

625 � (361 � 832862t

6

+ 450896400t

2

6

)

287232 � (1 � 2745t

6

+ 1631250t

2

6

)

b

b

4

=

�105 + 130142t

6

� 33296400t

2

6

38400t

6

�(�1 + 600t

6

)(�1 + 870t

6

)(�1 + 1875t

6

)(�49 + 30000t

6

)

b

b

5

=

625 � (�7 + 5400t

6

)(�27 + 22834t

6

)

1617 � (�1 + 870t

6

)(�49 + 30000t

6

)

b

b

6

= �

(�1 + 840t

6

)(�307 + 238800t

6

)

255(�1 + 600t

6

)(�1 + 870t

6

)

All the other coe�cients do not depend on t

5

and remain the same.

4.3 ( ) 1 zero dissipative method

Fixing again t

5

=

1

120

; we get

t

6

=

1

120v

6

�

120 � 60v

2

+ 5v

4

�

p

14400 � 14400v

2

+ 4800v

4

� 640v

6

+ 40v

8

� v

10

�

with corresponding series expansion

t

6

=

1

720

+

1

5760

v

2

+

11

172800

v

4

+

53

2073600

v

6

+

43

4147200

v

8

+O

�

v

10

�

:

The coe�cients have exactly the same expressions as in the previous case.

The implementation described in this section may extended to sixth order pairs since

we have explicit algorithms for the derivation of the coe�cients [10, 13].
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5 Numerical Results

5.1 The methods

The methods chosen to be tested are:

1. The Runge-Kutta pair of orders 5(4) due to Dormand and Prince [3]. This pair is

one of the most used RK pairs in the literature and can be found as the ode45 �le with

matlab [2].

2. The trigonometric �tted RK5(4) pair given here.

3. The phase-�tted RK5(4) pair given here.

4. The zero dissipative RK5(4) pair given here.

5. The fourth order exponentially �tted RK method of [18].

The pairs 1-4 were run for tolerances 10

�3

; 10

�4

; � � � ; 10

�9

in variable step-size mode

while the �fth method were run with constant step through the interval of integration.

5.2 The problems

Five well known problems from the literature were chosen for our tests.

5.2.1 Bessel equation

y

00

= �

�

100 +

1

4x

2

�

y;

with initial conditions y (1) = �0:2459357644513483; y

0

(1) = �0:5576953439142885, for

x 2 [1; 32:59406213134967]:

The theoretical solution of this problem is y(x) =

p

xJ

0

(10x) : The 100th zero of this

problem was observed for x = 32:59406213134967; [17]. We used ! = 10 for derivation of

the coe�cients of �tted methods.

5.2.2 Inhomogeneous equation

y

00

= �100y + 99 sin x;
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with y (0) = 1, y

0

(0) = 11 for x 2 [0; 20�]:

Its theoretical solution is y (x) = cos 10x+ cosx+sin x; and the estimation ! = 10 was

used for this problem.

5.2.3 Du�ng equation

y

00

= �y � y

3

+ :002 cos 1:01x;

with y (0) = 0:200426728067, y

0

(0) = 0, for x 2 [0; 24:5�=1:01]:

Theoretical solution, [20]:

y (x) = 0:200179477536 cos 1:01x+ 2:46946143 � 10

�4

cos 3:03x

+3:04014 � 10

�7

cos 5:05x+ 3:74 � 10

�10

cos 7:07x + � � �

where the rest coe�cients are smaller than 10

�12

: Here we used ! = 1; while for the

exponentially �tted method we used ! = 1:01 [18].

5.2.4 Hyperbolic problem

The hyperbolic PDE,

#u

#x

=

#u

#r

; u (x; 0) = 0; u (0; r) = sin�

2

r

2

;

0 � r � 1; x � 0

is discretisized by symmetric di�erences (with �r = 1=50) to the system of ODEs

2

6

6

6

6

6

6

4

y

0

1

y

0

2

y

0

50

3

7

7

7

7

7

7

5

=

1

2 � 50

2

6

6

6

6

6

6

4

0 �1

1 0 �1

1 0 �1

�1 4 �3

3

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

4

y

1

y

2

y

50

3

7

7

7

7

7

7

5

:

In [19] it was found that the 500th zero of the 20th component in the above equation was

reached for x = 33:509996948: So we integrated the methods to that point. There is not
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some dominant frequency for this problem. So we use a rough estimation of ! = 50 which

not fat from the greater eigenvalue of the problem.

