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where we do not need the use of the intermediate high accuracy inter-

polatory nodes, since only the Taylor expansion of the internal points

is needed. The methods share sixth algebraic order at a cost of �ve

stages per step while their phase lag order is 14 and partly satisfy

the dissipation order conditions. It has be seen that the property of

phase-lag is more important than the non empty interval in construct-

ing numerical methods for the solution of Schrodinger equation and

related problems [1, 16, 18]. Numerical results over some well known

problems in physics and mechanics indicate the superiority of the new

methods.

PACS Codes and Keywords: Initial Value Problems (IVP)

04.20.E, Numerical Solution 02.60, Hybrid Numerov methods, phase-

lag.

1 Introduction.

The initial value problem of second order
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especially when the solution is oscillating, is of continued interest in many

�elds of celestial mechanics, quantum mechanics, scattering theory, theoret-

ical physics and chemistry, and electronics (see [11, 12]). When solving (1)

numerically we have to pay attention in the algebraic order of the method

used, since this is the main factor of achieving higher accuracy with lower

computational cost, i.e. this is the main factor of increasing the e�ciency of

our e�ort.

If we also feel that the solution of (1) is of periodic nature it is essential

to consider some special property, such as phase-lag (or dispersion), ampli-

�cation (or dissipation), interval of periodicity, exponential �tting, adaptive

properties, Chebyshev polynomials �tting etc. Methods with the above prop-

erties can be divided into two categories

(i) Methods with constant coe�cients (phase-lag, interval of periodicity)

(ii) Methods with coe�cients dependent on the frequency of the problem

(exponential �tting, adaptive properties, �tting to Chebyshev polynomials

etc)

If the frequency is known with high accuracy then methods of type (ii)

are preferred. But most of the times we are not in case of having a good

approximation of the frequency of the problem. Another unpleasant situation
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arrives when the problem has many frequencies.

So it is important to consider methods of type (i) sharing the properties of

small phase-lag and ampli�cation. These are actually two types of truncation

errors. The �rst is the angle between the true and the approximated solution,

while the second is the distance from a standard cyclic solution.

One of the most widely used method for solving (1) is the Numerov

method which is fourth algebraic and sixth phase-lag order. This method

is implicit and its implementation involve computations of Jacobians and

solutions of non-linear systems of equations, [4]. So many authors proposed

explicit modi�cations of Numerov method trying simultaneously to increase

the phase-lag order. The algebraic orders achieved were at most only six,

[5, 6, 14]. Simos was enforced to add many additional stages for achieving an

eighth order method with some extra characteristics [15]. Recently Tsitouras

and Simos [23], presented an explicit ten-stages method of eighth algebraic

order and of phase-lag order 14, which is the best method of this type ap-

peared in the literature until then. That method was of zero dissipation,

something common when implementing two step hybrid methods for prob-

lems with periodic solutions. Similarly, Simos [17] derived an 8th algebraic

order method of phase-lag order 16 using 13 stages, something that may a�ect
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the overall e�ciency of the method. These methods require the evaluation

of interpolatory o�-step nodes. This technique increases the computational

cost since the interpolation points share high accuracy too, something that

is useless. So six stages are needed per step for a sixth order method while

an eighth order method uses ten stages per step.

In [19], that purposeless derivation of intermediate points was the mo-

tivation for considering another approach, similar to the one used for the

construction of Runge-Kutta-Nystr�om(RKN) methods. Instead of spending

much e�ort increasing the order of internal nodes we simply involve them

in a scheme, where only the �nal result of the approximation in every step

has to achieve the demanded order. Using this technique one can manage to

derive sixth order method at a cost of four stages (see [19]) instead of the six

stages needed according to classical implementation, [6].

