
Symbolic Derivation of Order Conditions for

Hybrid Numerov-type methods solving

y′′ = f (x, y)

I. Th. Famelis 1

TEI of Athens, Department of Mathematics, GR 122 10 Egaleo, Greece

Ch. Tsitouras 2

TEI of Chalkis, Department of Applied Sciences,GR 34400 Psahna, Greece

Abstract

Numerov-type ODE Solvers are widely used for the numerical treatment of second
order initial value problems. In this work we present a powerful and efficient sym-
bolic code in Mathematica for the derivation of their order conditions and principal
truncation error terms. The relative tree theory for such order conditions is pre-
sented along with the elements of combinatorial mathematics, partitions of integer
numbers and computer algebra which are the basis of the implementation of the
symbolic code.

Key words: Numerov-type Methods, Order Conditions, Rooted trees, integer
partitions, truncation error, MATHEMATICA.

1 Introduction

Second order Ordinary Differential Equations (ODEs) that do not involve y′,

y′′ = f(t, y), y(t0) = y[0], y′(t0) = y′[0], (1)

where f : <N −→ <N and y[0], y′[0] ∈ <N , are widely used to model physical
problems. Thus, methods for the numerical treatment of such ODEs are of
great importance. There exist various classes of methods for the numerical

1 E-Mail: ifamelis@teiath.gr, URL address: http://math.teiath.gr/ifamelis/
2 E-Mail: tsitoura@teihal.gr, URL address: http://users.ntua.gr/tsitoura/

Preprint submitted to Elsevier Science

solution of such problems. For instance, problem (1) can be treated using a
Runge-Kutta Nyström method, or if we transform it in a system of first order
ODEs, it can be solved by a Runge-Kutta method [13]. One of the most widely
used methods for solving (1) is the Numerov which attains fourth algebraic and
sixth phase-lag order. This method is implicit and its implementation involve
computations of Jacobians and solutions of non-linear systems of equations,
[8]. So, many authors proposed explicit modifications of the Numerov method
which are usually called hybrid or two-step Numerov-type methods. The con-
struction of such methods require the derivation and the solution of equations
called ”order conditions”. Such a procedure is a tedious task since the num-
ber of order conditions to be derived and then solved increases as the order
of a method increases. The order conditions are nonlinear expressions which
involve the methods coefficients . So, constructing a specific method requires
the solution of a system of nonlinear equations. For high order methods, we
usually use symbolic computations to solve some of the equations resulting
in exact expressions for coefficients that involve other coefficients. Then, the
numerical treatment of the remaining system, usually by powerful minimiza-
tion algorithms, yields solutions that fail to satisfy the order conditions with
an acceptable accuracy. Nevertheless, the outcome can be useful as a set of
initial values for the next phase of our work. Computer Algebra systems, such
as Mathematica, provide the capability to apply numerical methods asking
the results to satisfy a lot more than sixteen digits of accuracy. So, using the
numerical results as good guesses we hope and usually manage to specify co-
efficients that satisfy the order conditions with very high acceptable accuracy.
Therefor, for both the derivation and the solution of the order conditions the
use of a Computer Algebra systems is needed.

In the literature, computer codes for generating Runge–Kutta trees, order con-
ditions and truncation order coefficients can be found. Keipers [17] program,
written in Mathematica language, was probably the first but it was limited in
deriving low order conditions. Hoseas [16] presented a code named RKTEC,
written in ANSI C, which is available from Netlib. This was based on a re-
currence procedure due to Albrecht [1] that generates order conditions. A new
perspective was introduced by Harisson [15] and Papakostas [23] as it was ac-
knowledged in [28]. They suggested the use of tensor notation which resulted
in very interesting symbolic codes. That early package due to Papakostas had
been a powerful tool for the research work of our group ([26,35,25,31]) when
truncation error calculations were needed. It can be asked by e-mail from the
present authors. Sofroniou [28] as well, has published an integrated package for
deriving Runge–Kutta order conditions. Then Papakostas, in his Ph.D. Thesis
[24], proposed that in such codes the derivation of trees should be avoided.
Following his suggestions, we have presented [10] a very efficient code for the
derivation of Runge–Kutta order conditions. Finally, a relative Matlab code
is due to Cameron [6].

2

For the class of Runge–Kutta–Nyström methods a first code to generate RKN
trees is due to Okunbor [20]. This specific code, which was based on the
Keipers program philosophy fails at high orders. Following the same lines
of our previous work our team presented a powerful and efficient symbolic
package for the derivation of Runge–Kutta–Nyström [?] order conditions and
principal truncation error terms. Here, we present the first symbolic package
for the derivation of order conditions and principal local truncation error terms
for two-step Numerov-type methods.

In the following section we outline the theory of construction of two-step
Numerov-type methods. Then we present the elements of Combinatorial Math-
ematics and Tree theory which have been used to approach the construction
of our symbolic program. In our approach, constructing the trees as matrix
products results in a very fast, neat and cheap in memory usage code.