5.2.5 Non Linear

y

00

= �100y + sin y;

with y (0) = 0; y (0) = 1 for x 2 [0; 20�]: The analytic solution is not known but we have

found that y (20�) = 3:92823991 � 10

�4

; [12]. We used ! = 10 for this problem.

Notice that most of the problems we choose have oscillatory solutions, that are not

described by trivial trigonometric solutions as the majority of problems in [11, 18]. The

behavior of the methods with the frequency in some region around the correct value was

5.3 The tables

We notify the steps used and the value � log(end-point error) at y. Especially for the

hyperbolic problem we recorded end point error of y

20

:

The results over the 5 problems were summarized in tables 1-5.

The 13 columns in these tables have the following meaning.

1st column, Tolerance

2nd column, DP5(4) steps

3nd column, DP5(4), error

4th-5th column, NEW5(4) steps and error, (1st case)

6th-7th column, NEW5(4) steps and error, (2nd case)

8th-9th column, NEW5(4) steps and error, (3nd case)

10th-11th column, NEW5(4) steps and error, (1st case and v is selected randomly in

the range [:9v

0

; 1:1v

0

] ; v

0

the true frequency. e.g. for the Bessel equation v

0

= 10:)

12th column, error of the exponentially �tted method using step-size that produces the

same cost as 1st case.
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Table 1: Bessel equation

DP54 case1 case2 case3 case1-rand [18]

TOL steps error steps error steps error steps error steps error error error

10

�3

494 2.0 434 6.5 538 7.5 502 2.1 434 4.4 5.3 3.9

10

�4

761 3.1 705 7.5 827 9.2 728 3.3 705 5.5 6.2 4.8

10

�5

1075 4.1 1044 8.6 1222 10.5 1067 4.4 1040 7.5 6.9 5.4

10

�6

1602 5.3 1559 9.7 1912 11.2 1555 5.5 1558 8.7 7.6 6.1

10

�7

2408 6.4 2357 10.8 2808 11.9 2374 6.7 2357 9.0 8.3 6.8

10

�8

3714 7.6 3639 12 4347 13.6 3645 7.9 3639 10.4 9.0 7.6

10

�9

5734 8.7 5633 12.6 6751 >14 5644 9.1 5633 11.4 9.7 8.4

Table 2: Inhomogeneous equation

DP54 case1 case2 case3 case1-rand [18]

TOL steps error steps error steps error steps error steps error error error

10

�3

1315 2.3 1234 6.8 1600 2.2 1282 2.1 1234 3.9 11.6 3.6

10

�4

1949 3.6 1889 7.7 2218 3.2 1851 3.2 1883 5.4 11.1 4.3

10

�5

2947 4.1 2799 9.3 3239 4.2 2823 4.4 2799 7.2 10.6 5.0

10

�6

4314 4.9 4244 9.9 5012 5.2 4331 5.6 4240 7.5 11.4 5.8

10

�7

6601 5.8 6473 11.9 7756 6.2 6481 6.7 6470 9.1 10.0 6.5

10

�8

10190 6.7 10018 12.4 11982 7.1 10031 7.9 10012 10.0 10.0 7.3

10

�9

16021 7.7 15718 13.1 18956 8.1 15723 9.1 15718 11.4 9.4 8.1

13th column, error of the exponentially �tted method as 12th column but with v =

0:999v

0

(the same results were observed for v = 1:001v

0

:). For the Du�ng equation this

column was produced using ! = 1:00: In case that there is not 13th column the results are

identical with that of 12th column.

The results justify our e�ort. In all cases the trigonometric �tted pair performed very

well. The phase-�tted pair performed better than the other methods in Bessel, Hyperbolic

and Nonlinear equation. Zero dissipative pair alone did not presented as good results as

the other pairs but it was better than DP5(4). Generally the best �tted pair gained about

1:5� 5:5 digits of accuracy at the same cost.

