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Abstract. We present in this paper a new approach for the derivation of

hybrid explicit Numerov type methods. The new methodology does not require

the intermediate use of high accuracy interpolatory nodes, since we only need the

Taylor expansion of the internal points. As a consequence a sixth order method

is produced at a cost of only four stages per step instead of six stages needed for

the methods appeared in the literature until now. Numerical results over some

well known problems in physics and mechanics indicate the superiority of the

new method.
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1. Introduction.

The initial value problem of second order
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is of continued interest in many �elds of celestial mechanics, quantum mechanics,

scattering theory, theoretical physics and chemistry, and electronics (see [6, 7]).

When solving (1) numerically we have to pay attention in the algebraic order of

the method used, since this is the main factor of achieving higher accuracy with lower

computational cost, i.e. this is the main factor of increasing the e�ciency of our e�ort.

One of the most widely used method for solving (1) is the Numerov method which

is fourth algebraic order. This method is implicit and its implementation involve

computations of Jacobians and solutions of non-linear systems of equations, [1]. So

many authors proposed explicit modi�cations of Numerov method. The algebraic

orders achieved were at most only six, [2, 3, 8]. Recently Tsitouras and Simos [9],

presented an explicit method of eighth algebraic order suitable for problems with

oscillating solutions.

These methods require the evaluation of interpolatory o�-step nodes. This tech-

nique increases the computational cost since the interpolation points share high ac-

curacy too, something that is useless. So six stages are needed per step for a sixth

order method while an eighth order method uses ten stages per step.
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That purposeless derivation of intermediate points is our motivation for consider-

ing another approach, similar to the one used for the construction of Runge-Kutta-

Nystrom methods. Instead of spending much e�ort increasing the order of internal

nodes we simply involve them in a scheme, where only the �nal result has to achieve

the demanded order.

2. The new method

Let h > 0 and t

n

= t

0

+ nh; n = 0; 1; 2; :::; We indent to construct a sixth order

method for the approximation of y

n+1

using values from two steps. i.e. [t

n�1

; t

n

]
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) at a cost of one function evaluation.

Traditionally we also need three more values of second derivatives within the

interval [t

n�1

; t

n+1

] in order to form the required interpolant. These extra values

ought to be of fourth algebraic order. If it was possible to derive them without cost

then we could construct a sixth order method at a cost of four stages. Unfortunately

we can not achieve this task since y

n�1

; y

00

n�1

; y

n

and y

00

n

are not enough information to

give us interpolatory approximations of intermediate values of the desired accuracy.

So the total cost increases to six stages.

Implementing the new method we only need y
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n

and three extra function evalua-

tions f

a

; f

b

and f

c

. The new method has the form:
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Using a symbolic manipulation package we can �nd the Taylor series expansions of

f

a

; f

b

, f

c

, y

n+1

and y(t

n

+ h): Matching the corresponding expansions up to h

7

; we

arrive at an expression of the form, [4]:
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where c

ij

are expressions of the coe�cients of the method while F

ij

are elementary

di�erentials with respect to y

0

; f and f

(k)

=

@

k

f

@t

k

; k = 1; 2; :::; 5: Demanding c

21

=

c

31

= ::: = c

7;10

= 0 we may derive the coe�cients of a sixth order method.

Special care had to be taken when dealing with autonomous systems of ODEs

(otherwise add x

00

= 0; [5, pg 286]). If we have to solve a scalar ODE of the type
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(1) then some of the elementary di�erentials appearing in (2) may compress. For

example f
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for scalar equations while this is not true for systems of

ODEs since f
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are matrices. So a non scalar function was considered for our

computations (see appendix).

The truncation error of the new method for the scalar case is:
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The maximum absolute value of the coe�cients appeared in the expression above

is 3:37 � 10

�3

: The corresponding value for the sixth order method of Chawla & Rao

[3], is 4:74 � 10

�3

:

3. Numerical results

To illustrate our new sixth order method and to compare it with Chawla & Rao

method [3], we consider two examples that are well known in the literature.

First we solved the two body gravitational problem,
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for t 2 [0; 6�]. The absolute end point errors e are recorded and the values � log

10

(e)

are given in Table 1 for the same costs for both methods. We observe that the new

method gains about one decimal digit for the various function evaluations used for

the integration.

Then we consider the Du�ng equation forced by a harmonic function [10],

y

00

+ y + y

3

= 0:002 cos(1:01t); y(0) = 0:200426728067; y

0

(0) = 0;

for t 2 [0; 20:5�=1:01]. We recorded again the same values in Table 2. More than

one decimal digit is the gain now even if the method [3] was especially designed for

periodic problems.
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Table 1: Accurate digits for the two body problem

stages

1200 1800 2400 3000 3600 4200 4800 5400 6000

C-R87 3:3 4:2 4:9 5:5 5:9 6:3 6:6 6:9 7:2

NEW 4:0 5:1 5:8 6:5 7:0 7:4 7:7 8:0 8:3

Table 2: Accurate digits for Du�ng equation

stages

600 900 1200 1500 1800 2100 2400 2700 3000

C-R87 4:3 5:4 6:1 6:7 7:1 7:6 7:9 8:2 8:5

NEW 5:4 6:5 7:2 7:8 8:3 8:7 9:1 9:4 9:7

4. Conclusion

A new approach for the derivation of two step hybrid methods was presented here.

