Optimized explicit Runge-Kutta pair of orders 9(8).

CH. TSITOURAS

ABSTRACT. A fully explicit algorithm for deriving a Runge-Kutta pair
of orders 9(8) is presented in this paper. After that an optimal pair is given,
which is found to outperform all other existing Runge-Kutta pairs when it is
applied in quadruple presision.

Keywords : Initial Value Problems, High order, Embedded pairs, steepest
descent.

AMS classification : 65105, 65106, 65K10.

1. INTRODUCTION

Explicit Runge-Kutta (RK) pairs are widely used for the numerical solution of the
initial value problem

y/ = f(xvy)v y(:l?o) = Yo € Rmv LS [l’o,l’e] (1)

where f : R x R™ — R™. These pairs are characterized by the extended Butcher

tableau [1, 2],
c| A

> o

with b7, I;T, ¢ € R? and A € R*** is strictly lower triangular. The procedure that
advances the solution from (x,,y,) to x,41 = ¥, + h, computes at each step two
approximations ¥,+1, Jnt1 to y(,41) of orders p and p — 1 respectively, given by

Ynt1 = Yn + szfnz

=1
and
Unt1 = Yn + han szfn“
=1
with

1—1

fni = f(xn + Cihnayn + hn Zaijfnj) for 1 = 1727 <oy S.

i=1

Optimized explicit Runge-Kutta pair of orders 9(8). 2

From this embedded form we can obtain an estimate F, 11 = y,11 — ¥ny1 of the
local truncation error of the p — 1 order formula. So the step-size control algorithm

(7],
ToL

n+1

Pppr = 0.9 Ry, - ()L/

Y

is in common use, with TOL being the requested tolerance. The above formula is used
even if TOL is exceeded by FE, 1, but then h,; is simply the recomputed current
step.

2. PAIRS OF ORDERS 9(8)

A RK method applied to an autonomous system of differential equations of the type
(1) is said to be of algebraic order p if and only if

X(r)=0,Vrel, fori=1,2,...,p, (2)
where T; is the set of ith order (rooted) trees and

o,y are integral functions of 7 (symmetry and density function, respectively, in the
terminology introduced by Butcher, see [3]) and @ is a certain composition of A, b, c.
In what follows the symbol 7' denotes a vector with elements all the elements of
the set X (7;) in some arbitrary order.

In the case of a 9(8) pair, equation (2) is expanded in 486 nonlinear algebraic
equations that must be satisfied by its higher order method and 200 equations by its
lower order method. All methods of order higher than four that have been constructed
so far , as well as those that we consider in this article obey the simplifying assumption
Ae=c,e=(1,1,....)T e R®.

All currently known pairs of orders 9(8) (except that derived by Fehlberg [4])
use 16 stages. In such a case the number of available free coefficients a,b,g, c, 18
only 187. Since the number of unknowns is less than the number of equations and
mainly because some of the latter equations are strongly nonlinear with respect to
the elements of A, it is necessary to apply some sort of simplifying assumptions for
their solution. Then we derive a smaller set of equations to be solved for a sufficient
number of unknowns. In addition a minimisation of HT(IO)H2 is needed for achieving

more efficient pairs. So the greater the number of free parameters (among the 187
ones) the better the changes for smaller HT(lo)Hz'

Optimized explicit Runge-Kutta pair of orders 9(8). 3

Table 1: The main characteristics of the pairs appeared in this paper.

Pair s p HT(p‘H)H2 B, Cy Sk Do,
PDS87 [12] 13 8 4.51-107% 224 227 —=5.16 16.6
P87[8] 13 8 735-1007 2.03 203 =590 11.7
Fe89 [4] 17 9 1.58-107% 30.01 30.05 —3.00 27.5
V89 [15] 16 9 6.11-107° 198 231 —4.19 627
V89a [16] 16 9 1.37-107° 254 252 =391 425
V89b [16] 16 9 8.19-107° 2.12 212 —3.65 66.5

New98 16 9 3.64-1077 3.22 322 -394 26.2
HalO(6) [14] 18 10 5.27-107° — — —2.70 1.05

s :stages, p :order,

Sr: Real Stability Interval,
Dee = max (ma a1
27]

oo ? HcHoo ?

= o] 1 s = [~] 59, .
applied for Hal0(6).

