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Abstract. Explicit Runge-Kutta methods in the form of pairs of orders p (p� 1) provide an

attractive means for the solution of initial value problems of �rst order di�erential equations. Most

existing Runge-Kutta formulae (single methods, as well as pairs) use the minimal number of stages

required for achieving a prescribed order. In this article we shall study, in terms of e�ciency and

reliability, Runge-Kutta pairs of orders p (q), whenever q < p� 1. While in practice pairs of orders

p (p� 1) usually require one or two more stages in addition to those already necessary for a pth order

single method, we show here that if p = 6, 7, 8, or 10, e�cient pairs of orders p (p� 2), p (p� 3),

or p (p� 4) may be easily constructed with a reduced cost in function evaluations with respect to

pairs of orders p (p� 1). In general comparing p (q) pairs used in local extrapolation mode (the one

most frequent in practice), we see that while the propagated solution of a problem is in either case

of the same order p, pairs characterized by q < p � 1 use less function evaluations. Consequently

they might be more e�cient, provided that they are accompanied by a reliable estimator and an

e�cient implementation could be found for their application in practical situations. A new step-

size selection algorithm proposed here takes full advantage of the potential for increased e�ciency

inherited on pairs that are accompanied by no-additional-cost estimators. This algorithm, which

may be also applied to Nystrom pairs, makes code implementation of these pairs attractive, as in

all cases the proportionality of the global error with respect to the requested tolerance is in practice

always achieved. Here we shall cover the cases of pairs of orders 4(2), 6(4), 7(5), 8(6), 8(5), 8(4), and

10(6) with nearly minimized truncation error coe�cients which use a minimal number of stages (i.e.,

in almost all cases equal to that currently known to be the minimal required for constructing a single

method of order equal to that of the higher order method of the pair). By studying the numerical

performance of these pairs we may see that not only these pairs are as reliable as the respective pairs

of the type p (p� 1), but in all cases they seem to be more e�cient. Another important consequence

of the numerical tests performed here, is that they suggest that for a given number of stages, the

best Runge-Kutta pairs that may be attained are those for which the higher order method is of the

maximal possible order.

Key words. Initial Value Problems, ODE solvers, one-step methods, Runge-Kutta pairs, step-

size change control algorithm, tolerance proportionality

AMS subject classi�cation. 65L05

1. Introduction. Explicit Runge-Kutta (RK) methods in the form of pairs of

embedded methods are nowadays considered as one of the most e�cient means for

solving the non-sti� initial value problem

y

0

= f (x; y) ; y (x

0

) = y

0

x 2 [x

0

; x

e

] ; f : R� R

m

! R

m

:

A RK method is characterized by the triple A, b, c (where A 2 R

s�s

, b

T

, c 2 R

s

)

and is said to be of algebraic order (or simply order) p, whenever the coe�cients in

A, b, c satisfy a system of order conditions, which are in one-to-one correspondence

with the set of (rooted) trees of orders not exceeding p (see Butcher [3], Hairer,

Norsett and Wanner [14]). RK pairs are characterized by two RK methods of orders

p (q), (p > q) with distinct vectors of weights b,

^

b, which, however, share the same

function evaluations (A, c are for both methods the same). In the following by T

(p+1)

we symbolize a vector consisting of the principal truncation error coe�cients of a

method. (Here we adopt the usual determination of these coe�cients as in [3], [14].)
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Let s

�

(p) be the minimal number of stages required for the construction of a pth

order RK method and s

�

(p; q) for a p (q) pair respectively. The exact value of the

function s

�

(p) is currently known for orders up to eight and has been established by

Butcher [1], [2] (for a brief summary of related known results the reader may also

consult [3] and [14]). Most existing RK pairs are of orders p (p� 1) and the value of

s

�

(p; p� 1) is known only for orders up to �ve (for order �ve see for example [1] and

the report by Fehlberg [12]).

