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We present a new explicit hybrid two step method for the solution of second order ini-
tial value problem. It costs only nine function evaluations per step and attains eighth
algebraic order so it is the cheapest in the literature. Its coefficients are chosen to re-
duce amplification and phase errors. Thus the method is well suited for facing problems
with oscillatory solutions. After implementing a MATLAB program, we proceed with
numerical tests that justify our effort.
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1. Introduction.

We consider the initial value problem of second order

y′′ = f(t, y), y(t0) = y[0], y′(t0) = y′[0], (1)

where f : <N −→ <N and y[0], y′[0] ∈ <N . Observe that y′ is not involved in (1).
In this paper we investigate the class of the above problems with oscillatory

solutions. Our result are methods which can be applied to many problems in ce-
lestial mechanics, quantum mechanical scattering theory, in theoretical physics and
chemistry in electronics and many fields of engineering.

Implicit hybrid Numerov-type methods were introduced by Hairer1, Cash2 and
Chawla3 basically for satisfying P-stability (see Lambert and Watson4 or Simos
and Tsitouras5), a useful property for dealing periodic problems. Later Chawla6

and Chawla and Rao7,8 used explicit modifications of these methods especially for
reducing phase errors, Brusa and Nigro9.

After a decade where only sixth order methods were produced, Simos10 was
enforced to add many additional stages for achieving an eighth order method with
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Table 1. The stages and the formula of the method we consider.

Y [1] = y[k−1]

fk+c1 = f
(
tk − h, Y [1]

)

Y [2] = y[k]

fk+c2 = f
(
tk, Y [2]

)

Y [3] = (1 + c3)y[k] − c3y[k−1] + h2(d11fk+c1 + d12fk+c2 )

fk+c3 = f
(
tk + c3h, Y [3]

)

Y [4] = (1 + c4)y[k] − c4y[k−1] + h2(d21fk+c1 + d22fk+c2 + a21fk+c3 )

fk+c4 = f
(
tk + c4h, Y [4]

)

· · · · · ·

Y [s] = (1 + cs)y[k] − csy[k−1] + h2


 ds1fk+c1 + ds2fk+c2 + as1fk+c3

+as2fk+c4 + · · ·+ as,s−1fk+cs−1




fk+cs = f
(
tk + csh, Y [s]

)

y[k+1] = 2y[k] − y[k−1] + h2


 w1fk+c1 + w2fk+c2 + b1fk+c3 + b2fk+c4 + · · ·

+bs−3fk+cs−1 + bs−2fk+cs




some extra characteristics. Later Tsitouras and Simos11, presented an explicit ten-
stages method of eighth algebraic order and of phase-lag order 14, which was the best
method of this type appeared in the literature until then. That method was of zero
dissipation, something common when implementing two step hybrid methods for
problems with periodic solutions. Similarly, Simos12 derived an 8−th algebraic order
method of phase-lag order 16 using 13 stages, something that affected the overall
efficiency of the method. These methods require the evaluation of interpolatory off-
step nodes. This technique increases the computational cost since the interpolation
points share high accuracy too, something that is useless. So six stages are needed
per step for a sixth order method while an eighth order method uses ten stages per
step.

Tsitouras13,14, considered another approach, similar to the one used for the
construction of Runge-Kutta-Nyström(RKN) methods avoiding that purposeless
derivation of intermediate points. Instead of spending much effort increasing the
accuracy of internal nodes we simply involve them in a scheme, where only the final
result of the approximation in every step has to achieve the demanded order. Using
this technique one can manage to derive sixth order method at a cost of four stages
instead of the six stages needed according to classical implementation8.

At the same time Papakostas and Tsitouras15, presented high phase-lag order
Runge-Kutta and Runge-Kutta-Nyström methods with non zero amplification error.
Finally the results given by Simos and his coleagues16,17,18 concerning Schrödinger
equation, encouraged us to deal with the derivation of non zero dissipative two-
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step sixth order methods of high phase-lag order using the new implementation,
Papageorgiou et. al19. Later these type of methods were studied theoretically by
Coleman20 and Chan et. al.21 through B2-series and P-series respectively. Some
other methods presented recently can be found in Psihogios and Simos22,23 and
Calvo et. al24.