The first who constructed a 9(8) pair was E. Fehlberg [4], at a cost of 17 function
evaluations per step. That pair had the disadvantage of being quadrature defective.
Some of the 9th order truncation coefficients for the lower order formula were equal
to zero because Fehlberg used the free parameters cs, cs, ¢11, ¢13 for minimization of
il
there are initial value problems where the estimated error might be equal to zero.
This method was forgotten through the years passed but the small HT (10) H achieved

since the methods were advanced by the value ¢,4; then. In consequence

by its 9th order formula is promising. In addition we may drop the 15th stage which
is useless for the higher order formula and embed a 6th and a 3rd order formulas at
no cost. Then we may implement a 16 stage 9(6)3 triple using some modification
of the step size algorithm used for the 8(5)3 triple given by Hairer, Norsett and
Wanner [6]. In alternative a 9(6) or possibly a 9(7) pair may by constructed using
step size algorithm introduced by Tsitouras and Papakostas [14]. Of course a fair
comparison demands the construction of 15, or even possibly 14 stages 9(.) pairs or
triples simultaneously.

Later, J. H. Verner [15], indeed dropped the useless stage and manage to embed
an eighth order formula. He used €2, C5, Co, €10, €11, C13, €14, (11,6 AS free parameters
ignoring the 81gn1ﬁcance of byg, or even 615, 616 He derived the pair V89 setting a1615 =
a6 = bis = 615 = 616 = 0. Only the condition a;615 = 0 is obligatory for this family.

Optimized explicit Runge-Kutta pair of orders 9(8). 4

The resulting pair gave not very satisfactory results in comparison to the pair PD87
of Prince and Dormand [12], or other 8(7) pairs.

Recently J. H. Verner [16], derived very interesting families of 9(8) and 8(7) pairs
with as -1 # 0, gaining a free parameter. This was done reducing the stage order of
internal stages, something that has been tested successfully on 6(5) pairs in the past,
[9, 10]. He presented there two pairs, V98a and V98b whose major characteristics are
given in Table 1. Unfortunately the algorithm for such a family involves an implicit
evaluation of an intermediate coefficient. According to our experience it is much more
fruitful handling an explicit algorithm [13], than handling an implicit one [10].

The main disadvantage of all 9(8) pairs presented until now, is its rather big value
of HT(IO)H2 . Verner admits that there is only a marginal improvement over the other

known pairs, [16]. In this paper we extended the family given in [15], including the
parameters byg, b5 and bi6. We found that these extra parameters helped considerably
the production of a pair with minimized HT(lo)Hz'

2.1. The explicit algorithm for deriving an 16-stage pair of orders 9(8)..
In the following algorithm, whenever ¢ is a vector, we denote by ¢' the componetwise
c . c s e e . c
multiplication ~———"(we assume ¢’ = ¢), for which we allow a higher order
i

of precedence over the regular (matrix-to-matrix or matrix-to-vector) multiplication
(dot product). We also define C' = diag(c), and [the identity matrix of a proper
dimension.

Select ¢, ¢s, ¢g, €10, €11, €13, C14, G116, D16, D15 and big as free parameters.

Set a1615 = 0,0, =b; =0for1=23,....7 a;p =0, for : =4,5,...,16, a;3 = 0,
fort =6,5,...,16, and a;4 = a;5 = 0, for : = 8§8,5,...,16.

Choose ¢; = ¢ (% - 2%) or ¢7 = cq (g + 2§>.

_ 4 _ cg(4c7—3cs) _ cg(4c5—3cq) _ 2
Cg = 3€0,C6 = 2(3c7—2c3) y Ca = 2(3c5—2c6) » €3 = 3C4,

azy = 5/(2¢3), ass = i/ (2¢3),

ass = 3c¢2(3cq — 2¢5)/(4c3), asy = —ci(cq — ¢5) /3.

Solve (Ac)g = c&/2, (Ac?)s = co/3 for agy and ags.

Solve (Ac), = ¢2/2, (Ac?)., = 3/3, (Ac®), = c1/4 for arq,ars and are.
Solve (Ac)g = c2/2, (Ac?)y = c3/3, for ass and asr.

Solve (Ac), = ¢3/2, (Ac?), = ¢5/3, (Ac®), = ¢5/4 for ags, agr and ags.