2 Hybrid Numerov Methods

Two-step Numerov-type methods proceed to the evaluation of y[k+1] as an
estimation of y (tk+1) = y (tk + h), according to the following formulae:

Y [1] = (1− c1)y
[k] + c1y

[k−1] + h2
s∑

j=1

a1j fk−c1

fk−c1 = f
(
tk − c1h, Y [1]

)

Y [2] = (1− c2)y
[k] + c2y

[k−1] + h2
s∑

j=1

a2j fk−c2

fk−c2 = f
(
tk − c2h, Y [2]

)

· · · · · ·
Y [s] = (1− cs)y

[k] + csy
[k−1] + h2

s∑

j=1

asj fk−cs

fk+cs = f
(
tk − csh, Y [s]

)

y[k+1] = 2y[k] − y[k−1] + h2
s∑

j=1

bj fk−cs , (2)

where h = tk+1 − tk = tk − tk−1 = · · · = t1 − t0 and the vectors y[k] and y[k−1]

are previous step approximations of y(tk) and y(tk − h) respectively.

In vector notation, for an autonomous system y′′ = f(y), an s-stage Numerov-

3

type method takes the form

y[k+1] = 2y[k] − y[k−1] + h2 · (b⊗ Is) · f (Y)

Y = (e− c)⊗ y[k] + c⊗ y[k−1] + h2 · (A⊗ Is) · f (Y)
(3)

with Is ∈ <s×s the identity matrix, A = [aij] ∈ <s×s, bT = [bi] ∈ <s, c = [ci] ∈
<s the coefficient matrices of the method and

e = [1 1 · · · 1]T ∈ <s.

For this case the independent variable t can be considered as an extra com-
ponent of y, setting

y′′N+1 = 0, y
[0]
N+1 = t0, y

′[0]
N+1 = 1.

Using the Butcher tableau notation [2,3] the coefficients of such a method can
be presented by the table,

c A

bT
.

When the matrix A is strictly lower triangular the method is explicit and
can be applied directly. Otherwise, the method is implicit and a system of
nonlinear equations has to be solved in each step.

Local Truncation Error (LTE) measures the methods approximation error
‖y[k+1]−y (tk+1) ‖ assuming the previous two step values are exact. Taking the
Taylor expansions of (3)and its its theoretical correspondence and subtracting,
LTE is derived. The resulted quantity is a series of the form

h2T11F11+h3T21F21+h4·(T31F31 + T32F32)+h5·(T41F41 + T42F42 + T43F43)+· · ·

where Tij’s are the truncation error coefficients depending exclusively on the
method coefficients A, b, c. Moreover, Fij’s are elementary differentials with

respect to y′, f and f (k) = ∂kf
∂tk

, k = 1, 2, ... [11] are problem depended.

For an order p method the coefficients of h2, h3, ..., hp+1 have to be zero. So,
for a fourth order method

T11 = T21 = T31 = T32 = T41 = T42 = T43 = 0,

have to be satisfied. These equations are called order conditions (o.c.). The
number of o.c. needed to achieve a desired order is presented in Table 1. Hybrid
Numerov and Runge Kutta Nyström methods of the same order need equal
number of conditions to be fulfilled.

4

Table 1
Number of order conditions (o.c.) to achieve order p.

Order p 1 2 3 4 5 6 7 8 9 10 11

number of o.c. 1 1 2 3 6 10 20 36 72 137 275

cumulative number of o.c. 1 2 4 7 13 23 43 79 151 288 563

Table 2
Terms of truncation error coefficients of 1−st to 5−th order.
order equations

1 T11 = be− 1

2 T21 = b · c

3 T31 = 1
2b · c + b ·A · e− 1

12 , T32 = 1
2b · c2 − 1

12

4 T41 = b ·A · c + 1
6b · c, T42 = 1

2b · c2 + b · (c ∗A · e),

T43 = 1
6b · c3

5 T51 = 1
24b · c + 1

2b ·A · c + b ·A2 · e− 1
360 ,

T52 = 1
24b · c + 1

2b ·A · c2 − 1
360 ,

T53 = 1
6b · c2 + b · (c ∗A · c)− 1

90 ,

T54 = 1
8b · c2 + 1

2b · (c ∗A · e) + 1
2b · (A · e)2 − 1

120 ,

T55 = 1
4b · c3 + 1

2b · (c2 ∗A · e)− 1
60 T56 = 1

24b · c4 − 1
360

For instance, in order to construct a method of order five the thirteen order
conditions Tij = 0 presented in Table-2 should be considered. In this table we
set

ci = [ci
1, ci

2, · · · , ci
s]

T ,

while the operation ”*” may be understood as component-wise multiplication:

[u1 u2 · · · un]T ∗ [v1 v2 · · · vn]T = [u1v1 u2v2 · · · unvn]T .

This operation has the less priority. Parentheses, powers and dot products are
always evaluated before ”*”.