At the same time Papakostas and Tsitouras [13], presented high phase-

lag order Runge-Kutta and Runge-Kutta-Nystr�om methods with non zero

ampli�cation error. Even in [20], it was noti�ed that the zero ampli�cation

error is not so promising. Finally the results given in [1, 16, 18] conserning

Schr�odinger equation, encouraged us to deal with the derivation of non zero

dissipative two-step sixth order methods of high phase-lag order. In order
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to ful�ll the dispersion and the dissipation conditions we added a �fth stage

which increased the degrees of freedom during the construction of the new

scheme. These extra parameters were used for increasing phase-lag order and

partly satisfy the ampli�cation order conditions.

2 Basic theory.

To study the stability properties of methods posed for solving (1), it is con-

structive to consider the scalar test problem

y

0

= �!

2

y; ! 2 < : (2)

When applying an explicit two step hybrid method to the problem (2) we

obtain a di�erence equation of the form

y
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�

y
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�
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2

�

y
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= 0; (3)

where y

n

� y (nh) the computed approximations at n = 1; 2; : : :, v = !h; h

the step size used, and S (v

2

) ; C (v

2

) polynomials in v

2

. All the methods until

now, make the assumption C (v

2

) � 1: This was not obligatory but mostly a

pleasant (as believed) outcome of oversimpli�cations due to the symmetries
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of the methods proposed. The characteristic equation associated with (3) is

�

2

+ S

�

v
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�
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�
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�

= 0: (4)

Following Lambert and Watson [10], we say that the numerical method

(3) has interval of periodicity (0; v

2

0

) if C (v

2

) � 1 and j S (v

2

) j< 2 for all

v

2

2 (0; v

2

0

) : Consequently the method is called P-stable if v

0

= 1: In our

new proposal here C (v

2

) 6= 1 so it is of interest to consider the ampli�cation

(or dissipation) order q as the number satisfying

1� C

�

v

2

�

= O (v

q

) :

Since the solution of (2) is y(x) = e

i!x

we may write
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satisfying (4). So the phase-lag order of the method is p if

cos 2v + S

�

v

2

�

cos v + C

�

v

2

�

= O (v

p

) :

3 The new method

According to the implementation of [6], let h > 0 and t

n

= t

0

+ nh; n =

0; 1; 2; :::; We may construct a sixth order method for the approximation of
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y

n+1

using values from two steps. i.e. [t

n�1

; t

n

] and [t
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values are y

n�1

; y

00
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= f

n�1

and y

n

while we get y

00

n

= f

n

= f (y

n

) at a cost

of one function evaluation.

We also need three more values of second derivatives within the interval

[t

n�1

; t

n+1

] in order to form the required interpolant. These extra values

ought to be of fourth algebraic order. If it was possible to derive them

without cost then we could construct a sixth order method at a cost of four

stages. Unfortunately we can not achieve this task since y

n�1

; y

00

n�1

; y

n

and

y

00

n

are not enough information to give us interpolatory approximations of

intermediate values of the desired accuracy. So the total cost increases to six

stages.

Interpolatory nodes carry a lot of information that is useless even for

conventional methods [19]. Implementing the new method we only need y

00

n

and three extra function evaluations in order to achieve the desired order.

We add another stage, so to achieve high phase lag order. So we �nally have

four extra function evaluations f

a

; f

b

; f

c

and f

d

. This is still less than the

cost of six stages. The new method has the form:

f

n

= f(x

n

; y

n

)
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Using the notation of Nystr�om methods we consider the following matrices.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0

0 0 0 0 0 0

d

11

d

12

0 0 0 0

d

21

d

22

a

21

0 0 0

d

31

d

32

a

31

a

32

0 0

d

41

d

42

a

41

a

42

a

43

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

b =

"

w

1

w

2

b

1

b

2

b

3

b

4

#

;

and

c =

"

1 0 c

1

c

2

c

3

c

4

#

T

Now the method can be formulated in a table like the Butcher Tableau:
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c A

b

(see [2, 3]).

