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Abstract. New explicit hybrid Numerov type methods are presented in

this paper. They share eighth algebraic order while their phase lag order varies

between 18 and 22. Their main characteristic is that they are dissipative so they

posses an empty interval of periodicity, Numerical illustrations indicate that this

choice was successful since the new methods outperforms the older ones which

were scheduled to integrate e�ectively periodic problems.

Keywords : explicit methods for periodic ODEs, phase lag, dissipation, eighth

algebraic order.

1. Introduction.

The initial value problem of second order
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especially when the solution is periodic, is of continued interest in many �elds of

celestial mechanics, quantum mechanics, scattering theory, theoretical physics and

chemistry, and electronics (see [7, 8]).

When solving (1) numerically we have to pay attention in the algebraic order

of the method used, since this is the main factor of achieving higher accuracy with

lower computational cost, i.e. this is the main factor of increasing the e�ciency of our

e�ort. If we also feel that the solution of (1) is of periodic nature then it is essential

to consider phase-lag ( or dispersion) and ampli�cation (or dissipation). These are

actually two types of truncation errors. The �rst is the angle between the true and

the approximated solution, while the second is the distance from a standard cyclic

solution.

One of the most widely used method for solving (1) is the Numerov method which

is fourth algebraic and fourth phase-lag order. This method is implicit and its imple-

mentation involve computations of Jacobians and solutions of non-linear systems of

equations, [1]. So many authors proposed explicit modi�cations of Numerov method

trying simultaneously to increase the phase-lag order. The algebraic orders achieved

were at most only six, [2, 3, 10]. Recently Tsitouras and Simos [14], presented an

explicit method of eighth algebraic order and of phase-lag order 14, which is the
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best method of this type appeared in the literature until then. That method was

of zero dissipation, something common when implementing two step hybrid methods

for problems with periodic solutions.

At the same time Papakostas and Tsitouras [9], presented high phase-lag order

Runge-Kutta and Runge-Kutta-Nystr�om methods with non zero ampli�cation error.

Even in [12], it was noti�ed that the zero ampli�cation error is not so promising.

The former results was the motivation for this paper which deals with the derivation

of dissipative two-step eighth order methods of very high phase-lag order. This will

became possible since degrees of freedom during the construction of the new scheme

can be used for increasing phase-lag order instead of trying to keep ampli�cation to

zero.

2. Basic theory.

To study the stability properties of methods posed for solving (1), it is constructive

to consider the scalar test problem

y
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= �!

2

y: (2)

When applying an explicit two step hybrid method to the problem (2) we obtain a

di�erence equation of the form
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� y (nh) the computed approximations at n = 1; 2; : : :, v = !h; h the step

size used, and S
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. All the methods until now, make the

assumption C

�

v
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�

� 1: This was not obligatory but mostly a pleasant (as believed)

outcome of oversimpli�cations due to the symmetries of the methods proposed. The

characteristic equation associated with (3) is
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Following Lambert and Watson [6], we say that the numerical method (3) has

interval of periodicity
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Consequently the method is called P-stable if v

0

= 1: In our new proposal here

C

�

v

2

�

6= 1 so it is of interest to consider the ampli�cation (or dissipation) order q as

the number satisfying
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The phase-lag order of the method is p if

e
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) :

We intend to use the 10-stage family of methods introduced in [14], in order to

produce two methods. The �rst has p = 22 and q = 10; while the other one p = 18

and q = 14:
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3. The new methods

In [14] a 10 stage family of eighth algebraic order was introduced. It uses the smallest

number of stages per step but also leaves many parameters free in order to manipulate

some improvements. These family has the following general form.
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Actually we added g

4

; c

6

and r

8

in the family of [14]. They were useless then, but

now we need any available degree of freedom in order to increase either phase-lag

or dissipation order. Only six parameters remain free at last, because most of the

parameters of the family are �xed due to algebraic order restrictions of each layer,

forming the �nal method. We observe that 1-C
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with a depending on the su�cient parameters of the family. On the other hand phase

lag is an in�nite series of the form l
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v
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+l

12

v
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+O

�

v

14

�

: In [14], following tradition

we asked for 1-C

�

v

2

�

� 0 and we were lucky enough to achieve a special solution at

a cost of one parameter but then we could satisfy only l

10

= l

12

= 0; getting a forced

l

14

6= 0: Unfortunately this holds even now with the extra freedoms, so we can not

get zero dissipation and a higher phase-lag order together.

