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ABSTRACT. New explicit hybrid Numerov type methods are presented in
this paper. They share eighth algebraic order while their phase lag order varies
between 18 and 22. Their main characteristic is that they are dissipative so they
posses an empty interval of periodicity, Numerical illustrations indicate that this
choice was successful since the new methods outperforms the older ones which
were scheduled to integrate effectively periodic problems.

Keywords : explicit methods for periodic ODEs, phase lag, dissipation, eighth
algebraic order.

1. INTRODUCTION.
The initial value problem of second order

y' = flz,y),  y(xo) =vo, ¥ (z0) = o, (1)

especially when the solution is periodic, is of continued interest in many fields of
celestial mechanics, quantum mechanics, scattering theory, theoretical physics and
chemistry, and electronics (see [7, 8]).

When solving (1) numerically we have to pay attention in the algebraic order
of the method used, since this is the main factor of achieving higher accuracy with
lower computational cost, i.e. this is the main factor of increasing the efficiency of our
effort. If we also feel that the solution of (1) is of periodic nature then it is essential
to consider phase-lag (or dispersion) and amplification (or dissipation). These are
actually two types of truncation errors. The first is the angle between the true and
the approximated solution, while the second is the distance from a standard cyclic
solution.

One of the most widely used method for solving (1) is the Numerov method which
is fourth algebraic and fourth phase-lag order. This method is implicit and its imple-
mentation involve computations of Jacobians and solutions of non-linear systems of
equations, [1]. So many authors proposed explicit modifications of Numerov method
trying simultaneously to increase the phase-lag order. The algebraic orders achieved
were at most only six, [2, 3, 10]. Recently Tsitouras and Simos [14], presented an
explicit method of eighth algebraic order and of phase-lag order 14, which is the
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best method of this type appeared in the literature until then. That method was
of zero dissipation, something common when implementing two step hybrid methods
for problems with periodic solutions.

At the same time Papakostas and Tsitouras [9], presented high phase-lag order
Runge-Kutta and Runge-Kutta-Nystrom methods with non zero amplification error.
Even in [12], it was notified that the zero amplification error is not so promising.
The former results was the motivation for this paper which deals with the derivation
of dissipative two-step eighth order methods of very high phase-lag order. This will
became possible since degrees of freedom during the construction of the new scheme
can be used for increasing phase-lag order instead of trying to keep amplification to
zero.

2. BASIC THEORY.
To study the stability properties of methods posed for solving (1), it is constructive
to consider the scalar test problem
y = -y (2)
When applying an explicit two step hybrid method to the problem (2) we obtain a
difference equation of the form

Ynt1 + S (vz) Yo +C (vz) Yn—1 =0, (3)

where y,, & y (nh) the computed approximations at n = 1,2,..., v = wh, h the step
size used, and S (v?),C (v?) polynomials in v%. All the methods until now, make the
assumption C' (v?) = 1. This was not obligatory but mostly a pleasant (as believed)
outcome of oversimplifications due to the symmetries of the methods proposed. The
characteristic equation associated with (3) is

M4 8 (v A+ C(v?) =0 (4)
Following Lambert and Watson [6], we say that the numerical method (3) has
interval of periodicity (0,08) if C'(v?) = 1 and | S (v?) |< 2 for all v? € (0,v3).
Consequently the method is called P-stable if vg = oo. In our new proposal here
C (v?) # 1 so it is of interest to consider the amplification (or dissipation) order ¢ as
the number satisfying
1—0(1}2) =0 (v).
The phase-lag order of the method is p if
e* + S (vz) -e”—l—C(vz) =0 ().

We intend to use the 10-stage family of methods introduced in [14], in order to
produce two methods. The first has p = 22 and ¢ = 10, while the other one p = 18
and ¢ = 14.
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3. THE NEW METHODS

In [14] a 10 stage family of eighth algebraic order was introduced. It uses the smallest
number of stages per step but also leaves many parameters free in order to manipulate
some improvements. These family has the following general form.

fn — f(xnv yn)
yn-|—1 =2Un — Yn—1 + h2fn
= 2 —
Ynt1 = Qyn — Yn-1 + % (fn-|—1 + 10fn + fn—l)
Tootjz = 300+ 301 + a7 (5Fns = 34f0 + =195, 1)
Uni1/2 = 3Un — 5Yn—1 + h? (917n+1 + g2fn + g3fn1 + g47n_1/2)
Yn—3/a = TUn + Ynoy + 2 (d17n+1 +dafn+dafar +dafoprn+ d57n—1/2)
— _7 3
Yn43/4 — 1Un __Zyn—l
+h? (len-l—l toeafntesfomrteaf g tesfnipt C6fn—3/4)
Un—2/5 = %yn + %yn—l B
12 kifur koot kafu1 +kaf, 1
+hsf, 1 +kef, o +kef, 2
_ 7 9 2 4 4
Ynt+2/5 = 5Yn — gyn_—l
‘|‘h2 rl_?n—l—l + r?_fn + r3fn:1 + 7‘4?71_'__%
+rs5f_1tref e +rif_atrsf,_2
- 2 4 4 5
Yn = 2% - yn—_l