Then we take the Taylor series expansions of the exact value y(t

n

+h) and

the f

a

; f

b

; f

c

, f

d

, y

n+1

. For a sixth order method we match the corresponding

expansions up to h

7

; and we arrive at an expression of the following form :

h

2

(q

21

F

21

) + h

3

(q

31

F

31

) + :::+ h

7

(q

71

F

71

+ :::+ q

7;10

F

7;10

) +O

�

h

8

�

; (6)

where q

ij

are expressions of the coe�cients of the method while F

ij

are ele-

mentary di�erentials with respect to y

0

; f and f

(k)

=

@

k

f

@t

k

; k = 1; 2; :::; 6 (see

[7]). The order conditions for a sixth order method are in total 23 [8]. The

enumeration of order conditions follows from the Nystr�om methods theory

(see [7, 8]).

Reduction of the order conditions is achieved using the simplifying as-

sumption:

Ae =

1

2

�

c

2

� c

�

; (7)

with e = [

1 1 1 1 1 1

]

T

and c

i

=

"

1 0 c

i

1

c

i

2

c

i

3

c

i

4

#

: Equation

(7) reduces all q's with corresponding elementary di�erentials containing f .
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E.g.:

q

42

= bAe+ bc� 1=12

with F

42

= f

0

f is simpli�ed by

q

41

=

1

2

bc

2

�

1

12

with F

41

= f

00

y

0 2

; since

q

42

= bAe+bc�

1

12

= b

1

2

�

c

2

� c

�

�bc�1=12 =

1

2

bc

2

�2bc�

1

12

=

1

2

bc

2

�

1

12

= q

41

(Notice that q

31

= bc ought to be zero satisfying lower order condition). So,

�nally the equations that should be satis�ed so that a method has algebraic

order six are presented in Table 1 (see [21]).

Our methods have 20 parameters in view of (7). So, using a symbolic

manipulation package we can solve the 13 equations of algebraic order and

have 7 free parameters to solve for the dissipation and the dispersion order

conditions. We observe that

1� C

�

v

2

�

= �v

7

b �A

3

� c+ v

9

b �A

4

� c:

On the other hand phase lag is an in�nite series of the form

l

8

v

8

+ l

10

v

10

+ l

12

v

12

+O

�

v

14

�

:
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In Table 2 we present the simpli�ed form of l

8

; l

10

; l

12

when simplifying

assumptions and the algebraic order conditions of Table 1 hold.

In [23], Tsitouras and Simos following tradition asked for 1-C (v

2

) �

0. They were lucky enough to achieve a special solution at a cost of one

parameter. But then they could satisfy only l

8

= l

10

= l

12

= 0; getting a

forced l

14

6= 0:

This holds in our case too. So here we can not get zero dissipation

and a higher phase-lag order together. What we can achieve is to ful�ll

l

8

= l

10

= l

12

= 0 so p = 14 and b �A

3

� c = 0 so q = 9. That means that we

manage to construct a method with order 6 and phase lag order 14 with a

cost of �ve stages. A speci�c choice is given in Table 3.

4 Numerical results

To illustrate our new sixth order method we compared it with the following

methods:

Method 1: The sixth order RKN method of Tsitouras & Papacostas [13],

Method 2: The six stages two-step method of Chawla & Rao [6],

Method 3: The 8th order method of Simos in [15],
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Method 4: The 8th order method of Tsitouras & Simos [23],

Method 5: The general purpose sixth order method of Tsitouras [19],

Method 6: The method of Simos [17] of order 8 with 13 stages.

Method 7: The New Method.

The main characteristics of the methods can be found in Table 4.

The three problems chosen for our comparisons are well known in the

relevant literature.