The most notable open problem in the algebraic study of explicit RK pairs is,

even nowadays, regarded that of the exact determination of the values of the functions

s

�

(p) and s

�

(p; p� 1). It has been conjectured by Butcher in [3], p. 194 (in view of

the results o�ered in [1], [3] and [29]) that s

�

(p) � p = O

�

p

2

�

. It is also highly

probable that s

�

(p; p� 1)� s

�

(p) is at most O (p), since for orders up to eight there

exist pairs con�rming the validity of the relation s

�

(p; p� 1) = s

�

(p) + 1. However,

the only twelve stage family of 8(7) pairs, the authors are aware of, fails on quadrature

problems (such pairs are those of type Ib in [17] and for example the pair NEW8(6) in

Section 2 if it is equipped with an embedded 7th order method instead of a 6th order

one). In general we call defective those pairs or families of pairs of order p (q) for which

at least one pth order truncation error coe�cient of the qth order method vanishes.

As this might lead in some cases to unreliable error estimation, in general, defective

pairs are not considered good candidates for code implementations (see Shampine

[22]).

In practice, the solution of the order conditions for the construction of RK meth-

ods or pairs involves the application of a suitable set of simplifying assumptions (see

for example [3] and for a more up to date information [17] and the classi�cation and

relevant discussion therein). Although the analysis seems to be complicated (espe-

cially for higher order methods), in most cases (see [19], [18], and [17]) e�cient and

easily implementable algorithms have been obtained. These algorithms are charac-

terized by a number of free parameters and de�ne certain families of solution of the

respective order conditions. The values of these parameters may be chosen to satisfy

speci�c criteria. A prominent criterion is usually the minimization of the principal

truncation error coe�cients (in the form of say





T

(p+1)





2

), as exhibited by Dormand

and Prince [9], [20] and more recently by the improved formulas in [18], [19]. This

involves the tricky experience of using numerical and/or symbolic routines, which in

some cases proves to be rather time consuming. Except of the family of 6(5) pairs

studied in [19] (also discovered independently by Verner [32]), another interesting fam-

ily is that introduced by Dormand, Lockyer, McCorrigan and Prince [8] and studied

by Verner [31]. The reader may complete the whole picture of the relevant theory, for

the part of the historical background, by consulting also Fehlberg [11], [12], Verner

[29], [30], Curtis [5], [6] and Butcher [3]. Another well known formula may be found

in Calvo, Montijano, and Randez [4].

From a practical point of view, and according to our own tests, we have seen that

at least for orders up to eight and for medium to high requested accuracies higher

order RK pairs seem to be, in most cases, more e�cient than lower order ones. This

phenomenon to some extent depends on the underlying families and the number of free

parameters de�ning them, because in general, among di�erent families of the same

orders better formulas are usually obtained from those families that are characterized

by a larger number of free parameters (especially if these are among the nodes of a

method). All existing e�cient pairs (with a notable exception to be discussed later)

use the minimal currently known number of stages required for achieving a non-
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defective pair of a prescribed order; it is very probable that this number is actually

the theoretically minimal one as well.

A question that emerges when realizing the relation between p and s

�

(p; p� 1)

is what happens when the stages s of a pth order RK pair are chosen to satisfy the

relations

s

�

(p � 1; p� 2) < s < s

�

(p; p� 1) ;

s

�

(p) � s.

Here we shall study the possibility of using a pth order RK pair when the number

of its stages equals s

�

(p) or s

�

(p) + 1. The lower order formulas of these pairs,

depending on the occasion, will be equal to p � 2, p � 3, or p � 4. When comparing

these pairs with pairs of the type p (p� 1), we see that in most cases they use one or

two less function evaluations, while retaining the same order of approximation on the

propagated solution. Consequently, for higher order pairs, where except of a measure

of the size of T

(p+1)

, the numerical performance of the pairs depends also heavily on

the cost in function evaluations s, these pairs might o�er some good prospects for

�nding a practical implementation. In any case a proper adjustment of the step-size

change algorithm, which takes into account the idiosyncrasy of these pairs, should be

made. This will be studied extensively in Section 3. The numerical results of Section 4

will show that in practice a (p� 2)-order estimator proves to be adequately reliable.

Estimators of orders (p� 3) and (p� 4) are also reliable, provided they are applied

at suitably stringent accuracies.

Let �s

�

(p; q) be the currently best known upper bound for s (p; q). All the higher

order methods of the pairs proposed in this article are of the maximal order allowed

by the number of their stages, i.e., their stages s are chosen so that s = �s

�

(p; q).

We shall call these pairs maximal and we note here that maximal pairs of the type

p (p� 2) are quite common when solving the initial value problem
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by Nystrom methods, which have always been considered as reliable and e�cient.