+h? (817n+1 + 52 fn + 53 n1 + 54 (7n+% + 771_%) =+ S6 (7n+ + 771—%))

IS

107 (7 2831
Ynil — 2y +yp_g = L2 . 30870 (fn-l—l + fn—l) + 7560 nt
n n n—1 = 80384 (7 7 265625 (7 7
1065015(fn+§ —I_fn—%) 1136016(fn-|—% + fn—%)

Actually we added g4, cg and rg in the family of [14]. They were useless then, but
now we need any available degree of freedom in order to increase either phase-lag
or dissipation order. Only six parameters remain free at last, because most of the
parameters of the family are fixed due to algebraic order restrictions of each layer,
forming the final method. We observe that 1-C (vz) = a10v' 04 a2 2+ a0 Ha1601,
with a depending on the sufficient parameters of the family. On the other hand phase
lag is an infinite series of the form [;gv'® 415012 4+O <U14) . In [14], following tradition
we asked for 1-C' (v?) = 0 and we were lucky enough to achieve a special solution at
a cost of one parameter but then we could satisfy only l1g = I35 = 0, getting a forced
l14 # 0. Unfortunately this holds even now with the extra freedoms, so we can not
get zero dissipation and a higher phase-lag order together.

The choices mentioned earlier are two.
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Table 1: Parameters for the 1st choice.
g1 = —0.32786618933175 g = 2.2484471359905

g3 = 1.01484856799525 g4 = —2.560429514654

dy = 0.001285807291666666  dy = 0.01064453125

ds; = —0.01466471354166666 d4 = —0.006770833333333334
ds = —0.08424479166666666 ¢, = 0.01569149760700887

cg = 0.5856314873314576 cz = —0.1112076707490621
cq = 0.01576042590075025 cs = —0.3067447454962486
ce = 0.457119005406094 k1 = —0.0004766854383154811
ko = —0.02431196195189366 k3 = —0.003494149915634853
ks = 0.003684031277186183 ks = —0.08164166925930805
ke = 7.81360527358 - 107 ky = —0.01375957252563939
r1 = 0.008179617736005171 ro = 0.2358016708666944

r3 = 0.1195199889374067 rq = 0.05955674442839562

rs = 1.899787462877609 re = —0.04240495495488127
r7 = —0.5916663848162211  rg = —1.408774145075008

s1 = —1.377668289974674 s9 = 11.65373547923761

s3 = —1.377668289974674 s4 = 5.199685801866009

sg = —9.148885251510144

3.1. 1st choice.

p =22, ¢ = 10, achieved for l1g = --- = l30 = 0 and ayp # 0.

The parameters are given in Table 1.

The local truncation error is evaluated for the scalar case according to the guide-
lines in [11, 14].

So taking in account that y” = f, vy = 2L = 2%

5r = Fy0e = f'y' etc., we arrive
at a Local Truncation Error (LTE) of the form A0 (t;Fy + toFy + -+ -+ t72Fr) +
O (h'1) where ¢ are numbers and F are elementary differentials involving only ¢/, f
and partial derivatives of f with respect to y. There are 72 elementary differentials
of 10th order, according to the theory of one step methods [4]. Only 27 of the ¢;
are independent since the internal stages are at least of second order. We must
also notice that assuming a scalar case, compression of different F;s may occur. For
example f(6) fy/ 6 = f/f(6)y/ 6 in the scalar case since f’, f(® and y’ are numbers,
but this is not true for a system of ODEs since these differentials are matrices.
Finally we get for this case

LTE e h10(00000105 . f?f/?f// _I_ 00025468 . f/3y/2f// _ 27 X 10_7 . f3f//2
40.0074077 - ff'y'* f"* — 0.0000385 - y'* f'3
~0.0000251 - f2f f"" —0.0000542 - [ f"2y'* f"
—0.0001185 - fzylzf”f”’ +0.0024133 - f/y/4f//f///
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Table 2: Parameters for the 2nd choice.
g1 = —0.3275064808539252 g2 = 2.246288885123552

g3 = 1.013769442561776 g4 = —2.557551846831402

dy = 0.001285807291666666 dy = 0.01064453125

ds; = —0.01466471354166666 dy = —0.006770833333333334
ds = —0.08424479166666666 c; = 0.01569686332120066

co = 0.5857066073301425 c3 = —0.1112452307484046
cq = 0.01573037790127627 cs = —0.3068949854936185
ce = 0.4572563676894037 k1 = —0.0004776893915544161

ke = —0.02431531295954992 ks = —0.003491709816257519
ks = 0.003683230812710925 ks = —0.08163282637645776
ke = 2.454519362719256 - 10~¢ k7 = —0.01376814678825401

r1 = 0.00820226463177012 ro = 0.2357706404459578

r3 = 0.1195813195859239 rq = 0.0596717574254971

r5 = 1.900670459112769 re = —0.04249926804562959
rr = —0.5919828216271334 rg = —1.409414351529155
s1 = —1.378402397366143 s9 = 11.65973068960128

s3 = —1.378402397366143 s4 = 5.202409446680736

sg = —9.153872394115232

—1.07-107% . fy/*f"? —3.36- 1077 . f1f0)

—0.0000774 - f2f'y" f*) — 0.0000219 - f'2y" f(*)

—0.0000789 - fy/* " fW) — 2,68 1077 -/ ' )

~1.34-107% - f32 £ — 0.0000264 - f 'yt f*)

~7.92-1070 . 0 7 f) 6721077 - Ry F© 1811070 . fy0 f©)
—8.95-107% - fy/¢f(D —3.19.107% . /55 ()).