Evaluate ¢, from equation®,

/Olp(:zj)(lgilx):gdx-/olﬁ(x) (1 —x)d:z;—/lp(:zj)%dx-élﬁ(x)%dx =0

0

Ip(z) =2 (2 —es) (x —¢9) (x — c10) (x — c11), P(2) = (x — c12) p(x), see [15].

Optimized explicit Runge-Kutta pair of orders 9(8).

Derive b;, 1 = 8,9,...,15, from equations (zci_7 =1/(1—6).
Derive b;, i = 8,9,...,14, from equations bc'~" = 1/ (1 — 6).

Solve (b(A+C —1)),, = (g (A+C — [)) =0, for ay5,14 and aye,14.

14

Solve (Aci)lo = ci‘gl/ (14 1),1=1,2,3,4 for aig6, @107,010s and ayo9.
Solve (Aci)n = 02141_1/ (l + 1)7 1 =1,2,3,4 for ayy 7, a118,011,0 and ayq 10

Substitute a3, @136 and ay46 from the equations (b(C' — I) A), = 0,

(b(C—=1)A) =0and (b(C—I)(C —ecuul) A)g = 0.
Solve (b(A+C — 1)), = (E (A+C - [))6 =0, for ay56 and ai66.

Substitute a3z, @137 and ay47 from the equations (b(C — I) A), = 0,

(b(C—=1)A) =0and (b(C = I)(C —ecuul) A), = 0.
Solve (b(A+C —1)). = (E (A+C -]))7 =0, for ay57 and ay67

Solve (Aci)lz = szlz_l/ (Z —|— 1), Z = 1, 2, 3,4 fOI’ Cl1278, a1279,a12710 and Cl12711.

Derive a14,3 from equation

b(C—1)A(C —e10l) (C —col) (C —csl) (C —c120) (C — ey) e =
= fOl (l‘ - 1) fow (l‘ _CIO) (l' - 09) (l' — Cg) (l’ — Czo) (l’ — cu)xdxd:z;.

Solve (b(A+C — 1)), = (g (A+C — [)) =0, for ay5,13 and ay¢,13.

13
Derive ay312 and ay4,12 from equations

~

b(C—1)A(C =) (C—csl)(C—enn])(C—cyol)c =
= fol (:1; - 1)180 (51? - 09) (SL‘ —Cg) (SL’ — 011) (:L’ — C10) xd:z;d:z;,

and

b(C—1)(C —=eral)A(C —c1o]) (C —egl) (C —esl) (C—enl) e =
= fol (51? - 1) (51? _012)180 (:L' — C1o) (:L' — 09) (:1: — cs) (:1: — cn)xdxdx.

Solve (Aci)l?) = CZ;I?:I/ (Z —|— 1), Z = 1, 2, 3,4 fOI’ Cl1378, a1379,a13710 and Cl13711.
Solve (ACZ)M = Cﬁl/ (l + 1)7 1= 1,2,3,4 for a148, a14,9,a1410 and ayq,11.

Solve (Ac'), = el j = 15,16 i = 1,2,3,4, and bC A = L, bC A’ = L for

7T i+ 487

ai;, v = 15,16, 7 =8,9,10,11, 12.
Finally we get by = 1 — %7 ,b;, by = 1 =37 b, and a;; = ¢ —
1=2,3,...,16.

3. DERIVATION OF 9(8) PAIRS

We first implement the above explicit algorithm in the matlab function

function f = rk98(x)

2

i—1
=2 Cl”,

for

Optimized explicit Runge-Kutta pair of orders 9(8).

Table 2: The 24 truncation error coefficients that produce HT(lo)Hz'

e1 = 35990.79(bc® — 1/10) /362830
€3 = 343.94(bC? Ac® — 1/70)/1440
es5 = 175.44(bC? Ac® — 1/60) /720
er = 45.30(bC' A®¢® — 1/3360) /120
eo = 45.30(bC AC Ac® — 1/480)/120
e11 = 12.49(bC' A'¢! — 1/16800) /24

€13 = 12.49(bC AC A2c* — 1/2400) /24

e15 = 5.48(bAC?APc — 1/21600) /2
e1r = 17.32(bC3 A3 — 1/1200)/36
e19 = 4.47(bC A%c® — 1/67200)/6
€1 = 2.45(bC2A%? — 1/25200) /4
€33 = 4.47(bC AC A3 — 1/9600)/6