The choices mentioned earlier are two.
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Table 1: Parameters for the 1st choice.

g

1

= �0:32786618933175 g

2

= 2:2484471359905

g

3

= 1:01484856799525 g

4

= �2:560429514654

d

1

= 0:001285807291666666 d

2

= 0:01064453125

d

3

= �0:01466471354166666 d

4

= �0:006770833333333334

d

5

= �0:08424479166666666 c

1

= 0:01569149760700887

c

2

= 0:5856314873314576 c

3

= �0:1112076707490621

c

4

= 0:01576042590075025 c

5

= �0:3067447454962486

c

6

= 0:457119005406094 k

1

= �0:0004766854383154811

k

2

= �0:02431196195189366 k

3

= �0:003494149915634853

k

4

= 0:003684031277186183 k

5

= �0:08164166925930805

k

6

= 7:81360527358 � 10

�9

k

7

= �0:01375957252563939

r

1
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2

= 0:2358016708666944

r

3

= 0:1195199889374067 r

4

= 0:05955674442839562

r

5

= 1:899787462877609 r

6

= �0:04240495495488127

r

7

= �0:5916663848162211 r

8

= �1:408774145075008

s

1

= �1:377668289974674 s

2

= 11:65373547923761

s

3

= �1:377668289974674 s

4

= 5:199685801866009

s

6

= �9:148885251510144

3.1. 1st choice.

p = 22; q = 10; achieved for l

10

= � � � = l

20

= 0 and a

10

6= 0:

The parameters are given in Table 1.

The local truncation error is evaluated for the scalar case according to the guide-

lines in [11, 14].
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at a Local Truncation Error (LTE) of the form h
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where t are numbers and F are elementary di�erentials involving only y

0

; f

and partial derivatives of f with respect to y: There are 72 elementary di�erentials

of 10th order, according to the theory of one step methods [4]. Only 27 of the t

i

are independent since the internal stages are at least of second order. We must

also notice that assuming a scalar case, compression of di�erent F

i

s may occur. For

example f

(6)

f

0

y

0 6

= f

0

f
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y
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in the scalar case since f

0

; f

(6)

and y

0

are numbers,

but this is not true for a system of ODEs since these di�erentials are matrices.

Finally we get for this case

LTE = h

10

(0:0000105 � f

2

f

02

f

00

+ 0:0025468 � f

03

y

02

f

00

� 2:7 � 10

�7

� f

3

f

002

+0:0074077 � ff

0

y

02

f

002

� 0:0000385 � y

04

f

003

�0:0000251 � f

3

f

0

f

000

� 0:0000542 � ff

02

y

02

f

000

�0:0001185 � f

2

y

02

f

00

f

000

+ 0:0024133 � f

0

y

04

f

00

f

000



Dissipative high phase-lag order methods. 5

Table 2: Parameters for the 2nd choice.

g

1

= �0:3275064808539252 g

2

= 2:246288885123552

g

3

= 1:013769442561776 g

4

= �2:557551846831402

d

1

= 0:001285807291666666 d

2

= 0:01064453125

d

3

= �0:01466471354166666 d

4

= �0:006770833333333334

d

5

= �0:08424479166666666 c

1

= 0:01569686332120066

c

2

= 0:5857066073301425 c

3

= �0:1112452307484046

c

4

= 0:01573037790127627 c

5

= �0:3068949854936185

c

6

= 0:4572563676894037 k

1

= �0:0004776893915544161

k

2

= �0:02431531295954992 k

3

= �0:003491709816257519

k

4

= 0:003683230812710925 k
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= �0:08163282637645776

k

6
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�6

k
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= �0:01376814678825401
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1
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2

= 0:2357706404459578

r

3

= 0:1195813195859239 r

4

= 0:0596717574254971

r

5

= 1:900670459112769 r

6

= �0:04249926804562959

r

7

= �0:5919828216271334 r

8

= �1:409414351529155

s

1

= �1:378402397366143 s

2

= 11:65973068960128

s

3

= �1:378402397366143 s

4

= 5:202409446680736

s

6

= �9:153872394115232
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3.2. 2nd choice.

p = 18; q = 14; achieved for l

10

= � � � = l

16

= 0 and a

10

= a

12

= 0:

The parameters are given in Table 2.

The local truncation error is

LTE = h
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003

� 0:0000252 � f

3

f

0

f
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�0:0000546 � ff
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000

� 0:0001185 � f

2

y
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f

00
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000

+0:0024143 � f

0

y

04
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� f
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� 0:0000220 � f
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04
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04
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00

f
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�1:34 � 10

�6

� f

3

y

02

f

(5)

� 0:0000265 � ff

0

y

04

f

(5)

�7:92 � 10

�6

� y

06

f

00

f

(5)

� 6:72 � 10

�7

� f

2

y

04

f

(6)

� 1:81 � 10

�6

� f

0

y

06

f

(6)

�8:95 � 10

�8

� fy

06

f

(7)

� 3:19 � 10

�9

� y

08

f

(8)

):

The truncation errors of the two methods presented in this article di�er slightly.