The methods we consider here are of the form given in Table 1, where h =
tk+1−tk = tk−tk−1 = · · · = t1−t0. The vectors y[k+1], y[k] and y[k−1] approximate
y(tk +h), y(tk) and y(tk−h) respectively while Y [1] ∈ <N , Y [2] ∈ <N , · · · form f ’s,
which are the stages of the method. These stages do not approximate any internal
points. They are used in a tricky way to achieve a high order final formula.

Following tradition we make use of known information at mesh, setting:

Y [1] = y[k−1], Y [2] = y[k].

Since f(tk−1, Y
[1]) has been evaluated in the previous step, only f(tk, Y [2]) is an

actual stage in the current step.

2. Algebraic order of the new method.

When solving (1) numerically we have to pay attention in the algebraic order of the
method used, since this is the main factor of achieving higher accuracy with lower
computational cost. Thus this is the main factor of increasing the efficiency of our
effort. Using the notation of Nyström methods the new one can be formulated in a
table like the Butcher25,26 tableau,

c A

b
.

In vector notation, for an autonomous system y′′ = f(y), an s-stage Numerov type
method takes the form

y[k+1] = 2y[k] − y[k−1] + h2 · (b⊗ Is) · f (Y )

Y = (e + c)⊗ y[k] − c⊗ y[k−1] + h2 · (A⊗ Is) · f (Y )
(2)

with Is ∈ <s×s the identity matrix, A ∈ <s×s, bT ∈ <s, c ∈ <s the coefficient
matrices of the method and

e = [1 1 · · · 1]T ∈ <s.

For this case the independent variable t can be considered as an extra component
of y, setting

y′′N+1 = 0, y
[0]
N+1 = t0, y

′[0]
N+1 = 1.

As an example lets take a look at Numerov made explicit by Chawla6. This two
stage method is given by

Y [1] = y[k−1], Y [2] = y[k], Y [3] = 2y[k] − y[k] + h2f(tk, Y [2]),

y[k+1] − 2y[k] + y[k−1] = 1
12 · (f(tk+1, Y

[3]) + 10f(tk, Y [2]) + f(tk−1, Y
[1])).

(3)
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By the above analysis we have the following matrices characterizing (3):

A =




0 0 0
0 0 0
0 1 0


 ,

b =
[

1
12

5
6

1
12

]
,

and

c =
[−1 0 1

]T
.

The first two rows of A have no entries since no f ’s are involved in the evaluation
of Y [1] and Y [2]. The third row of A is [0 1 0] because

Y [3] = · · ·+ h2(0 · f(tk−1, Y
[1]) + 1 · f(tk, Y [2]) + 0 · f(tk+1, Y

[3])).

Methods like (3) are called explicit because we compute the stages in sequence.
In the Nyström notation used here this is reflected by a strictly lower triangular
coefficient matrix A. On the other hand, if aij 6= 0 for some i ≤ j the method is
called implicit. This leads to the solutions of non-linear algebraic systems increasing
the computational effort.

For the explicit methods we introduce in this paper we take s = 10 and the
corresponding matrices become:

A =




0 0 0 · · · 0
0 0 0 · · · 0
d11 d12 0 · · · 0
d21 d22 a21 0 · · · 0
...

. . .
...

d81 d82 a81 · · · a87 0




,

b =
[
w1 w2 b1 b2 · · · b8

]
,

and

c =
[−1 0 c1 c2 · · · c8

]T
.

The new method needs only nine function evaluations per step since f(Y [1]) has
been already evaluated in the previous step.