€3 = 916.92(bC Ac™ — 1/80) /5040
es = 198.57(bC A%c® — 1/560) /720
es = T8.46(bC? A%c® — 1/420)/240
es = 48.37T(bAC? A% — 1/900)/48
e10 = 21.63(bC2 A3 — 1/2100)/48
e12 = 1.41(bC A7 — 1/403200)

e1q = 2.45(bC? A%c — 1/50400)/2

e16 = 1.41(bC' AC APc — 1/57600)

ers = T.T5(bC? AL — 1/8400)/12

e20 = H5.48(bC? A'c? — 1/3600)/12

e92 = 1.A1(bC' A% — 1/201600) /2
(

€21 = 1.A1(bC AC A%c? — 1/28800) /2

0 24
r= o), = (3

with input the eleven free parameters and output the euclidean norm of the tenth
order truncation error of the method. There is no need to evaluate all 719 truncation
error coefficients of 10th order. Only 24 of them are enough for consisting the desired
value f = HT(IO)H2 =/ H €2, where ¢; are given in Table 2. Writing k98 correctly
we have to compute powers of A or ¢ only once, so we may get the result in a very
short time.

Then we have to use an optimization method in order to minimize f. We prefer
the modified steepest descent algorithm described briefly in Vrahatis, Androulakis
and Manoussakis, [18]. Programming it in matlab is an easy task so we present the
program in Figure 1.

We ran that program taking 1000 random choices for the starting vector. Refining
the first outputs we used them again as inputs in another try, and we concluded to the
method NEW9(8) given in the appendix. Actually matlab gave coefficients with only
14 —15 correct digits, but even 4 —5 digits would be enough for detecting a minimum.
Observe that most of the free parameters in the appendix (like ¢1; = 7/9, ¢14 = 39/40
etc.) are simple fractions. Rounding the output parameters to the nearest fraction
by a factor of 107*, we are then able to produce a 35-digits version of the method
using a symbolic manipulation package. The value HT(IO)H2 is very satisfactory while

Optimized explicit Runge-Kutta pair of orders 9(8). 7

Figure 1: The steepest descent matlab program.

function xnew=steepest(fun,x);

len=length(x);10=512;k=-1;m=1;
dd=sqrt(eps);dx=dd*eye(len);e=1e-8;
mit=10;f=feval(fun,x);ff=f"*f;gf=zeros(len,1);
for i=1:len, % gradient evaluation
gf(i)=(feval(fun,x+dx(:,i))-f)/dd;

end;

while k<mit & sqrt(gf’*gf)>e,
k=k+1;1=10;m=1;
xtemp=x-1*gf;ftemp=feval (fun,xtemp);
while ftemp->-0.5*1*{f & m<30,
m=m+1;1=10/(2 Em—l));
xtemp=x-1*gf;ftemp=feval (fun,xtemp);
end;
x=xtemp;f=feval(fun,x);ff={"*f;
for i=1:len, % gradient evaluation
gf(i)=(feval(fun,x+dx(:,i))-f)/dd;
end;
end;
XNew=x;

other characteristics (like the small D) are acceptable. Notice that since byg = 1316,
we save the first and the last function evaluation after a step rejection, so only 14
stages are wasted then.

4. NUMERICAL RESULTS
We implemented the numerical results the way we did in a series of papers lately,
[10, 11, 13, 14]. We choose for testing the most efficient 8(7) pairs, PD87 and
P87 [8], and the most promising 9(8) pairs, our NEW9(8) and V89a which coeffi-
cients were kindly given by Prof. J. H. Verner [17]. These methods were run in
quadruple precision for the 25 problems of the set DETEST [7], and for tolerances
107121071, 10715, .- | 1072*. After that we compare every pair with NEW9(8), no-
tifying the percentage difference in the number of function evaluations required for

Optimized explicit Runge-Kutta pair of orders 9(8). 8

Table 3: Efficiency gains of NEW9(8) relative to PD8(7), for the range of tolerances
10712, 10714, ..., 107,

gll(:)ial ATA2A3A4A5 | B1IB2B3B4B5 | C1C2C3C4C5 | D1D2D3D4D5 | E1E2E3E4E)
=10]