4. Numerical results

Four methods of eighth algebraic order with reduced phase errors are tested numeri-

cally. These methods are:

i) PL14, p = 14, q =1, [14].

ii) PL22; p = 22; q = 10, 1st choice above.

iii) PL18; p = 18; q = 14, 2nd choice above.

iv) RKN, p = 16; q = 10, [9].

The problems chosen are well known in the relevant literature.

4.1. Bessel equation.

equation y

00

=

�

�100 +

1

4x

2

�

y; x 2 [1; 32:59406213134967] ;

initial values y (1) = J

0

(10x) ; y

0

(1) = �0:5576953439142885

exact solution y(x) =

p

xJ

0

(10x) ; y (32:59406213134967) = 0:

4.2. Inhomogeneous equation.

equation y

00

= �100y + 99 sinx; x 2 [0; 10�]

initial values y(0) = 1; y

0

(1) = 11

exact solution y(x) = cos 10x+ sin 10x+ sin x; y (10�) = 1:

4.3. Wave equation, [5].

equation

@

2

u

@t

2

= gd (x)

@

2

u

@x

2

+

1

4

�

2

(x; u)u; x 2 [0; b] ; t � 0

initial (and boundary) values

@u

@x

(t; 0) =

@u

@x

(t; b) = 0;

u (0; x) = sin

�x

b

;

@u

@t

(0; x) = �

�

b

p

gd cos

�x

b

:

We implemented the case b = 100; g = 9:81; d = 10

�

2 + cos

2�x

b

�

; � =

gjuj

2500d

as

in [5]. By using the method of lines with �x = 10, this problem was converted into

a system of ODEs with eleven equations. The ninth component u

9

of the system

approximates u(t; x) at x = 8�x = 80: A very accurate integration calculated the

10th zero of u

9

to be 63:35062926689779: So we integrated the methods to this point

and recorded the values of the 9th component there.

In all cases tested we recorded the end-point errors observed for a variety of

function evaluations used. The two step methods used �xed step size during the

integration. The Runge-Kutta-Nystr�om pair of algebraic orders 8(6) [9], was imple-

mented in variable step mode using the technique introduced in [13]. Since it was
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Table 3: Results for Bessel equation

stages

2000 3000 4000 5000 6000 7000

PL14 3:2 � 10

�4

1:9 � 10

�6

5:7 � 10

�8

3:9 � 10

�9

4:4 � 10

�10

7:1 � 10

�11

PL22 4:5 � 10

�6

4:7 � 10

�8

4:9 � 10

�10

3:0 � 10

�10

1:3 � 10

�10

4:9 � 10

�11

PL18 5:3 � 10

�6

6:0 � 10

�8

1:2 � 10

�9

2:3 � 10

�10

1:2 � 10

�10

4:6 � 10

�11

RKN 2:5 � 10

�5

2:0 � 10

�7

2:4 � 10

�8

4:4 � 10

�9

1:2 � 10

�9

5:4 � 10

�10

Table 4: Results for the inhomogeneous equation

stages

1600 2000 2400 2800 3200 3600

PL14 2:3 � 10

�2

1:2 � 10

�3

1:1 � 10

�4

1:7 � 10

�5

3:2 � 10

�6

7:4 � 10

�7

PL22 3:1 � 10

�5

2:6 � 10

�6

3:1 � 10

�7

4:8 � 10

�8

8:2 � 10

�9

1:2 � 10

�9

PL18 1:8 � 10

�4

6:4 � 10

�6

4:3 � 10

�7

4:3 � 10

�8

5:8 � 10

�9

9:8 � 10

�10

RKN 3:4 � 10

�4

1:8 � 10

�4

3:2 � 10

�5

4:3 � 10

�6

6:9 � 10

�7

4:8 � 10

�7

di�cult to integrate it at exactly the stages used by the hybrid methods, we simply

integrated RKN86 for various tolerances. Then we estimated the errors that might

be generated for the requested stages by interpolating the respective values.

The results are given in Tables 3, 4 and 5.

Interpreting the results it is obvious that the new methods outperform the older

ones. It worth mentioning that the advantage is clear even in the non-linear realistic

model of wave equation.
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