Observe that for a p−th order method the principal local truncation error
term is multiplied by hp+2. So, the method has truncation error of O(hp+2)
and not O(hp+1). This is due to accuracy reduction from the non-existence of
y′ in the formulas (3), see Hairer et. al. [13, p. 468].

It must be noticed that the presentation in Table-2 can be simplified assuming
that lower order conditions are satisfied. For an order p method (1 ≤ p ≤ 5),
when all the lower order conditions are fulfilled, the simplified expressions are

5

Table 3
Simplified terms of truncation error coefficients of 1−st to 5−th order.

order equations

1 T11 = b · e− 1

2 T21 = b · c

3 T31 = b ·A · e− 1
12 , T32 = b·c2

2 − 1
12

4 T41 = b ·A · c, T42 = b · (c ∗A · e) + 1
12 , T43 = b·c3

6

5 T51 = b ·A2 · e− 1
360 , T52 = 1

2b ·A · c2 − 1
360 , T53 = b · (c ∗A · c) + 1

60

T54 = 1
2b · (A · e)2 − 7

240 , T55 = 1
2b · (c2 ∗A · e)− 1

60 , T56 = b·c4
24 − 1

360

now listed in Table 3. For example, for a fourth order method

T21 = b · c = 0, and T41 = b · A · c = 0

hold, so we conclude that

T51 =
1

24
b · c +

1

2
b · A · c + b · A2 · e− 1

360
= b · A2 · e− 1

360
. (4)

Whereas, in the case of studying a third order method, which implies that
T11 = T21 = T31 = T32 = 0 and T41 generally not zero, (4) would not corre-
spond to the truncation error coefficient term T51 of h6. In such a case

T51 =
1

2
b · A · c + b · A2 · e− 1

360

should be considered.

Another interesting issue is to keep the magnitude of the principal truncation
error term Euclidean norm small. Therefor, for a fourth order method it is
important to have the value

‖T (5)‖2 =
√

T 2
5,1 + T 2

5,2 + · · ·+ T 2
5,6,

as small as possible. The set T (5) collects all the fifth order truncation error
coefficients. Similarly T (1) = {T11}, while

T (2) = {T21}, T (3) = {T31, T32}, · · · .

The number of equations that should be fulfilled is reduced assuming that one

6

or more of the following simplifying assumptions hold

A · e = 1
2
(c2 − c)

A · c = 1
6
(c3 − c)

A · c2 = 1
12

(c4 − c)

A · c3 = 1
20

(c5 − c)

......

(5)

When adopting the first simplifying assumptions, the order conditions contain-
ing expression Ai ·e, i = 1, 2, 3.., coincide with others and vanish. For example,
it can be easily seen that only one of the elements from T (3) is needed since

T31 = b·A·e− 1

12
= b· 1

2
·(c2−c)− 1

12
=

1

2
b·c2− 1

2
b·c− 1

12
=

1

2
b·c2− 1

12
= T32

In a similar way after using the second row of (5) we may discard all equations
containing Ai · c, i > 0.

When conditions (5) are applied in an implicit method its nodes are interpo-
latory points of the proper order [32]. On the other hand for explicit methods,
assumptions (5) correspond to the concept of stage order of Runge-Kutta
methods, see [33]. The early Numerov–type methods were constructed with-
out taking consideration conditions (5)resulting interior nodes of an specific
algebraic order, say p− 2. Then a method of order p was derived by using an
interpolatory approach. This useless procedure was our motive for introducing
methods of the form (2) in [29].

3 Tree Theory for Order Conditions

In the 60’s, J. C. Butcher [4] established a theory, based in trees, to derive the
order conditions of a Runge–Kutta method. The extension of the tree theory
for the case of Runge–Kutta–Nyström methods can be found in [13] where
the SN-trees (Special Nyström trees) were defined. For the derivation of order
conditions for two-step methods, J. P. Coleman [9] chooses a slightly different
family of trees called >2. These are the SN-Trees grafted onto a meagre root.

>2 rooted trees have two kind of vertices, meagre vertices which are drawn as
a point and fat vertices which are drawn as a larger dot. The root of such a
tree is a meagre vertex which is connected to a single fat vertex. The branches
of a >2 are connected to that fat vertex. Let ∅ be the empty tree, τ ′ the single

7

meagre vertex tree and τ the tree SS
r

. By using these three elements and
recursion we can generate the whole set >2 of trees.