Our method shares 62 parameters. As can be seen above there are 44 coefficients
for A (namely d11, d12, d21, d22, a21, · · · ), 10 coefficients for vector b and 8 entries for
vector c. The numbers of equations of condition for various orders coincides the
corresponding number for Runge-Kutta-Nystrom27 methods and they are listed in
Table 2. For achieving 8−th order, 1+1+2+3+6+10+20+36 = 79 equations have
to be satisfied. In Appendix-A we list the equations up to 8−th order in various
Tables.
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Table 2. Number of order conditions.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14
conditions 1 1 2 3 6 10 20 36 72 137 275 541 1098 2208

The parameters are less than equations and we meet a similar problem in the
construction of Runge-Kutta (RK) methods. Traditionally we make simplifying as-
sumptions that reduce the number of conditions but commit a smaller number of
coefficients. Tsitouras28 addressed this problem for implicit methods of the same
type and derived an eighth order P-stable method at a cost of six stages . Analo-
gously to the manipulation we used there and other papers 29,30,31, we make the
following simplifying assumptions:

w1 = b1 = b2 = 0 (4)

and

(Ae)(3−10) = 1
2

(
c2 + c

)
(3−10)

(Ac)(3−10) = 1
6

(
c3 − c

)
(3−10)

(Ac2)(3−10) = 1
12

(
c4 + c

)
(3−10)

(Ac3)(5−10) = 1
20

(
c5 − c

)
(5−10)

(5)

with

ci =
[
(−1)i 0 ci

1 ci
2 · · · ci

8

]T
,

and for k1 < k2

(v)(k1−k2) = [vk1 vk1+1 · · · vk2 ]
T .

The requirement (4) is obligatory in contrary to assumptions made in Ref. 28, since
the available aij ’s for explicit methods are not enough to satisfy equations (5) for all
indexes. The remaining order conditions are given in Table 3. In this table operation
”*” may understood as component-wise multiplication:

[u1 u2 · · ·un]T ∗ [v1 v2 · · · vn]T = [u1v1 u2v2 · · ·unvn]T .

This operation has the less priority. Parentheses, powers and dot products are always
evaluated before ”*”.

Table 3. Equations of condition up to eighth order,
under assumptions (4) - (5).

b · e = 1, b · c = 0 b · c2 = 1
6
,

b · c3 = 0, b · c4 = 1
15

, b · c5 = 0,

b · c6 = 1
28

, b ·A · c4 = 1
840

, b · c7 = 0

b · (c ∗A · c4) = 1
180

, b ·A · c5 = 0
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So only forty four equations are required assuming eleven order conditions
and satisfaction of 3 + 8 + 8 + 8 + 6 = 33 assumptions (4) - (5). This
leaves eighteen coefficients as free parameters. In order to shorten the prob-
lem we force c8 = 1, c7 = −1, c6 = 1

4 , c5 = − 1
4 , c3 = −c4. Then

we may express all the coefficients with respect to 13 free parameters, namely
a63, a64, a73, a74, a75, a76, a83, a84, a85, a86, a87, b7 and c2.

3. Periodic problems.

Following Lambert and Watson4 and in order to study the periodic properties of
methods posed for solving (1), it is constructive to consider the scalar test problem

y′ = −ω2y, ω ∈ <. (6)

When applying an explicit two step hybrid method of the form (2) to the problem
(6) we obtain a difference equation of the form

y[k+1] + S
(
v2

)
y[k] + P

(
v2

)
y[k−1] = 0, (7)

where y[k] ≈ y (nh) the computed approximations at n = 1, 2, . . ., v = ωh, and
S

(
v2

)
, P

(
v2

)
polynomials in v2.

The interval of periodicity (0, v0) includes all 0 < v < v0 with P
(
v2

) ≡ 1 and
0 < |S (

v2
) | < 2. A method with v0 = ∞ is P-stable.

Zero dissipation property is fulfilled by requiring

P
(
v2

)
= 1 + v2b

(
Is + v2A

)−1 ≡ 1,

and helps a numerical method that solves (6) to stay in its cyclic orbit.
The dissipation order q of a method is the number satisfying 1−P

(
v2

)
= O(vq).

Notice that

P
(
v2

)
= 1 +

∞∑

j=0

v2j+1b ·Aj · c = 1 + vz1 + v3z3 + · · · .