The results of the method we produced were very promising. However a more general

theory is needed for a serious study of this case. Order conditions for the coe�cients

ought to be provided for better understanding the procedure. We hope to be able for

this task in the very near future.

5. Appendix

Following the guidelines given in [4], we consider the system of ODEs

x

00

= f (t; x; y) ; y

00

= g (t; x; y) (3)

There is no need to use more equations in order to simulate the behavior of the

method for a system of equations. Actually we may drop even t from the equations

(3), since adding equation x

00

= 0; we may avoid the independent variable.

We expand in Taylor series all the internal stages and �nally we subtract the

numerical approximation from the theoretical solution. We then expand in Taylor

series this di�erence and we found an O

�

h

8

�

accuracy.

The mathematica [11], justi�cation of the order of the method is now straightfor-

ward.

Mathematica Program

Clear["y*","x*","d*"];

(* 6th order, 4 stages, Numerov type method *)

(* second stage *)

x1=Simplify[Normal[Series[

f-1/2,3/2,1/16,5/16g.fx[t-h],x[t],h^2*f[x[t-h],y[t-h]],h^2*f[x[t],y[t]]g,

fh,0,5g]]];

y1=Simplify[Normal[Series[

f-1/2,3/2,1/16,5/16g.fy[t-h],y[t],h^2*g[x[t-h],y[t-h]],h^2*g[x[t],y[t]]g,
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fh,0,5g]]];

(* third stage *)

x2=Simplify[Normal[Series[

f1/2,1/2,-7/144,-5/48,1/36g.fx[t-h],x[t],h^2*f[x[t-h],y[t-h]],h^2*f[x[t],y[t]],h^2*f[x1,y1]g,

fh,0,5g]]];

y2=Simplify[Normal[Series[

f1/2,1/2,-7/144,-5/48,1/36g.fy[t-h],y[t],h^2*g[x[t-h],y[t-h]],h^2*g[x[t],y[t]],h^2*g[x1,y1]g,

fh,0,5g]]];

(* fourth stage *)

x3=Simplify[Normal[Series[

f-1,2,-2/9,1/3,2/9,2/3g.

fx[t-h],x[t],h^2*f[x[t-h],y[t-h]],h^2*f[x[t],y[t]],h^2*f[x1,y1],h^2*f[x2,y2]g,

fh,0,5g]]];

y3=Simplify[Normal[Series[

f-1,2,-2/9,1/3,2/9,2/3g.

fy[t-h],y[t],h^2*g[x[t-h],y[t-h]],h^2*g[x[t],y[t]],h^2*g[x1,y1],h^2*g[x2,y2]g,

fh,0,5g]]];

(* Di�erence: Theoretical minus Numerical Solution for x[t]*)

dif=x[t+h]-

f-1,2,1/60,13/30,4/15,4/15,1/60g.

fx[t-h],x[t],h^2*f[x[t-h],y[t-h]],h^2*f[x[t],y[t]],h^2*f[x1,y1],h^2*f[x2,y2],h^2*f[x3,y3]g;

(* Taylor expansion of di�erence *)

dif=Simplify[Normal[Series[dif,fh,0,7g]]];

(* convert all expansions with respect to x,x

0

,f,f

0

,f

00

,...,y,y

0

,g,g

0

,g

00

,... etc *)

dif=Expand[dif/.D[x[t],ft,8g]->D[f[x[t],y[t]],ft,6g]];

dif=Expand[dif/.D[x[t],ft,7g]->D[f[x[t],y[t]],ft,5g]];

dif=Expand[dif/.D[x[t],ft,6g]->D[f[x[t],y[t]],ft,4g]];

dif=Expand[dif/.D[x[t],ft,5g]->D[f[x[t],y[t]],ft,3g]];

dif=Expand[dif/.D[x[t],ft,4g]->D[f[x[t],y[t]],ft,2g]];

dif=Expand[dif/.D[x[t],ft,3g]->D[f[x[t],y[t]],ft,1g]];

dif=Expand[dif/.D[x[t],ft,2g]->f[x[t],y[t]]];

dif=Expand[dif/.D[y[t],ft,8g]->D[g[x[t],y[t]],ft,6g]];

dif=Expand[dif/.D[y[t],ft,7g]->D[g[x[t],y[t]],ft,5g]];

dif=Expand[dif/.D[y[t],ft,6g]->D[g[x[t],y[t]],ft,4g]];

dif=Expand[dif/.D[y[t],ft,5g]->D[g[x[t],y[t]],ft,3g]];

dif=Expand[dif/.D[y[t],ft,4g]->D[g[x[t],y[t]],ft,2g]];

dif=Expand[dif/.D[y[t],ft,3g]->D[g[x[t],y[t]],ft,1g]];

dif=Expand[dif/.D[y[t],ft,2g]->g[x[t],y[t]]];

dif=Expand[dif/.D[x[t],ft,2g]->f[x[t],y[t]]];

Print[dif]; (* Print zero result as di�erence *)
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