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Abstract. The Runge–Kutta pairs of orders5 and4 are the most popular ones in the relevant literature. In order to derive
such method we have to solve a system of nonlinear equations for its coefficients. A common practice for achieving this is to
admit various simplifying assumptions. These restrict the generality of the solution. Here we proceed using the minimal set of
simplifications ever made for the derivation of the coefficients for a pair of these orders. The result is a pair that outperforms
other known pairs in the bibliography when tested to standard set of problems of DETEST.
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INTRODUCTION

We consider the numerical solution of the non-stiff initial value problem,

y′ = f (x,y), y(x0) = y0 ∈ℜm, x∈ [x0,xf ] (1)

where the functionf : ℜ×ℜm → ℜm is assumed to be as smooth as necessary. Traditionally, explicit embedded
Runge-Kutta methods produce an approximation to the solution of (1) only at the end of each step.

The generals−stage embedded Runge-Kutta pair of ordersp(p−1), for the approximate solution of the problem
( 1) can be defined by the following Butcher scheme [3, 4]

c A

b
b̂

whereA∈ ℜs×s, is strictly lower triangular,bT , b̂T , c∈ ℜs with c = A ·e, e= [1, 1, · · · ,1]T ∈ ℜs. The vectorŝb, b
define the coefficients of the(p−1)−th andp−th order approximations respectively.

Starting with a given valuey(x0) = y0, this method produces approximations at the mesh pointsx0 < x1 < x2 < · · ·<
xf . Throughout this paper, we assume that local extrapolation is applied, hence the integration is advanced using the
p−th order approximation. For estimating the error, two approximations are evaluated at each stepxn to xn+1 = xn+hn.
These are:
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The local error estimateEn = ‖yn− ŷn‖ of the(p−1)−th order Runge-Kutta pair is used for the automatic selection
of the step size. Given a ToleranceTOL> En, the algorithm

hn+1 = 0.9·hn · (TOL
En

)
1
p

furnishes the next step length. In caseTOL < En then we reject the current step and try again with the left side of
above formula beinghn.



In case thatcs = 1, as, j = b j for j = 1,2, · · · ,s−1 andbs = 0 6= b̂s then theFirst stage of each step is theSameAs
theLast one of the previous stage. This device was possibly first used in [7, pg. 22] and it is called FSAL. The pair
shares effectively onlys−1 stages per step then.

Let yn(x) be the solution of the local initial value problem

y′(x) = f (x,yn(x)), x≥ xn, yn(xn) = yn

ThenEn+1 is an estimate of the error in the local solutionyn(x) at x = xn+1. The local truncation errortn+1 associated
with the higher order method is
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∞
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whereTqi = Qqi− ξqi/q! with Qqi algebraic functions ofA, b, c andξqi positive integers.Pqi are differentials off
evaluated at(xn,yn) andTqi = 0 for q = 1,2, · · · , p andi = 1,2, · · · ,λq. λq is the number of elementary differentials for
each order and coincides with the number of rooted trees of orderq. It is known that

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48· · · , etc[2].

The setT(q) = {Tq1, Tq2, · · · ,Tq,λq} is formed by theq−th order truncation error coefficients. It is usual practice a
(q−1)−th order method to have minimized

‖T(q)‖2 =

√√√√ λq

∑
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q j.

DERIVATION OF RK PAIRS OF ORDERS 5(4)

The construction of an effectively6−stages FSAL Runge-Kutta pair of orders5(4) requires the solution of a nonlinear
system of25order conditions.λ1+ · · ·+λ5 = 17equations for the higher order formula andλ1+ · · ·+λ4 = 8 equations
for the lower order formula. There are28 unknowns. Namelyc2− c6, b1−b6, b̂1− b̂7, a32,a42,a43,a52,a53,a54 and
a62−a65.

We proceed settingc6 = 1 and an arbitrary value for̂b7. Then the only assumption we make is

b · (A+C− Is) = 0∈ℜ1×s

with C =diag(c) and Is ∈ ℜs×s the identity matrix. This is the minimal set of simplifying assumptions for pairs of
orders5(4). It is worth mentioning that in the family of methods introduced here

A·c 6= c2

2
, andb2 6= 0,

contrary to the common practice of every5(4) pair appeared until now [1, 5, 7, 8].
The implicit algorithm that derives a pair of the new family follows

The algorithm producing the coefficients of the new pair

Setc6 = 1 and get an arbitrarŷb7 6= 0. Select free parametersc2,c3,c4,c5. Then

1. Solveb·e= 1, b·c = 1/2, b·c2 = 1/3, b·c3 = 1/4, b·c4 = 1/5 for b1,b2,b3,b4, andb5.
2. Solveb̂·e= 1, b̂·c = 1/2, b̂·c2 = 1/3, b̂·c3 = 1/4 for b̂1, b̂2, b̂3, andb̂4.
3. Solveb· (A+C− Is) = 0 for a62, · · · ,a65.
4. Solveb ·A3c = 1/120, b ·A2c2 = 1/60, b · (c2Ac) = 1/12, b · (cAc) = 1/8, for a52,a53,a54 anda43. Adjust the

values ofa62,a63 anda64

5. Solve b̂ ·A2c = 1/24, b̂ · (cAc) = 1/4, b̂ ·Ac = 1/6 for b̂5, b̂6 and a42. Adjust the values ofa52,a53,a43 and
a62,a63,a64. Reevaluate all̂b’s.