A method of algebraic order 2 · i satisfies the terms in the series above for j =
0, 1, · · · , i− 1. This means that for an eighth order method it is desirable to solve

z9 = b ·A4 · c = 0, z11 = b ·A5 · c = 0, · · · etc.,

in order to get higher dissipation order. For a zero-dissipative method only z9 =
z11 = z13 = z15 = z17 = 0 is required, since for the lower triangular matrix A, all
other z′-s vanish,

z2i+1 = b ·Ai · c = 0, for i > 8.

The phase-lag of the method is the angle difference between numerical and
theoretical cyclic solution of (6). Since the solution of (6) is

y(x) = eiωx,
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we may write equation (7) as

e2iv + S
(
v2

) · eiv + P
(
v2

)
= O(vp), (8)

with the number p the phase-lag order of the method. Since

S
(
v2

)
= 2− v2b · (I + v2A

)−1 · (e− c)

we observe that expression (8) is a series of the form

∞∑

i=2

v2i




i−1∑

j=1

1
2(i− j)!

b ·Aj−1 · (e + c) + b ·Ai−1 · e− 2
i∑

j=1

1
(2j)! · (2(i− j))!


 =

= v2l2 + v4l4 + v6l6 + O(v8).

This series is satisfied for v2·j , j = 1, 2, · · · , i, when 2 · i is the algebraic order of
the method. Thus it is interesting to eliminate as many as possible higher order
coefficients of it. We proceed solving the 44 equations for algebraic order using
MATHEMATICA32 and managed to get lengthly expressions for all the coefficients
with respect to the 13 free ones. These expressions can’t be presented here but can
be requested from the author by e-mail. Then we wrote a MATLAB33 function
requiring simultaneously:

z9 = 0, z11 = 0, l10 = 0, l12 = 0, l14 = 0, l16 = 0, and l18 = 0. (9)

We evaluated the 13 parameters satisfying (9) and concluded to a method with
phase error of O(v20), while the amplification error is O(v13). We conjecture that
no zero dissipation method with this low phase lag exist in the class of methods we
considered. In consequence the new method is dissipative and does not posses an
interval of periodicity. Sacrificing high phase lag order for achieving zero dissipation
property alone was not proved a good choice.

The coefficients of the new method are given in the Appendix-B as a part of a
MATLAB program.

4. Numerical Tests.

To illustrate the efficiency of our new method we compared it with

• PL22 : The eigth order method given in Tsitouras34,
• PL14 : The sixth order method given in Papageorgiou et al19,
• NEW : The new method implemented in Appendix-B.

The main characteristics of the methods under comparison can be found in Table
4.

Four problems are chosen for our comparisons that are well known from the
relevant literature.
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Table 4. The main characteristics of the methods un-
der comparison.

method order stages phase-lag amplification

PL22 8 10 22 9
PL14 6 5 14 9
NEW 8 9 20 13

4.1. Bessel equation

First we considered the following problem

y′′ =
(
−100 +

1
4t2

)
y, y (1) = J0 (10) , y′ (1) = −0.5576953439142885,

whose theoretical solution is

y(t) =
√

xJ0 (10t) .

We solved the above equation in order to find the 100th root of the solution which
occurs when t = 32.59406213134967.

4.2. Inhomogeneous equation

Our second test problem was an inhomogeneous problem:

y′′ = −100y(t) + 99 sin(t), y(0) = 1, y′(0) = 11

with analytical solution

y(t) = cos(10t) + sin(10t) + sin(t).

We integrated that problem in the interval t ∈ [0, 10π] as in Simos et. al.35 or Simos
and Tsitouras11.

4.3. Duffing equation

Then we considered the following problem

y′′ = −y − y3 +
1

500
· cos (1.01t) ,

y (0) = 0.200426728067, y′ (0) = 0,

with theoretical solution given by Van Dooren36 as

y(x) = .200179477536 cos(1.01t) + 2.46946143 · 10−4 cos(3.03t)

+3.04014 · 10−7 cos(5.05t) + 3.74 · 10−10 cos(7.07t).

