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Abstract. The Runge—Kutta pairs of ordefsand4 are the most popular ones in the relevant literature. In order to derive
such method we have to solve a system of nonlinear equations for its coefficients. A common practice for achieving this is to
admit various simplifying assumptions. These restrict the generality of the solution. Here we proceed using the minimal set of
simplifications ever made for the derivation of the coefficients for a pair of these orders. The result is a pair that outperforms
other known pairs in the bibliography when tested to standard set of problems of DETEST.
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INTRODUCTION

We consider the numerical solution of the non-stiff initial value problem,
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where the functionf : 0 x 0™ — O™ is assumed to be as smooth as necessary. Traditionally, explicit embedded
Runge-Kutta methods produce an approximation to the solution of (1) only at the end of each step.

The generab—stage embedded Runge-Kutta pair of ordeis— 1), for the approximate solution of the problem
(1) can be defined by the following Butcher scheme [3, 4]
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whereA € 05", is strictly lower triangularp”, b™, ce OSwithc=A-e, e=[1, 1,---,1]T € OS. The vectors, b
define the coefficients of thig — 1)—th andp—th order approximations respectively.
Starting with a given valug(xo) = Yo, this method produces approximations at the mesh prjntsx; < X < -+ <
X¢. Throughout this paper, we assume that local extrapolation is applied, hence the integration is advanced using the
p—th order approximation. For estimating the error, two approximations are evaluated at eagh®igp; = Xn + hp.
These are:
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The local error estimate, = ||y, — V|| of the (p— 1)—th order Runge-Kutta pair is used for the automatic selection

of the step size. Given a Toleran€®L > E,, the algorithm

TOL
En

1
hn+1:O.9'hn'( )p

furnishes the next step length. In caBOL < E, then we reject the current step and try again with the left side of
above formula beingy.



Incase thats=1,asj="bjfor j=1,2,---,s—1andbs=0+# bs then theFirst stage of each step is tisameAs
the Last one of the previous stage. This device was possibly first used in [7, pg. 22] and it is called FSAL. The pair
shares effectively onlg— 1 stages per step then.

Let yn(x) be the solution of the local initial value problem

Y (X) = f(X,Yn(X)), X> Xn, Yn(Xn) = ¥n

ThenEn,1 is an estimate of the error in the local solutigyix) atx = x,+1. The local truncation errdp,1 associated
with the higher order method is
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th1 = Yn+1 = Yn(¥n+n) = 5 hi ZTquqi = h" 0%, yn) + O(R*)
g=1 i=

whereTg = Qqi — &qi/q! with Qg algebraic functions oA, b, c andéq positive integersPy; are differentials off
evaluated afxn,yn) andTg =0forq=1,2,---,pandi =1,2,---,Aq. Aq is the number of elementary differentials for
each order and coincides with the number of rooted trees of grdeis known that

M=LA=1A3=2, =4, A5=9, Ag =20, A7 =48---, etc[2].

The sefT (@ ={Tq1, T, ,qu} is formed by theg—th order truncation error coefficients. It is usual practice a

(g—1)—th order method to have minimized
Aq
D]y = 2
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DERIVATION OF RK PAIRS OF ORDERS 5(4)

The construction of an effectivestages FSAL Runge-Kutta pair of ordéi(d) requires the solution of a nonlinear
system oR5order conditionsA; +- - - +As = 17 equations for the higher order formula akgt+-- - - +A4 = 8 equations
for the lower order formula. There a&8 unknowns. Namelg, — cg, by — bg, b1 — by, az», a42, 243, as2, as3, as4 and

962 — Ag5. .
We proceed settings = 1 and an arbitrary value fdy;. Then the only assumption we make is
b-(A+C—1ls)=0e O

with C =diag(c) andls € 0%*S the identity matrix. This is the minimal set of simplifying assumptions for pairs of
orders5(4). It is worth mentioning that in the family of methods introduced here

2
A-c# > andb, # 0,

contrary to the common practice of eveitd) pair appeared until now [1, 5, 7, 8].
The implicit algorithm that derives a pair of the new family follows

The algorithm producing the coefficients of the new pair
Setcg = 1and get an arbitrarfh =+ 0. Select free parametets, C3, C4,Cs. Then

1. Solveb-e=1,b-c=1/2,b-c?=1/3, b-c®*=1/4,b-c* = 1/5 for by, bp, bz, bs, andbs.

2. Solveb-e=1, b-c=1/2, b-c2=1/3, b-c3 = 1/4for by, by, bs, andby.

3. Solveb- (A+C—1Is) = 0for agy, - - -, aes5.

4. Solveb-ASc = 1/120, b-A%c? = 1/60, b- (c?Ac) = 1/12, b- (CAc) = 1/8, for asp, as3, as4 andays. Adjust the
values ofagy, ags3 andag4

5. Solve b- A%c = 1/24, b- (cAc) = 1/4, b- Ac = 1/6 for bs,bs and as,. Adjust the values ofis, as3, a43 and
362, 363, 8s4. Reevaluate alb’s.