A tree t ∈ >2 can be written as t = [t1, t2, · · · , tm]2 where t1, t2, . . . , tm ∈ >2

are its branches. So, t is obtained by connecting the roots of t1, t2, . . . , tm to
a new fat vertex, and then connecting that vertex to a new meagre root. For
example the tree

cc
r

SS
r

¶¶ ##
SSr SSr

¶¶
r

SS¢¢HHHQQ r

can be written as t = [τ, τ, t31, t41]2 = [τ 2, t31, t41]2 where

cc
rτ

SS
rτ

¶¶

¶¶
SSr

t31 = [τ ′]2

SSr
¶¶

rt41 = [τ]2

Now, the following functions can be defined on t = [t1, t2, . . . , tm]2 ∈ >2 :

• Order r(t):

r(t) = 2 + r(t1) + . . . + r(tm)

with r(∅) = 0,r(τ ′) = 1 and r(τ) = 2

• Symmetry σ(t):

σ
([

tn1
1 , tn2

2 , · · · , tnk
k

]
2

)
= n1! · · ·nk!σ (t1)

n1 · · ·σ (tk)
nk

with σ(∅) = 1,σ(τ ′) = 1 and σ(τ) = 1

•Ψ(t) :

Ψ(t) = c + AΨ′′(t)

if r(t) ≥ 2 with ψ(τ ′) = e and ψ(∅) = c where e = [1, 1, · · · , 1]T ∈ <s.

•Ψ′′(t) :

Ψ′′(t) = r(t)r(t− 1)
m∏

i=1

Ψ(ti)

The following theorem relates the >2 trees to the order conditions that must
hold so a method to attain order p. Its proof is based on B-series theory and

8

can be found in [9].

Theorem 1 A two-step Numerov-type method is of order p if and only if

bT Ψ′′ (t) = 1 + (−1)r(t)

for every t ∈ >2 with r (t) ≤ p + 1.

Each order condition involves expressions which are linear in the components
of b and nonlinear in the components of A and c. There exists a one-to-one
relationship between the set of order p conditions and the >2 rooted trees
with p + 1 nodes. Each tree can be correlated with a specific expression in
its corresponding order condition from which all the other expressions can be
produced. All these correspondences are presented in Table-4.

By following simple rules it is not hard to form the corresponding order con-
dition. The root is b, each terminating meagre vertex SS is c and the tree

formation SSr
¶¶

r

corresponds to A. Branches that are grafted together have
their matrix representations multiplied component-wise. For each long branch
consisting of other tree elements in a row, their matrix representations are
multiplied by using the usual matrix multiplication. Finally, for branches that
have terminating meagre nodes their expressions are multiplied by e.

So, in our example t = [τ 2, t31, t41]2 the branches

SS
rA · e

SS
rA · e

¶¶

¶¶
SSr

A · c
SSr
¶¶

r A ·A · e

¶¶¶¶ SS SSr rrr

are grafted together in a fat vertex so their expressions are multiplied component-
wise. Then they are connected to the root. So the corresponding matrix ex-
pression b · ((A · e)2 ∗ (A · c) ∗ (A2 · e)). This expression is multiplied by one
over the symmetry number of the tree. The symmetry of a tree can be easily
calculated if we label all the terminating branches with a number. Groups are
formed containing the identical branches grafted to the fat vertex connected to
the root. Then the elements of each group are numbered. The corresponding
symmetry value is the product of all these numbers that label the branches.

cc
r

SS
r

¶¶ ##
SSr SSr

¶¶
r

SS¢¢HHHQQ r

1 2
1 1

For our example the symmetry value is 1
1×1×2×1

= 1
2
.

So far, given a tree, the way to form its corresponding expression has been

9

Table 4
Correspondence of >2 trees to 1−st to 5−th order conditions.

order Order Condition ↔ Tree Tree ↔ Corresponding Expression

1 T11 = b · e− 1 ↔ t21 = τ SS
r

↔ b · e

2 T21 = b · c ↔ t31 = [τ ′]2 SS
¶¶r

↔ b · c

3 T31 = 1
2b · c + b ·A · e− 1

12 ↔ t41 = [τ]2 ,
SSr
¶¶

r

↔ b ·A · e

T32 = 1
2b · c2 − 1

12 ↔ t42 = [τ ′, τ ′]2
SSr¶¶

↔ b · c2

4 T41 = b ·A · c + 1
6b · c ↔ t51 = [t31]2

SS

SSr
¶¶

r

↔ b ·A · c

T42 = 1
2b · c2 + b · (c ∗A · e) ↔ t52 = [τ ′, τ]2

SSr¶¶
¶¶

r

↔ b · (c ∗A · e)

T43 = 1
6b · c3 =↔ t53 = [τ ′, τ ′, τ ′]2

SSr¶¶
↔ b · c3

5 T51 = 1
24b · c + 1

2b ·A · c + b ·A2 · e− 1
360 ↔

t61 = [t41]2,

r
¶¶
SS

SSr
¶¶

r

↔ b ·A2 · e

T52 = 1
24b ·c+ 1

2b ·A ·c2− 1
360 ↔ t62 = [t42]2

SS¶¶

SSr
¶¶

r

↔ b ·A · c2

T53 = 1
6b · c2 + b · (c ∗A · c)− 1

90 ,

SS

¶¶SSr
¶¶

r

↔ b · (c ∗A · c)