However, as we shall see later there exists a more reliable and e�ective way for imple-

menting them than that currently being in use.

An alternative possibility is to consider pairs that do not abide by this rule (non-

maximal pairs). Thus far, the only formulae of this type that have appeared in the

literature are the single methods of Shanks [26] and the pairs proposed by Sharp and

Smart in [28] (as well as a 3(4) pair by Fehlberg [12] and a nine-stage FSAL 5(6) pair

by Butcher [3] when either one of them is used in local extrapolation mode|LEM).

Shanks realized that more and more additional stages were required as the order of

a RK method was increasing. So, as an alternative he proposed, among others, in

[26] methods of one or two stages less than the minimal required for a speci�ed order.

These methods were thus essentially of one order less than the claimed one, but with

relatively small principal truncation error coe�cients. Another approach was recently

adopted for RK pairs, this time by Sharp and Smart in [26]. This approach, in one

respect similar to that of Shanks, results to the construction of RK pairs which are

non-maximal with respect to the order achieved for the number of stages used. But

this time their third, �fth, sixth, and seventh-order pairs use more stages than those

known to su�ce for achieving their order (non-maximal pairs).
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In the next section we shall discuss the derivation of pairs of orders p (p � 2),

p (p� 3), or p (p� 4), where we shall present some new pairs with minimized trunca-

tion error coe�cients. In the third section we shall consider some practical aspects of

the implementation of the new pairs. Speci�cally, a new step-size change control algo-

rithm will be presented and its signi�cance, when compared to a classical algorithm of

this kind, will be highlighted by applying it, among others, on p (p� 2) order Nystrom

pairs from the literature. In the �nal section we intend to present some numerical

tests and comparisons between the new maximal pairs presented here and some other

maximal and non-maximal pairs that have appeared previously. As implemented here

the new pairs performed better than the best p(p�1) pairs from the literature on the

Toronto nonsti� test set[15].

2. Some Families Leading to Pairs of Orders p(p�2), p(p�3), and p(p�4).

First we should answer the question of whether there exist pairs of orders 4(3) with

four stages. Consider the vectors in the set

S = fv

1

; v

2

; v

3

g

=

�

(c

2

; c

3

; c

4

) ;

�

c

2

2

; c

2

3

; c

2

4

�

;

�

�

c

2

2

2

; a

32

c

2

�

c

2

3

2

; a

42

c

2

+ a

43

c

3

�

c

2

4

2

��

.

S is formed from the order conditions bc; bc

2

and bAc� c

2

=2: We shall �rst show that

these are linear independent. Assume that this is not true, then for suitable reals �,

�, �, not all of them being zero we should have

�v

1

+ �v

2

+ �v

3

= 0.

Let C = diag (c). Multiplying the above relation from the left by (b

2

; b

3

; b

4

), (b

2

c

2

; b

3

c

3

; b

4

c

4

)

and using the order conditions

bc =

1

2

;

bc

2

=

1

3

; bAc =

1

2�3

;

bc

3

=

1

4

; bCAc =

1

2�4

;

we �nd that

1

2

�+

1

3

� = 0

1

3

�+

1

4

� = 0

�

) � = � = 0,

which is a contradiction. Next, multiplying the vectors in S from the left by u

T

,

where

u =

�

b

2

�

^

b

2

; b

3

�

^

b

3

; b

4

�

^

b

4

�

T

;

and using also the order conditions for the lower order method

^

bc =

1

2

;

^

bc

2

=

1

3

;

^

bAc =

1

2�3

;

we �nd that these vectors are orthogonal to the members of S. So we are led to the

fact that both methods of the pair are identical and consequently there do not exist

pairs of orders 4(3) with 4 stages.

However 4(3) pairs may be constructed by employing the FSAL device (see

Fehlberg [12], Dormand and Prince [9]). Assuming that c

2

, c

3

are di�erent from
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each other and from 0 and 1, we may easily adapt the analytical solution presented

by Butcher [3], p. 179, both to non-FSAL 4(2) pairs and to four-stages FSAL 4(3)

pairs. The global minimum of





T

(5)





2

for both these families of pairs is obtained

when c

2

= 5=14 and c

3

= 13=22 and the corresponding coe�cients may be found

in Table 2.2. We should point out here that the so constructed pairs NEW4(2) and

NEW4(3) are the optimum pairs among all those possessing these order and stage

characteristics, because for their derivation no simplifying assumptions were used

(other than the customary Ae = c, e =(1; 1; : : :; 1)

| {z }

s

T

).