6. Solveb-Ac? = 1/12for bs. Reevaluatesy, ass, ass, 343, bs, bg andauy. Adjust allbs.
7. Solveb- (Ac)? = 1/20for ag,. Compute the final values of the coefficients.
8. Compute explicitlyaz1, as1,a41,a51, 861 romA-e=c¢

The equationg — 6 are linear to the coefficients. The seventh equation is a rational functioagvdihe numerator
of that function is a polynomial of ninth degree and may furnish some real solutiorssfoA Mathematica [13]
implementation of the above algorithm requires reevaluation of the coefficients and the order conditions in every step
of the algorithm above. In a small computer it needs alBeu#l seconds to derive the coefficients.

THE NEW RUNGE-KUTTA PAIR

Applying the above described algorithm we constructed a method presented in Table—1. This method shares a rather
large value ob, and it is clearly far from any other pair appeared until now. The Norm of the principal truncation error
is | T(®)||, ~ 5.23- 10~ while the corresponding value for the Dormand and Prince pair [5]19(|> ~ 3.99- 10~*.

TABLE 1. The coefficients of the new pair.

¢, = 0.231572163526079 ¢z = 0.212252555252816 ¢4 = 0.596693497318054

cs = 0.797009955708112 cg=c7=1 b; = 0.091937670648056
b, = 1.156529958312496  bg = —0.781330409541651 by = 0.197624776163019
bs = 0.271639883438847  bg = 0.063598120979232 b1 = 0.092167469090589
b, = 1.131750860603267 by = —0.759749304413104 bs = 0.205573577541223
bs = 0.264767065074229  bg = 0.040490332103796 by =4, b7=0

agy» = —0.059103796886580 a4y = 4.560080615554683 a3 = —4.006458683473722
asp = —2.443935658802774 ag; = 2.631461258707441 as, = 0.524706566208284
asy = 9.516251378071800  ag3 = —8.467630087008555 ags = —0.987888827522473

ags = 0.867009765724064 a =G -y 5 ‘'aj,j=12.6 az=b,i=126

We run the Runge—Kutta pair for tf85 DETEST [6] non-—stiff problems and for tolerancEs 2, 1073, ---,10°6,
For stringent tolerances it is preferred to use higher order pairs. DETEST was implemented through MATLAB2009a
on a Pentium IV computer running Windows XP at 3.4GHz. For comparison purposes H(4)[pRir [5] was also
run for the same tolerances. We present the results in Table—2.
TABLE 2. Efficiency gains of NEVB(4) relative to DP5(4), for the range of tolerancé® 2, ---, 1076,

g.e. ‘ Al A2 A3 A4 A5 ‘ Bl B2 B3 B4 BS‘ Cl1 C2 C3 C4 CS‘ D1 D2 D3 D4 DS‘ El1 E2 E3 E4 ES‘

-1 4 4 2 0 -1-3 5

-2 0 30 3 2 1 0 -3-4 13 8

-3] 0 -1 0|1 0031|0000 3|-2-3 127

-4] 0 -23 0 002 1|00 0 2 1171
-5] 0 4 2 0 0 1 1 0 0 0 1 1 2 -1
-6 | 0 3 0 1 0 0 3 -1
8| 0 3-13 0]2 0131|0000 2|10 -2-3-3|]137 2-1]

These results were developed according to the guidelines given in [10]. So, we notify the percentage difference
in the number of function evaluations required for achieving a given maximum global error for each problem. Unity
representd0% Numbers have been rounded to the nearest digit. Positive numbers mean that the first method is
superior. Zero entries indicate a difference less %f#n The final row, gives the mean value of efficiency gain for all
tolerances in a problem. The left most lower number is the average efficiency gain for all problems. Empty places in
the tables are due to the unavailability of data for the respective tolerances. See [9] for more details.

The coefficient; does not affect|T(®||, and it was chosen equal to the one given for the pair of [5]. We finally
observe that the new method is in aver&@emore efficient than Dormand—Prinéé4) for the DETEST problems. It
is a remarkable improvement over pairs of same orders and origin.

From a users point of view the question is "what pair is best for low tolerances?". It seems that the classical pairs
of orders5(4) that use effectively six stages per step [7, 5, 8] is not the answer. According to our tests for the above
tolerances the pair of orde$$4) given in [1] and the pair of orde&(4) given in [12] perform abou25% better.
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