T54 = 1
8b · c2 + 1

2b · (c∗A · e)+ 1
2b · (A · e)2−

1
120 ↔ t64 = [τ, τ]2

¶¶
r

SS
r

´́QQ r
↔ b(A · e)2

T55 = 1
4b · c3 + 1

2b · (c2 ∗A · e)− 1
60 ↔ t65 =

[τ ′, τ ′, τ]2

¶¶!!SSr
¶¶

r

↔ b · (c2 ∗A · e)

T56 = 1
24b · c4 − 1

360 ↔ t66 = [τ ′, τ ′, τ ′, τ ′]2
¶¶!!SSraa

↔ b · c4

10

considered. After performing a kind of ”trimming”, the same tree can give
the rest of the lower order trees contributing expressions involved in its order
condition. Two kinds of trimming are considered. Every branch, taking the
form on the left is trimmed to take the form of the branch on the right

SSr
¶¶

r
SSr

7→

and

1 2 kk-1......
SS ¶¶cc ##

SSr
¶¶

r
SSr

7→

By taking all possible combinations each trimming produces a new tree. For
example the corresponding tree in T54 = 1

8
b ·c2 + 1

2
b ·(c∗A ·e)+ 1

2
b ·(A ·e)2− 1

120

is

b · (A · e)2

¶¶
r

SS
r

´́QQ r
after a first trimming we get

b · (c ∗ A · e)
SS
r

´́QQ r
and a second

b · c2

´́QQ r
.

In order to find the coefficient of the trimmed tree expression, each vertex
of the branch trimmed is characterized with the order of the tree produced
assuming that this particular vertex is a root of a tree containing the remain-
ing vertexes. Let prod be the product of these orders, then the expression
coefficient is one over the symmetry value of the initial tree multiplied by the
number of the trimmings resulting the specific tree and by one over prod . For
example, for T54

1 1

2 2¶¶
r

SS
r

´́QQ r

we find that the coefficient for the first trimming is 1
2
×2× 1

1×2
= 1

2
(note that

we can get b · (c ∗ Ae) after two different trimmings) and for the second it is
1
2
× 1

1×2×1×2
= 1

8
.

Whereas in T53 = 1
6
b · c2 + b · (c ∗ A · c)− 1

90
the tree is

b · (c ∗ A · c)
SS
r¶¶

´́QQ r

and after the trimming we get

b · c2

´́QQ r
.

11

Now for T53

2

3

1

SS
r¶¶

´́QQ r
we find that the coefficient for the trimming is 1× 1

1×2×3

4 The Symbolic Code

As we have mentioned in the previous section, a tree with p + 1 nodes (of
order p + 1) can be constructed by taking trees with cumulative order p − 1
obtained and connecting their roots to a new fat vertex and then connecting
that vertex to a new meagre root. In other words, the set of trees with p + 1
nodes can be formed by taking combinations with repetition of k trees with
cumulative order p− 1.

12 . . . k. . .b b b b
ccSS¶¶##r

If we set T i = {ti#|where ti# a >2 rooted tree of order i} we have to form
combination of objects with repetition to produce the products ti1π1#ti2π2# · · · tikπk#

where tπj# ∈ T πj and i1π1 + i2π2 + · · ·+ ikπk = p− 1, k = 1, 2, . . . , p− 1.

This connects our problem with the set of unrestricted partitions of an integer.
For example, an unrestricted partition of 5 is 1, 1, 1, 2. This is usually written
as 132. So, an unrestricted partition of p has the form πi1

1 πi2
2 · · · πik

k where
i1π1 + i2π2 + · · ·+ ikπk = p. This is a notation similar to the one used for the
trees.

In conclusion, in order to construct all the rooted trees of order p + 1 we have
to find all the unrestricted partitions of p − 1 and for each of them to form
all the corresponding combinations with repetition ti1π1#ti2π2# · · · tikπk# selecting
tπj# from T πj . In a programming point of view the best way is to work by
forming the matrix notation products of the expressions involving the method
coefficients instead of constructing the corresponding trees.

Hence, in our code the tij are not the trees but the corresponding matrix mul-
tiplication expressions Ψ(tij). Moreover the outer products formed are based
on pointwise multiplication.

The proposed code provides two functions. The function BCO which gives the
order conditions in a simplified form as far as the numeric coefficients of the
expressions is concerned and the function TCO which returns the full form
of the terms of the principal local truncation error coefficient.

In the following example the outcome is the lists with elements order 1 to 5
order conditions.

12

In[1]:=<<numer

In[2]:=BCO[a, b, c, e, 1]

Out[2]:={-1+b.e}

In[3]:=BCO[a, b, c, e, 2]

Out[3]:={b.c}

In[4]:=BCO[a, b, c, e, 3]

Out[4]:={-(1/6)+b.c+2*b.a.e,-(1/12)+b.c^2/2}

In[5]:=BCO[a, b, c, e, 4]

Out[5]:={b.c+6*b.a.c,b.c^2+2*b.(c*a.e),b.c^3/6}

In[6]:=BCO[a, b, c, e, 5]

Out[6]={-(1/15)+b.c+12*b.a.c+24*b.a.a.e,

-(1/30)+(1/2)*(b.c+12*b.a.c^2),-(1/15)+b.c^2+6*b.(c*a.c),

-(1/30)+(1/2)*(b.c^2+4*b.(c*a.e)+4*b.(a.e)^2),

-(1/30)+(1/2)*(b.c^3+2*b.(c^2*a.e)),-(1/360)+b.c^4/24}

The simplified order 5 conditions, assuming that the lower order conditions
are fulfilled, can be produced by using the function BCOSIM which we define
as follows.