We solved the above equation in the region t ∈ [
0, 20.5

1.01π
]

because y
(

20.5
1.01π

)
= 0.
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4.4. Wave equation

Finally we chose the Wave equation37

∂2u

∂t2
= gd (x)

∂2u

∂x2
+

1
4
λ2 (x, u)u, x ∈ [0, b] , t ≥ 0,

with initial (and boundary) conditions

∂u

∂x
(t, 0) =

∂u

∂x
(t, b) = 0

u (0, x) = sin
πx

b
,

∂u

∂t
(0, x) = −π

b

√
gd cos

πx

b
.

We implemented the case

b = 100, g = 9.81, d = 10
(

2 + cos
2πx

b

)
, λ =

g | u |
2500d

following Houwen and Sommeijer37. By using the method of lines with ∆x = 10,
this problem was converted into a system of ODEs with eleven equations. The ninth
component u9 of the system approximates u(t, x) at x = 8∆x = 80. A very accurate
integration calculated the 10th zero of u9 is 63.35062926689779. So we integrated
the methods to this point and recorded the values of the 9th component.

We computed the end point global error eij achieved by i−th method for j−th
problem and then recorded the values −log(eij) in Tables 5, 6, 7 and 8. All problems
were tested for the same computational cost for all methods.

Table 5. Accurate digits for Besell equation

Function Evaluations
Method 4000 5000 6000 7000 8000 9000

PL22 9.3 9.5 9.9 10.3 10.7 11.1
PL14 9.0 9.6 10.1 10.5 10.8 11.1
NEW 9.1 10.0 10.7 11.4 11.9 12.4

Table 6. Accurate digits for Inhomogeneous equation

Function Evaluations
Method 3000 3600 4200 4800 5400 6000

PL22 7.7 8.9 9.7 9.9 10.2 10.5
PL14 8.8 9.4 9.9 10.4 10.9 11.3
NEW 8.8 9.8 10.7 11.4 12.2 12.8

We observe in average an improvement of 1.3 digits over the 8−th order method
which is considerable for methods of the same algebraic order. Other explicit eighth
order methods that are special tuned for oscillatory problems can been found in



January 31, 2006 23:8 WSPC/INSTRUCTION FILE Tsitouras-rev

10 Ch. Tsitouras

Table 7. Accurate digits for Duffing equation

Function Evaluations
Method 2000 3000 4000 5000 6000 7000

PL22 4.5 6.9 8.3 9.3 10.1 10.9
PL14 4.3 7.1 8.3 9.0 9.6 10.1
NEW 5.7 8.2 9.6 10.5 10.9 11.1

Table 8. Accurate digits for the wave equation

Function Evaluations
Method 1080 1620 2160 2700 3240 3780

PL22 6.4 7.9 9.1 10.1 10.8 11.5
PL14 7.4 9.1 10.4 11.3 12.1 13.0
NEW 6.6 9.4 11.3 12.4 13.6 14.4

the literature11,12,15, but it was proved that the 22-th phase-lag order method of
Tsitouras34 has already outperformed them.

The improvement over the sixth order method is little less than 1.0 digit. The
results of this five stage-method were extraordinary in Papageorgiou et al19 and it
was hard to overthrow them. It seems that the stage reduction and raising the am-
plification order of our new method was of crucial importance for gaining efficiency.
Running the methods for larger intervals doesn’t change the overall icon.

5. Conclusion

A new 8−th order method with nine stages is constructed using a recently in-
troduced approach. Equations of condition for the attainable algebraic order and
compact forms for the expression of phase-lag and amplification are given. The nu-
merical results confirm our theoretical considerations for superior performance over
problems with oscillatory solutions. In a future work it is very possible to manage
dropping one stage yet, thus decreasing their number to 8. But it is of question if
pleasant properties such as phase-lag could be kept in small magnitude.

Acknowledgment

This research was co-founded by 75% from E.U. and 25% from Greek government
under the framework of the Education and Initial Vocational Training Program -
Archimedes of the TEI of Chalkis. I also thank Mrs K. Vakalopoulou (National
Statistical Service Greece), who was financed by this program, for valuable help
during the preparation of the paper.