6. Solveb̂·Ac2 = 1/12 for b6. Reevaluatea52,a53,a54,a43, b̂5, b̂6 anda42. Adjust allb’s.
7. Solveb· (Ac)2 = 1/20 for a32. Compute the final values of the coefficients.
8. Compute explicitlya21,a31,a41,a51,a61 from A·e= c

The equations1−6 are linear to the coefficients. The seventh equation is a rational function overa32. The numerator
of that function is a polynomial of ninth degree and may furnish some real solutions fora32. A Mathematica [13]
implementation of the above algorithm requires reevaluation of the coefficients and the order conditions in every step
of the algorithm above. In a small computer it needs about3−4 seconds to derive the coefficients.

THE NEW RUNGE–KUTTA PAIR

Applying the above described algorithm we constructed a method presented in Table–1. This method shares a rather
large value ofb2 and it is clearly far from any other pair appeared until now. The Norm of the principal truncation error
is ‖T(6)‖2 ≈ 5.23·10−4 while the corresponding value for the Dormand and Prince pair [5] is‖T(6)‖2 ≈ 3.99·10−4.

TABLE 1. The coefficients of the new pair.
c2 = 0.231572163526079 c3 = 0.212252555252816 c4 = 0.596693497318054
c5 = 0.797009955708112 c6 = c7 = 1 b1 = 0.091937670648056
b2 = 1.156529958312496 b3 =−0.781330409541651 b4 = 0.197624776163019
b5 = 0.271639883438847 b6 = 0.063598120979232 b̂1 = 0.092167469090589
b̂2 = 1.131750860603267 b̂3 =−0.759749304413104 b̂4 = 0.205573577541223
b̂5 = 0.264767065074229 b̂6 = 0.040490332103796 b̂7 = 1

40, b7 = 0
a32 =−0.059103796886580 a42 = 4.560080615554683 a43 =−4.006458683473722
a52 =−2.443935658802774 a53 = 2.631461258707441 a54 = 0.524706566208284
a62 = 9.516251378071800 a63 =−8.467630087008555 a64 =−0.987888827522473
a65 = 0.867009765724064 ai1 = ci −∑ j=i−1

j=2 ai j , j = 1,2, · · · ,6 a7i = bi , i = 1,2, · · · ,6

We run the Runge–Kutta pair for the25 DETEST [6] non–stiff problems and for tolerances10−2, 10−3, · · · ,10−6.
For stringent tolerances it is preferred to use higher order pairs. DETEST was implemented through MATLAB2009a
on a Pentium IV computer running Windows XP at 3.4GHz. For comparison purposes the DP5(4) pair [5] was also
run for the same tolerances. We present the results in Table–2.

TABLE 2. Efficiency gains of NEW5(4) relative to DP5(4), for the range of tolerances10−2, · · ·, 10−6.

g.e. A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 E1 E2 E3 E4 E5

−1 4 4 2 0 −1 −3 5
−2 0 3 0 3 2 1 0 −3 −4 1 3 8
−3 0 −1 0 1 0 0 3 1 0 0 0 0 3 −2 −3 1 2 7
−4 0 −2 3 0 0 0 2 1 0 0 0 2 1 1 7 1
−5 0 4 2 0 0 1 1 0 0 0 1 1 2 −1
−6 0 3 0 1 0 0 3 −1

8% 0 3 −1 3 0 2 0 1 3 1 0 0 0 0 2 1 0 −2 −3 −3 1 3 7 2 −1

These results were developed according to the guidelines given in [10]. So, we notify the percentage difference
in the number of function evaluations required for achieving a given maximum global error for each problem. Unity
represents10%. Numbers have been rounded to the nearest digit. Positive numbers mean that the first method is
superior. Zero entries indicate a difference less than5%. The final row, gives the mean value of efficiency gain for all
tolerances in a problem. The left most lower number is the average efficiency gain for all problems. Empty places in
the tables are due to the unavailability of data for the respective tolerances. See [9] for more details.

The coefficient̂b7 does not affect‖T(6)‖2 and it was chosen equal to the one given for the pair of [5]. We finally
observe that the new method is in average8%more efficient than Dormand–Prince5(4) for the DETEST problems. It
is a remarkable improvement over pairs of same orders and origin.

From a users point of view the question is "what pair is best for low tolerances?". It seems that the classical pairs
of orders5(4) that use effectively six stages per step [7, 5, 8] is not the answer. According to our tests for the above
tolerances the pair of orders5(4) given in [1] and the pair of orders6(4) given in [12] perform about25%better.
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