—12 1 1 2 2 2

—-14 | =3 01 3 3 -3-261|-4-5-5-H5-2| 2 2 3 3 3 |-20 3 1 3
-16|-36 2 2 3 5 -3-18 2 | -3-3-4-4-1| 3 3 4 3 3 |-12 5 2 4
—18 | =27 2 4 4 7T-31 93 |-2-3-3-30 4 4 5 4 4 03 6 35
—-20 | -28 4 5 5 9-22114 | -2-2-2-21 6 5 6 5 4 0 4 8 46
-22|-19 5 76 |11-23 1356 |-1-2-2-23 T 7T 7 6 1 6105 7
-24 |1 -1106 9 7 —-15 7 0 -1-1-1 2 8 79
-26 | 0 0

2% | -2 8 3 5 b 6 -21 9 4 | -2-3-2-21 4 4 4 4 3 0 46 46

Table 4: Efficiency gains of NEW9(8) relative to P8(7), for the range of tolerances
10712, 10714, ..., 107,

gll(:)ial ATA2A3A4A5 | BIB2B3B4B5 | C1C2C3C4C5 | D1D2D3D4D5 | E1E2E3E4ES
210 1

—12 0 0-10 0

—14 | 0 2 41 1014 2 |-1-2-1-12 20010 10120
-6 1 1 2 6 1 3116 3 0-10 0 3 31111 21230
-8 2 2 2 9 2 51 2 7 4 101 1 4 4 2 2 2 2 33340
-20 | 2 2 2 12 2 72 3 95 21 2 25 5 3 2 2 3 4 4 4 6 1
-221 3 3 315 2 103 4 11 6 3 2 3 3 6 6 4 3 3 5 6 6 7 2
-241 4 3 3 3 4 5 5 3 3 3 7 8 3
—26

29% 2 2 2 9 2 4 2 3 7 4 21 1 1 4 4 2 1 11 34351

achieving a given maximum global error over the range of integration. This per-
centage is called efficiency gain, and it is recorded for each problem and accuracy in
Tables 3,4 and 5 respectively, in units of 10%. In these tables positive numbers mean
that the first of the two methods is superior. The final row gives the mean value of
efficiency gain for each problem. The final row’s first number is the average efficiency
gain for all problems. The empty places are due to the unavailability of data for the
respective errors, see [10] for more details.

Interpreting the results we observe that NEW9(8) clearly outperforms the 8(7)
pairs. PD8(7) pair seem to perform slightly better than P8(7), because of its excellent
results on the 6 constant coefficients linear DETEST problems Al, B2, C1 — 4. The
values bA*2c — 1/k!, k = 9,10 are very small for PD8(7) so it behaves like a higher
order method for this type of problems. The long stability intervals play no role when

Optimized explicit Runge-Kutta pair of orders 9(8). 9

Table 5: Efficiency gains of NEW9(8) relative to V9(8)a, for the range of tolerances
10712, 10714, ..., 107,

gingal ATA2A3A4A5 | BIB2B3B4B5 | C1C2C3C4C5 | D1D2D3D4D5 | E1 E2E3 E4 EH

eITOT

—10
—12
—14
—16
—18
—20
—22
—24
—26
36% 2

[CRICI IO I I)
IOt O)
EN e N <2 BT JCR IO
NSNS
Sl O N — O
OO LY N N —
Uk e B o W
CON DD N
[BN EJCR SR IO
I SOOI Ol)
OO N N —
Lo Lo LY LW N N
Lo Lo LY LW N N
ISL G, IS S SN
© WO o o
S S IS S B B
oD
S S
IS SN S
Lo Lo LY W o o
00O O Lo N
(CRNCI NCR NCI O
[QOO N e
IO Ol I O

W W wwww

3 5 4 2 2 4 2 4 3 23 35 8 5 6 5 4 3 5 2 4 2

the methods are applied at so stringent tolerances and the stepsizes selected are very
small. On the other problems P8(7) seems to be much better than PD8(7).

The V89a pair was chosen because of its small truncation error, but it hardly
follows the results of the 8(7) pairs. It is in total 5 — 6% less efficient even than Fe89.
The defect in the error estimator of the latter pair do not affect the results of any of
the 25 test problems. Dropping the 15th stage of Fe89 we may conclude to a pair (or
triple) almost 10% more efficient than V89a. The results of V89b are not satisfactory
either. In [14], the method Hal0(6) was presented and it was based on a tenth order
method of Hairer [5]. That pair was the most efficient one, among all the pairs tested
in [14], on high tolerances. According to our tests even Hal0(6) is 16% less efficient
than New9(8) when run in the tolerances we used.