January 31, 2006 23:8 WSPC/INSTRUCTION FILE Tsitouras-rev

Explicit Eighth order two-step methods 11

Table 9. Truncation error coefficients of 1−st to 6−th order.

order equations

1 b · e− 1

2 b · c

3 b ·A · e− 1
12

, b·c2
2
− 1

12

4 b ·A · c, b · (c ∗A · e)− 1
12

, b·c3
6

5 b ·A2 · e− 1
360

, 1
2
b ·A · c2 − 1

360
, b · (c ∗A · c) + 1

60

1
2
b · (A · e)2 − 7

240
, 1

2
b · (c2 ∗A · e)− 1

60
, b·c4

24
− 1

360

6 b ·A2 · c, b ·A · (c ∗A · e)− 1
360

, 1
6
b ·A · c3,

b · (c ∗A2 · e) + 1
720

, 1
2
b · (c ∗A · c2)− 1

144
, b · (A · c ∗A · e) + 1

120
,

1
2
b · (c2 ∗A · c), 1

2
b · (c ∗ (A · e)2)− 1

60
, 1

6
b · (c3 ∗A · e)− 1

180
,

b·c5
120

Appendix A. Order conditions and Truncation error coefficients

The truncation error derives by the subtraction of (2) from its theoretical corre-
spondence. It is a series of the form

h2T11F11 +h3T21F21 +h4 ·(T31F31 + T32F32)+h5 ·(T41F41 + T42F42 + T43F43)+ · · ·
where Tij ’s are the truncation error terms depending exclusively to the coefficients
of the method A, b, c. Fij ’s are elementary differentials with respect to y′, f and
f (k) = ∂kf

∂tk , k = 1, 2, · · · 38 and depend to each problem. So for a fourth order
method

T11 = T21 = T31 = T32 = T41 = T42 = T43 = 0,

has to be satisfied. Observe that a p−th order method has truncation error of
O(hp+2) and not O(hp+1). This happens because we have accuracy reduction from
the non-existence of y′ in the formulas (2), see Ref. 39 p. 464.

A serious understanding of the derivation of order conditions needs investigation
through B2-series of Coleman20. Here we list the first 23 truncation error expressions
for orders one through six, in Table 9. The next 20 terms for 7−th order and the
36 ones for 8−th algebraic order are given in Tables 10 and 11 respectively. These
terms can be thought belonging to various sets along with their order. Thus the set
T (1) = {T11}, while

T (2) = {T21}, T (3) = {T31, T32}, · · ·
It must be noticed that the presentation in these Tables is rather simplified

assuming that lower order coefficients are already known. For example the first of
the sixth order terms is not

T61 = b ·A2 · c
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Table 10. Truncation error coefficients of 7−th order, forming set T (7).

b ·A3 · e− 1
20160

, 1
2
b ·A2 · c2 − 1

20160
, b ·A · (c ∗A · c) + 11

15120
,

1
2
b ·A · (A · e)2 − 17

20160
, 1

2
b ·A · (c2 ∗A · e)− 1

3360
, 1

24
b ·A · c4 − 1

20160
,

b · (c ∗A2 · c)− 17
10080

, b · (c ∗A · (c ∗A · e))− 37
10080

, 1
6
b · (c ∗A · c3) + 11

10080
,

b · (A · e ∗A ·A · e)− 1
20160

, 1
2
b · (A · c2 ∗A · e)− 17

4032
, 1

2
b · (c2 ∗A2 · e)− 1

1344
,

1
4
b · (c2 ∗A · c2)− 1

1344
, 1

2
b · (A · c)2 − 29

30240
, b · (c ∗A · c ∗A · e) + 13

5040
,

1
6
b · (c3 ∗A · c) + 13

15120
, 1

6
b · (A · e)3 − 11

2240
, 1

4
b · (c2 ∗ (A · e)2)− 43

6720
,

1
24

b · (c4 ∗A · e)− 1
1344

, b·c6
720

− 1
20160

Table 11. Truncation error coefficients of 8−th order, forming set T (8).