Any �fth-order RK pair requires at least six stages. Moreover, using exactly this

number of stages, e�cient 5(4) pairs may be obtained (see [18]). Consequently, the

consideration of 5(3) pairs does not seem to o�er any advantage. It is not known

until now if there exist non-defective 6(5) pairs with seven stages, while there exist

three categories of families which use eight stages (e�ectively), [19]. Nevertheless,

there do exist a 6(4) family of pairs derived when embedding a fourth order method

to the pairs of type Ia, as de�ned in [17]. Similarly, pairs of orders 7(5) exist with

nine stages and of orders 8(6) with twelve stages (all of them being of the type Ia as

well). Any one of them may be constructed by �rst obtaining a p (p� 1) pair using a

general algorithm developed in [17] (when putting b

s+1

= 0) and then embedding a

(p� 2)-order method at no extra cost. The second part of this algorithm involves the

solution of only one linear system of equations and it is thus fairly straightforward.

The super�cial role played in this case by the (p� 1)-order method simpli�es the

whole derivation, particularly the part concerning the pth order method of the pair.

Moreover 8(5) and 8(4) pairs of type Ib with eleven stages may be constructed in a

similar way. However, we may easily show that any 8(5) or 8(4) pair is necessarily

quadrature defective and its use will be limited here only for illustration purposes and

for reasons to be exhibited in Sections 3, 4. All these pairs are of the maximal order

allowed by the number of stages used.

A complete theoretical study of the pairs of type Ia of orders 6, 7, and 8 has

been performed (among others) for the �rst time in [17]. We note here that a subset

of the pairs of type Ia of orders 6, however characterized by one parameter less, has

been constructed by a di�erent treatment (and not easily generalizable) by Verner

[30]. The type of simplifying assumptions used by these pairs has been proposed

even earlier (but without any theoretical justi�cation) by Fehlberg [11]. However, the

approach of Fehlberg is somewhat limited (and now outdated) for reasons explained

in [17]. Hence, as Fehlberg imposed in [11] unnecessary restrictions, his families of

pairs are described by fewer parameters and in one case (9(8) pair) even led to the

use of one additional stage. A cure for this was later proposed by Verner in [29], but

otherwise the number of free parameters in his (implied) enhanced derivation were

again unnecessarily small and no theoretical justi�cation or algorithms appeared there

as well.

It is interesting to note that in all these cases the principal truncation error

coe�cients of the higher order method of each pair depends almost exclusively on

the values of the free nodes c

i

. Consequently as representative optimal pairs, with

respect to the value of





T

(p+1)





2

, we may choose for the 6(4) pairs the selection of

the nodes of the optimized pair of category (A) presented in [19]. For the 7(5) and

8(6) cases the choice we make is based on the same selection of the nodes as in the

pairs of orders 7(6) and 8(7) presented in [17]. The coe�cients of the 6(4) pair are

given in Table 2.3. For the other pairs, the last column of A and the coe�cients b

i

,
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^

b

i

as needed to be modi�ed, are presented in Tables 2.4, 2.5. The pair 7(5) is based

on the same selection of nodes as the pair 7(6) in [17], namely

c

2

=

1

18

; c

4

=

1

6

; c

5

=

89

200

; c

7

=

74

95

; c

8

=

8

9

;

with

^

b

8

=

1114095023

9014791121

;

while the 8(6) pair is based on the nodes

c

2

=

9

142

; c

5

=

50

129

; c

6

=

34

73

; c

7

=

23

148

;

c

8

=

142

141

; c

10

=

83

91

; c

11

=

143

149

;

with

a

87

=

254

39

;

^

b

11

= �

3

2

;

of the respective pair 8(7). The major characteristics of all new pairs, as well as those

used for the numerical comparisons of Section 4, are given in Table 2.1. The new 8(5)

and 8(4) pairs may be found in Table 2.6.