Finally we conclude that the NEW9(8) pair seem to be the better one for use
in quadruple precision at high tolerances. Some better performance is possible if
someone derive optimal 9(.) pairs or triples at a cost of 14 — 15 stages.

5. APPENDIX

The coefficients of the new pair.

¢z = 0.020408163265306122448979591836734 ¢35 = 0.088132939149981030086379159392415
cq = 0.132199408724971545129568739088622 c¢5 = 0.428571428571428571428571428571428
ce = 0.536475539224328768139510099981326 c7 = 0.225429222680433136622394661923435
cg = 0.634920634920634920634920634920634 c9 = 0.476190476190476190476190476190476
c10 = 1.055555555555555555555555555555555 ¢y = 0777777 TITITITTITITITTTTT777T0777
c12 = 0.147416962426099476047840158710166 ¢33 = 0.9375

C14 = 0.975 C15 = 1

Clg = 1

Optimized explicit Runge-Kutta pair of orders 9(8). 10

by = 0.041535560088059591688958989218672
bg = 0.491126962941760884187062228629563
b11 = 1.006032649094428065183 781872196896
b1z = —4.455491297731407466229188603532881
b5 = —6.410061645100351588399537404906702

by = 0.039992501341043115390864738958552
be = 0.392512709562523314241794684759660
by = —0.250508329886402479105320877990409
bys = 6.839965112378725948727677787215511

b15 = 10.0

az 1 = 0.020408163265306122448979591836734
az o = 0.190301666598749344863351520045945
as3 = 0.099149556543728658847176554316467
as 3 = —3.630115063093482037077114300073110
ag1 = 0.020569233286162617117828485564085
ag s = 0.255423887618425852266447542108462
a7 4 = 0.176928483980768964552084294500249
a7 g = —0.002399512973305442012357370901672
ag e = 0.238986071555852238127032026901130

ag 1 = 0.070684523809523809523809523809523
ag 7 = 0.324289925751512455838053448136598
a10,1 = 0.382803956886574074074074074074074
a10,7 = —1.748424643449004698170506878899427
a10,9 = 19.991475270061728395061728395061728
a11,6 = 0.76

arr,g = 0.066265896260627988540990772932404
arr,10 = 0.006968359170425632653891831427973
a12,6 = —0.120616606056547049079475009802442
a12,8 = 0.203153253807762792205910829948781
a12,10 = 0.003789103686439011295643140618205

bs = —0.425228087416980558932784554370355
bio = 0.454178241758847425437367681263804
b1o = 0.239698071428772591842858429676730
b1a = 9.288978775706101824452250592593505
b16 = 10/13

bs = 0.040113257885845459643797270404486

bio = —1.051197094764485752167499211132792
byy = 0.246542828893969063378517376627752
b1y = —16.026651754641987900879062538073530
by = 10/13

a3z = —0.102168727448768314776972360653530
as 1 = 0.033049852181242886282392184772155
as 1 = 0.943926383217129188355667067281197
as 4 = 3.114760108447781420150018661363341
ag 4 = 0.260482418319740298755234072308778
a7 = 0.043184837051092630288351942557586
a7 s = 0.007715414621876983794315795767271
ag 1 = 0.070546737213403880070546737213403
ag 7 = 0.325387826151378802437341870806100

ag e = 0.114698169486582782257184647101496
ag g = —0.033482142857142857142857142857142
a10,6 = —26.281045707631242215409740034680819
a10,8 = 8.7107466796875

arr,1 = 0.057757889052846890423656604352432
arr 7 = 0.401855328791556005024504397233373
arr,9 = —0.515069695497678738865265828168405
a12,1 = 0.069941030359063957156864895975821
ar2,7 = 0.132696301731445868301091105762183
a12,9 = —0.075486401750238894671772311379025
a12,11 = —0.066059719351826209160422492413357

Optimized explicit Runge-Kutta pair of orders 9(8).