b ·A3 · c, b ·A2 · (c ∗A · e)− 1
20160

, 1
6
b ·A2 · c3,

b ·A · (c ∗A2 · e) + 1
7560

, 1
2
b ·A · (c ∗A · c2)− 1

4320
, b ·A · (A · c ∗A · e) + 11

30240
,

1
2
b ·A · (c2 ∗A · c), 1

2
b ·A · (c ∗ (A · e)2)− 1

3360
, 1

6
b ·A · (c3 ∗A · e)− 1

10080
,

1
120

b ·A · c5, b · (c ∗A3 · e)− 23
60480

, 1
2
b · (c ∗A2 · c2) + 1

2160
,

b · (c ∗A · (c ∗A · c)) + 1
720

, 1
2
b · (c ∗A · (A · e)2)− 1

1260
, 1

2
b · (c ∗A · (c2 ∗A · e)) + 1

4032
,

1
24

b · (c ∗A · c4)− 1
4320

, b · (A · e ∗A2 · c)− 17
20160

, b · (A · e ∗A · (c ∗A · e))− 13
5040

,

1
6
b · (A · c3 ∗A · e) + 11

20160
, 1

2
b · (c2 ∗A2 · c), 1

2
b · (c2 ∗A · (c ∗A · e))− 1

1344
,

1
12

b · (c2 ∗A · c3), b · (A · c ∗A2 · e)− 1
3780

, 1
2
b · (A · c ∗A · c2) + 1

1440
,

b · (c ∗A · e ∗A2 · e)− 17
20160

, 1
2
b · (c ∗A · c2 ∗A · e)− 43

20160
, 1

6
b · (c3 ∗A2 · e)− 1

30240
,

1
12

b · (c3 ∗A · c2)− 1
2160

, 1
2
b · (c ∗ (A · c)2), 1

2
b · (A · c ∗ (A · e)2) + 13

10080
,

1
2
b · (c2 ∗A · c ∗A · e) + 13

10080
, 1

24
b · (c4 ∗A · c), 1

6
b · (c ∗ (A · e)3)− 73

20160
,

1
12

b · (c3 ∗ (A · e)2)− 1
672

, 1
120

b · (c5 ∗A · e)− 1
6720

, b·c7
5040

but actually

T61 =
1

120
b · c +

1
6

b ·A · c + b ·A2 · c.

Taking in account that

T21 = b · c = 0, and T41 = b ·A · c = 0

from lower order terms we conclude to that listed in Table 9. In case of studying
a third order method this would not correspond to its real truncation error since
b · A · c = 0 is not fulfilled by such a method. Tsitouras40 presented a small list of
13 order conditions for the special case of linear problems. It is natural that many
coefficients, such as T53 from the tables given here, couldn’t appear in that list21!
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After using (4) and the row from (5), all equations containing expression Ai ·
e, i > 0, coincide with others and vanish. For example it is easily seen that only
one of the elements from T (3) is needed since

T31 = b ·A ·e− 1
12

= b · 1
2
· (c2 + c)− 1

12
=

1
2

b · c2 +
1
2

b · c− 1
12

=
1
2

b · c2− 1
12

= T32

In a similar way after using the second row of (5), we may discard all equations
containing Ai · c2, i > 0. Continuing this way we conclude to equations of Table 3.
In that table there exist only two equations of seventh order. Namely the equations
of the fourth line, b · c6 = 1

28 and b · A · c4 = 1
840 . The three equations on the fifth

and sixth lines of the same table are of eighth order.
Another interesting issue is to keep the magnitude of the Euclidean norm of the

principal truncation error small. So for a sixth order method it is important to have
the value

‖T (7)‖2 =
√

T 2
7,1 + T 2

7,2 + · · ·+ T 2
7,20,

as small as possible. Similar we want for eighth order methods a minimized value
for

‖T (9)‖2 =
√

T 2
9,1 + T 2

9,2 + · · ·+ T 2
9,72.

For our new method we evaluated ‖T (9)

NEW‖2 = 1.79×10−3, while for its competitor
we have ‖T (9)

PL22‖2 = 8.51× 10−3, almost five times larger.