In[7]:=BCOSIM[a_, b_, c_, e_, 1] := {b.e - 1};

In[8]:=BCOSIM[a_, b_, c_, e_, orderr_] :=

Expand[TCO[a, b, c, e, orderr] /.

Flatten[Table[Flatten[Map[Solve,

Map[# == 0 &, BCOSIM[a, b, c, e, i]]]],

{i, 1,orderr - 1}

]

]

];

Now for order 5 we have:

In[9]:=BCOSIM[a,b,c,e,5]

Out[9]:={-(1/360)+b.a.a.e,-(1/360)+(1/2)*b.a.c^2,1/60+b.(c*a.c),

-(7/240)+(1/2)*b.(a.e)^2,-(1/60)+(1/2)*b.(c^2*a.e),

-(1/360)+b.c^4/24}

For a method of order 4 the coefficient terms of the principal local truncation
order coefficient T (5) can be given by:

13

Table 5
Number of trees and times of evaluation

Two-step RK

order
number of

equations

number of

trees

Time

(sec)

number of

equations

Time

(sec)

11 275 1551 0.21 1842 0.14

12 541 3520 0.47 4766 0.34

13 1098 8262 1.09 12486 0.69

14 2208 19114 2.51 32973 1.64

15 4521 45049 6.05 87811 4.25

16 9420 105671 14.7 235381 11.1

17 19084 250376 34.5 634847 30.0

18 39451 593033 81.4 1721159 82.9

In[10]:=TCO[a,b,c,e,5]

Out[10]:={-(1/360)+b.c/24+b.a.c/2+b.a.a.e,

-(1/360)+b.c/24+(1/2)*b.a.c^2,-(1/90)+b.c^2/6+b.(c*a.c),

-(1/120)+b.c^2/8+(1/2)*b.(c*a.e)+(1/2)*b.(a.e)^2,

-(1/60)+b.c^3/4+(1/2)*b.(c^2*a.e),-(1/360)+b.c^4/24}

In all the calls of BCO and TCO, a, b, c, e can be Mathematica symbols or ma-
trices with numeric entries.

The algorithm presented here is competitive to the one given in [10] for RK
methods. In Table 5 we present computation times for our algorithms for two-
step Numerov-type and RK methods and the corresponding number of trees
and order conditions for various orders. In particular, we have used the RK
function RKTrunc implemented in [10] and BOC function of our new package.
As we have mentioned order conditions for the two step methods involve more
than one tree expressions whereas for the RK methods the number of produced
trees and the number of order conditions coincide.

The runs were performed in the Mathematica 5.2 environment on a Pentium
3.2 MHz system having 1 GByte RAM memory which was running Windows
XP–SP2 Operating System.

14

5 Conclusions

In this paper we have presented, for the first time, a very efficient symbolic
code for the derivation of two-step Numerov-type method order conditions and
principal local truncation error coefficients. The code is fast and economical
in computer memory. Finally, another remarkable fact is that the source code
of the proposed package covers less than two journal pages and this helps in
the direction of better and easier understanding.

Appendix

The Mathematica package implements the one and a half A4 pages code.

BeginPackage["NUMER‘", {"DiscreteMath‘Combinatorica‘"}];
Clear["NUMER‘*"]
BCO::usage = " BCO[a,b,c,e,order] returns order
conditions of Numerov type methods. "
TCO::usage = "
TCO[a,b,c,e,order] returns trunc error terms of Numerov type
methods. " Begin["‘Private‘"]; Clear["NUMER‘Private‘*"];

BCO[a_,b_,c_,e_,1]:={b.e-1}
BCO[a_,b_,c_,e_,order_]:=1/S[order+1]*Map[g,Map[Distribute[#] &,
Map[Expand[#] &, T0[a,b,c,e,order+1], order+1],
order+1]]-1/S[order+1]*(1+(-1)^(order+1))/((order+1)*order)
TCO[a_,b_,c_,e_,1]:={b.e-1};
TCO[a_,b_,c_,e_,order_]:=Module[{aa,bb,cc,ee,tr},

Off[First::normal];
tr=Expand[1/Append[Delete[Map[First, Map[Last, SSON[aa,bb,cc, ee,order]]],
-1], 1] BCO[a, b, c, e, order]];
On[First::normal];
Return[tr]];

(*--*)
RunLengthEncode[x_List] := (Through[{First, Length}[#1]] &) /@
Split[x];