4.1 Bessel equation

First we considered the following problem

y

00

=

�

�100 +

1

4x

2

�

y; y (1) = J

0

(10x) ; y

0

(1) = �0:5576953439142885;

whose theoretical solution is

y(x) =

p

xJ

0

(10x) :

We solved the above equation in order to �nd the 100th root of the

solution which is equal to 32.59406213134967 (see [23]).
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4.2 Inhomogeneous equation

Our second test problem was an inhomogeneous problem

y

00

= �100y(x) + 99 sin(x); y(0) = 1; y

0

(0) = 11

with analytical solution

y(t) = cos(10x) + sin(10x) + sin(x):

We integrated that problem in the interval x 2 [0; 10�] as in [17, 23].

4.3 Wave equation, [9]

Finally we chose the Wave equation

@

2

u

@t

2

= gd (x)

@

2

u

@x

2

+

1

4

�

2

(x; u)u; x 2 [0; b] ; t � 0;

with initial (and boundary) conditions

@u

@x

(t; 0) =

@u

@x

(t; b) = 0
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u (0; x) = sin

�x

b

;

@u

@t

(0; x) = �

�

b

q

gd cos

�x

b

: (8)

We implemented the case b = 100; g = 9:81; d = 10

�

2 + cos

2�x

b

�

; � =

gjuj

2500d

as in [9]. By using the method of lines with �x = 10, this problem

was converted into a system of ODEs with eleven equations. The ninth

component u

9

of the system approximates u(t; x) at x = 8�x = 80: A very

accurate integration calculated the 10th zero of u

9

is 63:35062926689779: So

we integrated the methods to this point and recorded the values of the 9th

component.

The two step methods were run at constant step size and the observed

end-point error e was recorded at a �xed number of stages. Then we passed in

Tables 5,6 and 7 the value � log e; i.e. the accurate digits of the solution. The

� in the tables means that in that case the method has given unacceptable

results. That means that the accurate digits of the solution were a negative

number. The eighth order Runge-Kutta-Nystr�om method given in [13], were

used to propagate the �rst step.

The Runge-Kutta-Nystr�om pair were run at variable step size mode, ac-
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cording to the guidelines and step-size control algorithm introduced in [22].

Then using linear interpolation on the function evaluations and the corre-

sponding accurate digits observed for each tolerance, we recorded the error

that might have been generated at the stages used by two-step methods.

Interpreting the results it is obvious that the new method generally per-

forms better than the other methods which are of the same or even higher

algebraic order. We note as well that the advantage is clear even the non-

linear realistic model of wave equation. It is worth mentioning that the six-

teenth phase-lag order methods have too many stages and may only become

competitive when applied at quadruple precision.

5 Conclusion

A new method is constructed using a new approach. Using this new promis-

ing technique we manage to construct very e�cient methods with low order

and a small number of stages. This method is performing very well in double

precision. So increasing the number of stages we intend to produce methods

with even higher algebraic and phase lag order which will have excellent be-

havior for every requested accuracy. We note that the methods of the type
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we derived here are nonsymmetric (dissipative). Our results in agreement

with those given in [1, 16, 18] indicate that the crucial property for a method

for the solution of oscillatory problems is the phase-lag.
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Table 1: The equations needed for algebraic order six.

b � e = 1

b � c = 0

b � c

2

=

1

6

b � c

3

= 0

b �A � c = 0

b � c

4

=

1

15

b �A � c

2

=

1

180

b � c �A � c = �

1

60

b � c

5

= 0

b � c

2

�A � c = 0

b � c �A � c

2

= �

1

72

b �A � c

3

= 0

b �A

2

� c = 0

22



Table 2: The equations needed for phase lag order twelve.

l

8

= b �A

3

� e+

1

2

b �A

2

� e�

29

20160

l

10

= b �A

4

� e+

1

2

b �A

3

� e�

1

2

b �A

3

� c+

1

24

b �A

2

� e�

2

14175

l

12

= b �A

5

� e+

1

2

b �A

4

� e�

1

2

b �A

4

� c+

1

24

b �A

3

� e�

1

24

b �A

3

� c

+

1

720

b �A

2

� e�

743

119750400
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Table 3: The coe�cients of the new method.