Table 3: Du�ng equation

DP54 case1 case2 case3 case1-rand [18]

TOL steps error steps error steps error steps error steps error ! = 1:01 ! = 1

10

�3

76 2.5 76 3.4 78 2.4 76 2.2 76 3.5 4.3 2.9

10

�4

94 3.1 81 3.1 105 3.1 94 2.8 81 3.1 4.4 3.0

10

�5

149 4.7 138 5.0 173 4.2 146 4.1 138 5.0 5.4 4.0

10

�6

236 5.0 227 7.2 278 5.2 232 5.4 227 7.0 6.3 4.9

10

�7

374 5.8 364 7.3 443 6.2 368 6.7 364 7.3 7.2 5.8

10

�8

592 6.8 581 8.3 704 7.2 583 8.1 581 8.3 8.1 6.6

10

�9

938 7.7 922 9.3 1116 8.2 924 9.4 922 9.3 9.0 7.4
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Table 4: Hyperbolic equation

DP54 case1 case2 case3 case1-rand [18]

TOL steps error steps error steps error steps error steps error error error

10

�3

1113 1.2 447 2.1 1188 2.1 2094 1.8 508 2.5 -125 -132

10

�4

1129 1.9 457 3.1 1154 3.4 2305 3.1 519 3.4 -110 -114

10

�5

1152 3.0 527 4.8 1179 4.9 2562 4.0 570 4.4 -44 -46

10

�6

1363 3.8 1002 7.2 1459 6.7 1361 4.2 1000 6.1 4.9 4.6

10

�7

2042 4.7 1782 6.7 2283 8.0 2017 4.8 1782 6.5 5.2 5.2

10

�8

3235 5.8 3007 7.9 3722 8.8 3170 6.1 3007 7.7 5.2 5.2

10

�9

5125 7.0 4915 9.1 5993 9.5 5023 7.3 4915 9.0 5.2 5.2

Table 5: Non linear problem

DP54 case1 case2 case3 case1-rand [18]

TOL steps error steps error steps error steps error steps error error

10

�3

840 1.6 731 3.8 898 4.9 858 1.7 725 4.0 3.1

10

�4

1393 2.7 1191 4.9 1344 6.5 1209 2.9 1191 4.6 3.9

10

�5

1818 3.8 1713 6.0 2123 7.8 1747 4.0 1729 5.9 4.5

10

�6

2687 4.8 2638 7.2 2990 8.9 2699 5.2 2639 7.0 5.3

10

�7

4177 6.1 3969 8.3 4690 9.9 3955 6.4 3968 8.1 6.0

10

�8

6154 7.2 6052 9.5 7215 11.0 6088 7.5 6053 9.3 6.7

10

�9

9510 8.4 9325 10.7 11168 12.3 9350 8.7 9332 10.5 7.5

The exponential �tted method was competitive only in Du�ng equation using the

exact value of !: It showed some better results from DP5(4) in Bessel and Inhomogeneous

equation but it was worse than DP5(4) in Hyperbolic and Nonlinear equation. Its results in

Inhomogeneous equation were very peculiar. In Hyperbolic problem gave very bad results

and it seems that it is not appropriate for problems without dominant frequency or for

problems with solution not described by simple trigonometric functions. In case of a little

error in estimation of !; the results were disappointing.

The comparison of function evaluations used by RK pairs in comparison is common

in relevant literature, but a little overhead is expected here from the evaluation of the

coe�cients every step. This overhead is meaningless for Hyperbolic equation and it is

about 15% in smaller problems. e.g. for Inhomogeneous equation 16021 steps are required

for DP5(4) to achieve accuracy 10

�7:7

; while trigonometric �tted pair needs only 1889

steps. Traditionally this means DP5(4) is about

16021�1889

1889

� 1 � 650% more expensive..

Now including overhead we may admit an

16021�1889�1:15

1889�1:15

� 1 � 540% di�erence in e�ciency.

Anyway, 10 � 20% di�erence in e�ciency (or gaining half digit of accuracy) is very
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important for pairs of the same order [8, 10, 13, 9, 16].

6 Conclusion

Zero dissipative, trigonometric and phase �tted methods are presented in this article. We

give the equations that ought to hold for each case. Then particular pairs of orders 5(4) are

derived for each case. Exhaustive numerical results on problems with oscillatory solutions

indicate that the new trigonometric and phase �tted pairs are appropriate for initial value

problems with oscillatory solutions.
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