Combinations[list_, num_] :=
Module[{i},

Table[Map[Prepend[#, list[[i]]]&,
Flatten[Combinations[list, num - 1]

[[Array[Identity, Length[list] - i + 1, i]]], 1
], {1}

],
{i, 1, Length[list]}

15

]]/; (num > 1) ;
Combinations[list_, 1] := Compinations[list, 1] = Map[{{#}}&,
list];

Combinations2[list_, num_] :=
Apply[Times, Flatten[Combinations[list, num], 1], {1}]/; (num > 1);

Combinations2[list_, 1] := list;
(*--*)
f[x_] := Apply[Times, Extract[

x, Map[Append[#, 1] &, Position[x,
Times[_Integer, _]]]]]*ReplacePart[x, 1,

Map[Append[#, 1] &, Position[x, Times[_Integer, _]]]];
g[y_] := Map[f, y, 1];

(*--*)
T[a_,c_,e_,0] = {e}; T[a_,c_,e_,1] = {c}; T[a_,c_,e_,2] = {2* a.e+
c}; T[a_,c_,e_,order_] := T[a,c,e,order] =
Module[{temp},

temp = Map[Combinations2[T[a,c,e,#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#] &, Partitions[order-2], {1}], {2}];
temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];
temp = temp /. CoverList[every_] -> every;
temp = (order-1)*order *Map[(a . #)&, temp, {1}];
temp = Map[(# + c)&, temp, {1}];
temp=temp];

MyOuter[lists__] := Flatten[Outer[Times, lists], Length[{lists}] -
1]; T0[a_,b_,c_,e_,1] = {b.e-1}; T0[a_,b_,c_,e_,2] = {b.c};
T0[a_,b_,c_,e_,order_] := T0[a,b,c,e,order] =
Module[{temp},

temp = Map[Combinations2[T[a,c,e,#[[1]]], #[[2]]]&,
Map[RunLengthEncode[#] &, Partitions[order-2], {1}], {2}];
temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];
temp = temp /. CoverList[every_] -> every;
temp = Map[(b . #)&, temp, {1}]]

(*--*)
S[1] = {1}; S[2]={1}; S[order_] := S[order] =
Module[{temp},

temp = Map[Combinations2[MapIndexed[ff, S[#[[1]]]], #[[2]]] &,
Map[RunLengthEncode[#] &, Partitions[order-2], {1}], {2}];
temp=temp /. {ff[a_, b_]^p_ -> Factorial[p]*a^p, ff[a_, b_] -> a};

temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1]];

(*--*)
SSON[a_,b_,c_,e_,order_]:=Map[g,Map[Distribute[#] &, Map[Expand[#]

16

&, T0[a,b,c,e,order+1], order+1], order+1]] End[]; EndPackage[];

A brief description of the above code :

MyOuter: Performs outer products of lists elements.
Combinations: Produces the non ordered combinations without repetition of

n objects taken from the elements of a list.
Combinations2: Returns the products of the elements taken from Combina-

tions.
f, g: These two functions work with the numerical coefficients of the tree

expressions performing needed expansions.
RunLengthEncode: Gives a list of pairs (x, y) which corresponds to element

x of length y in a list.
T: This function applies the main ideas of our approach. Using Combinations2

and recursion, produces a list with all the possible matrix expressions which
correspond to trees with cumulative order p−1. The function CoverList is a
dummy function which is used to protect the recursively produced elements
of the lists (in levelspec 3) from the outer product. These elements which
are expressions that correspond to the branches of each tree are multiplied
using MyOuter and the list is flattened to produce the full list needed. Then
the CoverList protection is taken out and the expressions are multiplied by
a to meet the fact that a new node is added to each tree.

T0: Taking the results of T gives a list with the expressions for y which
corresponds to the grafting of the trees with cumulative order p− 1 into a
new fat vertex and connecting that vertex into a new meagre root.

S: Using Combinations2 and recursion produces a list with elements all the
values of symmetry function σ(t) which correspond to all possible trees with
cumulative order p− 1.

SSON: This function is needed internally to produce the correct form of the
TCO and it is similar to BCO. order p + 1.

The code can be downloaded from http://math.teiath.gr/ifamelis/ipapers.html.

Acknowledgements

This research is co-funded by the European Social Fund (75%) and National
Resources (25%) under the framework of the Program - Pythagoras II of the
National Technical University of Athens.

17

References

[1] P. Albrecht, Numerical treatment of O.D.E.s: the theory of A–methods, Numer.
Math., 47 (1985) pp. 59–87.

[2] J. C. Butcher, Implicit Runge–Kutta processes, Math. Comput., 18 (1964)
pp. 50–64.

[3] J. C. Butcher, On Runge–Kutta processes of high order, J. Austral. Math. Soc.,
4 (1964) pp. 179–194.

[4] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations,
Wiley, Chichester, 1987.