a1z, = 0.687883601600281799375251509901303
a137 = 5.845503378564669890314102776059891
a13,9 = —1.582095988269673568992894109712396
ai3,11 = —1.329593487105234404098771549303922
a4, = 0.807560295945926563700361746598699
ar47 = 6.174200025941229770123184423146954
a14,9 = 1.126413982652184268358560776506518
ar4,11 = —1.434774678607913207528871735039082
a14,13 = —0.023529647193319736437701650932685

ays,1 = 0.810167464525472252323287676263753
a1s7 = 5.364312898490360554625912421385267
a1s,9 = 4.618063439001721483758160286714057
ars11 = —1.315207706945002903017387913180865
ais,13 = 0.006721374554329681653036240358001
a1e,1 = 0.708186700681096701934777239286565
a1e,7 = 4.439836852763619566651386303128039
a1e,9 = 4.944752289066181389539519911976094

a1e,11 = —1.023835739158951766446520340031695
a16,13 = —0.021862603745516461989172384694187
REFERENCES

11

a13,6 = —3.658808527366451517196946897056976
a13g = 5.411412752004688858844863696709300
a13,10 = 0.099452488657062996677888466354195
a13,12 = —4.536254218085344054923493892951394
a4 = —7.835750139557992772198249358151231
ar4g = 7.111311052783799148723822283846058
a14,10 = 0.113883850158978863723757323569977
a14,12 = —5.064314742122892898464863809545209

a5, = —11.928412456779558982727913160120063
ars,g = 8.059954459759511795757228635532122
ars,10 = 0.112860165918189450518879624421855
ais,12 = —4.689892399903609125554297739238443
ays,14 = —0.038567238621414207336906072135686
a1e,6 = —11.351124043591896739461436582411266
a1e,8 = 7.160528966855846780330688332694210
a16,10 = 0.098195356108679874259270350194055
—3.935185699031579433419722235418354
—0.019492079947479911398790594 723460

416,12
16,14 =

[1] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput. 18(1964) 50-64.

[2] J. C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc.

4(1964) 179-194.

[3] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John

Wiley & Sons Inc., 1987, New York.

[4] E. Fehlberg, Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta
formulas with stepsize control, NASA TR R-287(1969), G. C. Marshall Space

Flight Center, Juntsville, Ala.

[5] E. Hairer, A Runge-Kutta method of order
47-59.

10, J. Inst. Math. Appl. 21(1978)

[6] E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations
I, Nonstiff Problems, Second edition, Springer-Verlag, Berlin Heidelberg, 1993.

7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Optimized explicit Runge-Kutta pair of orders 9(8). 12

T. E. Hull, W. H. Enright, B. M. Fellen and A. E. Sedgwick, Comparing numer-
ical methods for ordinary differential equations, STAM J Numer. Anal. 9 (1972)
603-637.

S. N. Papakostas, Algebraic analysis and development of numerical ODE solvers
of the Runge-Kutta types(in Greek), PhD desertation, National Technical Uni-
versity, Athens, 1996.

S. N. Papakostas, Ch. Tsitouras and G. Papageorgiou, A new family of efficient
6(5) Runge-Kutta pairs, Hermis 92 E. Lipitakis, ed. Athens, 1992, pp.515-516.

S. N. Papakostas, Ch. Tsitouras and G. Papageorgiou, A general family of Runge-
Kutta pairs of orders 6(5), SIAM J. Numer. Anal. 33 (1996) 917-926.

S. N. Papakostas and Ch. Tsitouras, High phase-lag order Runge-Kutta and
Nystrom pairs, SIAM J. Sci. Comput. 20 (1999)

P. J. Prince and J. R. Dormand, High order embedded Runge-Kutta formulae,
J. Comput. Appl. Math. 7(1981) 67-75.

Ch. Tsitouras, A parameter study of explicit Runge-Kutta pairs of orders 6(5),
Appl. Math. Lett. 11(1998) 65-69.

Ch. Tsitouras and S. N. Papakostas, Cheap Error Estimation for Runge-Kutta
pairs, STAM J. Sci. Comput. 20 (1999)

J. H. Verner, Explicit Runge-Kutta methods with estimates of the local trunca-
tion error, STAM J. Numer. Anal. 15 (1978) 772-790.

J. H. Verner, High-order explicit Runge-Kutta pairs with low stage order, Appl.
Numer. Math. 22(1996) 345-357.

J. H. Verner, private communication, 1999.

M. N. Vrahatis, G. 5. Androulakis and G. E. Manoussakis, A new unconstrained
optimization method for imprecise function and gradient values, J. Math. Anal.

Appl. 197 (1996) 536-607.