d

11

= �0:01198958741218540 d

12

= 0:8033023565368236

d

21

= �0:1354926086240548 d

22

= 3:570963452815986

a

21

= 0:1056425232832385 d

31

= 0:005343514535940652

d

32

= �0:1244946227062173 a

31

= �0:03293580148977421

a

32

= 0:008375035141675025 d

41

= �0:05260980968085666

d

42

= 0:1793101099560068 a

41

= 0:03279785282508096

a

42

= �0:007712984194627411 a

43

= 0:0006109986184401625

c

1

= 1:853745004884331 c

2

= �2:207808474569488

c

3

= 0:2575963849069488 c

4

= �0:2448438326576166

w

1

= �0:01095654182197717 w

2

= �1:535330518304029

b

1

= 0:003328481791861325 b

2

= 0:001185580954875260

b

3

= 1:253365756591692 b

4

= 1:288407240787577
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Table 4: The main characteristics of the methods under comparison.

method order stages phase-lag ampli�cation

1 6 5 10 8

2 6 6 10 1

3 8 13 16 1

4 8 10 14 1

5 6 4 8 7

6 8 13 16 1

7 6 5 14 9

Table 5: Accurate digits for the inhomogeneous equation

Function Evaluations

900 1500 2100 2700 3300 3900 4500 5100 5700 6300

Method 1 1.5 3.0 4.1 4.4 4.9 5.3 5.6 6.0 6.2 6.5

Method 2 1.1 3.2 4.4 5.3 6. 6.6 7.1 7.5 7.9 8.2

Method 3 * 0.2 1.7 3.4 4.7 5.7 6.6 7.4 8.1 8.7

Method 4 * 1.3 3.2 4.6 5.7 6.6 7.3 8.0 8.6 9.1

Method 5 0.9 2.3 3.2 3.9 4.5 4.9 5.3 5.6 5.9 6.2

Method 6 * 0.3 3.1 5.4 7.2 8.6 9.6 10.3 10.8 11.1

Method 7 3.5 6.4 7.7 8.4 9.1 9.7 10.2 10.7 11. 11.5
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Table 6: Accurate digits for the Bessel equation

Function Evaluations

900 1500 2100 2700 3300 3900 4500 5100 5700 6300

Method 1 2.3 3.5 5.1 5.6 6.0 6.3 6.6 6.9 7.1 7.3

Method 2 1.7 3.7 5.0 5.9 6.6 7.2 7.7 8.1 8.5 8.8

Method 3 * 0.6 2.3 4.0 5.2 6.3 7.1 7.8 8.4 8.9

Method 4 * 1.8 3.8 5.1 6.3 7.1 7.9 8.5 9.1 9.6

Method 5 1.7 3.0 3.9 4.6 5.1 5.5 5.9 6.2 6.5 6.8

Method 6 1.1 4.3 5.7 6.6 7.4 8.0 8.5 9.0 9.4 9.7

Method 7 3.8 6.1 7.3 8.0 8.5 9.0 9.3 9.7 9.9 10.3

Table 7: Accurate digits for the wave equation

Function Evaluations

360 720 1080 1440 1800 2160 2520 2880 3240 3600

Method 1 2.9 4.0 5.1 6.4 7.8 8.1 8.2 8.2 8.3 8.5

Method 2 2.3 3.4 5.0 6.1 6.9 7.5 8.1 8.6 9.0 9.3

Method 3 * * 2.0 2.9 4.5 5.7 6.7 7.5 8.2 8.9

Method 4 * * 3.0 4.7 5.9 6.9 7.8 8.5 9.1 9.7

Method 5 2.5 3.4 4.4 5.2 5.7 6.2 6.6 6.9 7.3 7.5

Method 6 * 3.0 5.7 8.3 9.6 10.3 10.8 11.3 11.7 12.0

Method 7 2.2 5.6 7.4 8.6 9.6 10.4 11.0 11.6 12.1 12.9
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