3.2. 2nd choice.
p =18, ¢ = 14, achieved for l{g=--- =11 = 0 and a1g = a12 = 0.
The parameters are given in Table 2.
The local truncation error is

LTE = h'°(0.0000104- f2f2f" +0.0025478 - f3y/2f" —2.7-1077 . 32
+0.0074109 - ff/ylzfll2 — 0.0000386 - y/4f”3 — 0.0000252 - f3f/f///
—0.0000546 - ff2y"2 " — 0.0001185 - f2y"2 f" f"

40.0024143 - f/y* 7" —1.07-107% - fy/4f"? —3.36-1077 - f4f@
—0.0000776 - f2f'y" f*) — 0.0000220 - f'2y" f(*)
—0.0000789 - fy'* " fH — 2681077 . /S f f4)
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_134 . 10—6 . f3y/2f(5) _ 00000265 . ff/y/4f(5)
~7.92.1076 . y’6f//f(5) —6.72-10"7 . f2y/4f(6) _1.81-10-¢. f’y’6f(6)
~8.95-107%. fy’Gf(7) ~319.1079. y’Sf(S))_

The truncation errors of the two methods presented in this article differ slightly.

4. NUMERICAL RESULTS

Four methods of eighth algebraic order with reduced phase errors are tested numeri-
cally. These methods are:

i) PL14, p =14, ¢ = oo, [14].

ii) PL22, p = 22, ¢ = 10, 1st choice above.

iii) PL18, p = 18, ¢ = 14, 2nd choice above.

iv) RKN, p =16, ¢ = 10, [9].

The problems chosen are well known in the relevant literature.

4.1. Bessel equation.
equation y” = (~100+ & ) y, = € [1,32.59406213134967],
initial values y (1) = Jo (10z), y' (1) = —0.5576953439142885
exact solution y(z) = /zJy (1036) vy (32.59406213134967) = 0.

4.2. Inhomogeneous equation.
equation y” = —100y + 99 sinz, z € [0, 107]
initial values y(0) =1, y/(1) = 11
exact solution y(z) = cos 10z + sin 102 +sin z, y (107) = 1.

4.3. Wave equation, [5].

equation t;‘ = gd (z) 8?2‘ + 1A% (z,u)u, z € [0,0], ¢ >0

initial (and boundary) values

g—g(t,()) = 8 (t b) =

u(O,w)_smM,g(O w) — 7/ gdcos TF.

We implemented the case b = 100, g = 9.81, d = 10 (2 + cos %Tx) JA = %'S?J'd as
in [5]. By using the method of lines with Az = 10, this problem was converted into
a system of ODEs with eleven equations. The ninth component ug of the system
approximates u(t,z) at @ = 8Az = 80. A very accurate integration calculated the
10th zero of ug to be 63.35062926689779. So we integrated the methods to this point
and recorded the values of the 9th component there.

In all cases tested we recorded the end-point errors observed for a variety of
function evaluations used. The two step methods used fixed step size during the
integration. The Runge-Kutta-Nystrém pair of algebraic orders 8(6) [9], was imple-
mented in variable step mode using the technique introduced in [13]. Since it was
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Table 3: Results for Bessel equation
stages
2000 3000 4000 5000 6000 7000
PL14 [ 3.2-107* 19-10° 5.7-107% 39.-107° 4.4-.107" 7.1.107M
PL22 | 45-107% 4.7-107®% 4.9.107'° 3.0-107'° 1.3-107'° 4.9.10""
PL18 [ 5.3-107% 6.0-107% 1.2-107° 23.-107'°% 1.2.107'9 4.6-10"!
RKN | 25-107° 2.0-1077 2.4-107% 44.107° 1.2-107? 5.4.-1071°

Table 4: Results for the inhomogeneous equation
stages
1600 2000 2400 2800 3200 3600
PL14 [23-107% 1.2-107° 1.1-107% 1.7-107° 3.2-10% 7.4.1077
PL22 [ 3.1-107® 2.6-107% 3.1-1077 48.-107% 82.-1079 1.2.-107°
PL18 | 1.8-107* 6.4-107% 4.3-1077 4.3-107% 5.8.1079 9.8.10710
RKN | 3.4-107* 1.8-107* 3.2-107°> 4.3-107°% 6.9-1077 4.8-1077

difficult to integrate it at exactly the stages used by the hybrid methods, we simply
integrated RKN86 for various tolerances. Then we estimated the errors that might
be generated for the requested stages by interpolating the respective values.

The results are given in Tables 3, 4 and 5.

Interpreting the results it is obvious that the new methods outperform the older
ones. It worth mentioning that the advantage is clear even in the non-linear realistic
model of wave equation.
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