Appendix B. MATLAB Program

We implement a MATLAB program using the coefficients of our new method. As
input we have:

INPUT
variable usage

fcn the function
x0 left point
xe end point
y0 initial vector
y1 y(x0+h)
n number of steps

In the output we get the vector x = [x0, x0 + h, x0 + 2h, ..., x0 + nh]T and the
matrix y ∈ <N×n with the corresponding values of y(x). The program was written
in minimal length gaining space. Documentation, checks and other programming
techniques were omitted so the final listing gives accent to the actual method.

function [x,y]=numer_order8_stages9(fcn,x0,xe,y0,y1,n);

%

% 9 stages, 8th order, explicit method, for solving y’’ = f(x,y)

% The coefficients
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c=[-1 0 -1.618033988749895 -0.08935969452190693 ...

-0.7180027509073757 0.7180027509073757 -0.25 0.25 -1 1]’;

b=[0.02267478608411768 0 0 0 0.1091598371161353 0.1091598371161353...

0.3880338950775969 0.3880338950775969 -0.01986851827784987 0.002806267806267806];

a=[0,0,0,0,0,0,0,0,0,0;

0,0,0,0,0,0,0,0,0,0;

0.4363389981249825,0.06366100187501753,0,0,0,0,0,0,0,0;

-0.02663944838475621,-0.02138085097354293,0.007333029599869930,0,0,0,0,0,0,0;

-0.05259994463359025,0.1179873479656171,0.006223764486158627, ...

-0.1728485681165938,0,0,0,0,0,0;

-0.1594931414841811,1.756644381705087,0.002177668974400012, ...

-1.462560200318788,0.4799966417324492,0,0,0,0,0;

-0.01315251843525407,0.08148753879227717,0.002255441346558031, ...

-0.1407999204529257,-0.02359301393743279,0.00005247268677732879,0,0,0,0;

0.1182251406950030,-0.2071467658425108,-0.009902612273876664, ...

0.2377506314405291,-0.1720715921748083,0.008456715906120000, ...

0.1809384822495436,0,0,0;

0.6545342597532786,4.968502507588174,-0.05384950599580273, ...

-4.016696408666935,-1.055358930155700,0.2067362330539400, ...

1.043495190976432,-1.747363346553386,0,0;

-0.2731258141928670,-19.26209659195308,0.2868033393908071, ...

21.50877058850632,-1.286133152186278,0.7520725477949123, ...

-1.229894203564763,0.6765130737370460,-0.1729097875320912,0];

s=10; % stages

h=(xe-x0)/n; % step length

m=length(y0); % dimension of system

x=[x0 x0+h zeros(1,n-1)]’; % output of x

y=zeros(m,n+1); % output of y

y(:,1)=y0; y(:,2)=y1; F=zeros(m,s); f1=feval(fcn,x0,y0);

for k=2:n,

f0=f1;

F(:,1)=f0;

f1=feval(fcn,x(k),y(:,k)); % The first stage

F(:,2)=f1;

for o=3:s, % Another 8 stages

F(:,o)=feval(fcn,x(k)+c(o)*h,(1+c(o))*y(:,k)-c(o)*y(:,k-1)+h*h*F*a(o,:)’);

end;

y(:,k+1)=2*y(:,k)-y(:,k-1)+h*h*F*b’;

x(k+1)=x(k)+h;

end;

In order to run the Bessel equation for 1000 steps (using 9000 stages) we may
write in the command window of MATLAB:
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>> fcn=inline(’-(100+1/4/x^2).*y’,’x’,’y’);

>> isteps=1000;

>> y0=besselj(0,10);

>> x0=1;

>> xend=32.59406213134967;

>> h=(xend-x0)/isteps;

>> y1=sqrt(x0+h)*besselj(0,10*(x0+h));

>> [x,y]=numer_order8_stages9(fcn,x0,xend,y0,y1,isteps);

>> -log10(abs(y(end)))

ans =

12.4250

Rounding this we conclude to the last number 12.4 in the third line of the
corresponding Table-5.
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