[5] M. P. Calvo and J. M. Sanz–Serna, Order conditions for canonical Runge–
Kutta–Nyström methods, BIT, 32 (1992), pp. 131–142.

[6] F. Cameron , A Matlab Package for Automatically Generationg Runge–Kutta
Trees, Order Conditions, and Truncatiom Error Coefficients, ACM Trans. on
Math. Soft., 32 (2006), pp. 274–298.

[7] M. P. Calvo and J. M. Sanz–Serna, High order symplectic Runge–Kutta–
Nyström methods, SIAM J. Sci. Comput., 14 (1993), pp. 1237–1252.

[8] M. M. Chawla and P. S. Rao, Numerov type method with minimal phase lag
for the integration of second order periodic initial value problems II. Explicit
method, J. Comput. Appl. Math., 15 (1986) pp. 329–337.

[9] J. P. Coleman, Order conditions for a class of two–step methods for y′′ = f(x, y),
IMA J. Numer. Anal., 23 (2003), pp. 197–220.

[10] I. Th. Famelis, S. N. Papakostas and Ch. Tsitouras, Symbolic derivation of
Runge–Kutta order conditions, J. Symb. Comput., 37 (2004), pp. 311–327.

[11] E. Fehlberg, NASA TR R381, Marsal Space Flight Center, Ala 35812 (1972).

[12] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration,
Springer–Verlag, Berlin, 2002.

[13] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary differential equations I:
Nonstiff problems, Second Revised Edition, Springer–Verlag, Berlin, 1993.

[14] E. Hairer and G. Wanner, A theory of Nyström methods, Numer. Math., 25
(1976), pp. 383–400.

[15] A. J. Harrison, Runge–Kutta Order Conditions Package, Aveliable from
http://library.wolfram.com/infocenter/MathSource/1524/

[16] M. E. Hosea, A new recurrence for computing Runge–Kutta truncation error
coefficients SIAM J. Numer. Anal., 32 (1997), pp. 1989–2001.

[17] J. Keiper, NumericalMath‘Butcher‘.m, Version 1.2, Wolfram Research Inc.,
1989.

18

[18] J. D. Lambert, Numerical methods for ordinary differential systems, Wiley,
Chichester, 1991.

[19] C. L. Liu, Introduction to Combinatorial Theory, Mac Grow–Hill, 1968.

[20] D. I. Okunbor, Canonical integration methods for Hamiltonian dynamical
systems, (1992) Report UIUCDS-R-92-1885, Univ. Illinois, Urbana

[21] G. Papageorgiou and Ch. Tsitouras, Runge–Kutta pairs for scalar autonomous
Initial Value Problems, Int. J. Comput. Math., 80 (2003), pp. 201–209.

[22] A. Papaioannou, Enumeration of Graphs (in Greek), NTUA, Athens, 2000.

[23] S. N. Papakostas, Unpublished software, 1992–1993.

[24] S. N. Papakostas, Ph.D. Thesis (in Greek), Athens, 1996.

[25] S. N. Papakostas and Ch. Tsitouras, High algebraic order, high phase–lag order
Runge–Kutta and Nyström pairs, SIAM J Sci. Comput., 21 (1999), pp. 747–763.

[26] S. N. Papakostas, Ch. Tsitouras and G. Papageorgiou, A general family of
explicit Runge–Kutta pairs of orders 6(5), SIAM J Numer. Anal., 33 (1996),
pp. 917–936.

[27] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, N. York, 1958.

[28] M. Sofroniou, Symbolic Derivation of Runge–Kutta methods J. Symbol.
Comput., 18 (1994), pp. 265–296.

[29] Ch. Tsitouras, Explicit Numerov–type methods with reduced number of stages,
Proc. 1st Inter. Symp. Nonlinear Problems, ed. N. Stavrakakis, NTUAthens,
January 2000, pp 429–438.

[30] Ch. Tsitouras, A parameter study of a Runge–Kutta pair of orders 6(5), Appl.
Math. Lett., 11 (1998), pp 65–69.

[31] Ch. Tsitouras, Optimal Runge–Kutta pairs of orders 9(8), Appl. Numer. Math.,
38 (2001), pp. 123–134.

[32] Ch. Tsitouras, Stage reduction on P-stable Numerov type methods of eighth
order, J. Comput. Appl. Math., 191 (2006), pp 297–305

[33] Ch. Tsitouras, Explicit eighth order two-step methods with nine stages for
integrating oscillatory problems, Int. J. Mod. Phys. C, 191 (2006), pp 297–305

[34] Ch. Tsitouras and I. Th. Famelis, Symbolic Derivation of Runge–Kutta–
Nyström Order Conditions., J. Comput. Appl. Math., to appear.

[35] Ch. Tsitouras and S. N. Papakostas, Cheap error estimation for Runge–Kutta
pairs, SIAM J Sci., Comput. 20 (1999), pp. 2067–2088.

[36] S. Wolfram, The Mathematica Book, 5th ed., Wolfram Med., 2003.

19