It seems appropriate to note that the 8(5) and 8(4) pairs are also based on the

derivation, proofs and algorithms of [17]. Speci�cally, the free parameters in this case

are c

2

, c

5

, b

9

, and b

10

. Additionally, for a 5th and 4th order embedded method

^

b

9

,

and

^

b

7

respectively are free as well. According to Proposition 4.2 of [17] three of c

6

,

c

7

, c

8

, c

9

, and c

10

must be non-zero, distinct and di�erent from unity. Elaborating

on this proposition we note that the nodes c

6

, c

7

, and c

8

must be distinct, while each

one of c

9

and c

10

must be distinct and equal to anyone of the former three nodes, i.e.,

the following cases

c

6

= c

7

; c

6

= c

8

; c

7

= c

8

; c

9

= c

10

;

must be excluded. Consequently, the quadrature order conditions restrict the pa-

rameters c

6

, c

7

, and c

8

to assume any permutation of the values

1

2

,

1

2

�

1�

q

3

7

�

. In

total there are 36 possibilities which all lead to the construction of respective meth-

ods. The pairs of Table 2.6 are based on the selection c

9

= c

6

and c

10

= c

8

. Curtis

in [5] studied heuristically just one case, namely that corresponding to c

9

= c

6

and

c

10

= c

7

. In particular his choice c

6

=

1

2

�

1 +

q

3

7

�

; c

7

=

1

2

�

1�

q

3

7

�

and c

8

=

1

2

leads to





T

(9)





2

= 1:04 � 10

�4

.

A signi�cant characteristic of all these pairs is that, having selected the free

^

b parameters suitably, they waste less function evaluations on each rejected step.

In particular, p (p� 2) order pairs save 2 function evaluation per rejected step and

p (p� 3), p (p� 4) order pairs save 3 and 5 function evaluations respectively, while in

general p (p� 1) pairs save only 1 function evaluation per rejected step. This is due

to the selection for example b

10

=

^

b

10

for the parameters of the low order method of

the pair 8(5), which leads to b

11

=

^

b

11

, and accordingly for the others. Under this

selection, while, as it is usual for any RK pair, after a rejected step the �rst function

evaluation is not reevaluated, the above conditions allow as well an early termination

in the estimation of the local error before all stages are computed.
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Table 2.1

The characteristics of the RK pairs referenced in this article.

Method

of

orders

p (q)

E�ective

Number

of

Stages





T

(p+1)





2





T

(p+2)





2

I

R

I

IM

D

1

NEW4(3) 4 (FSAL) 1:19 � 10

�2

1:36 � 10

�2

(�2:78;0) (0; 2:82) 1:15

SS3(2) 4 1:28 � 10

�2

1:39 � 10

�2

(�3:02;0) (0; 2:75) 1:22

NEW4(2) 4 1:19 � 10

�2

1:36 � 10

�2

(�2:78;0) (0; 2:82) 1:15

SS5(4) 7 7:1 � 10

�5

1:77 � 10

�4

(�3:91;0) | 0:86

NEW6(4) 7 2:12 � 10

�4

3:47 � 10

�4

(�3:95;0) (0; 1:76) 0:83

NEW7(6) 10 2:83 � 10

�5

6:24 � 10

�5

(�4:5;0) (2:29;4:61) 13:9

SS6(5) 9 (FSAL) 3:24 � 10

�6

2:44 � 10

�5

(�4:52;0) (2:28;4:60) 13:3

NEW7(5) 9 2:83 � 10

�5

6:24 � 10

�5

(�4:5;0) (2:29;4:61) 13:9

NEW8(7) 13 7:35 � 10

�7

3:45 � 10

�6

(�5:9;0) (0; 2:91) 11:7

NEW8(6) 12 7:35 � 10

�7

3:45 � 10

�6

(�5:9;0) (0; 2:91) 11:7

NEW8(5) 11 8:87 � 10

�6

2:02 � 10

�5

(�6:78;0) (0; 2:13) 42:8

NEW8(4) 11 8:87 � 10

�6

2:02 � 10

�5

(�6:78;0) (0; 2:13) 42:8

PHNW8(5)(3) 12 6:26 � 10

�6

1:35 � 10

�5

(�6:32;0) (0; 5:96) 43:5

PHNW8(6) 12 6:26 � 10

�6

1:35 � 10

�5

(�6:32;0) (0; 5:96) 43:5

HA10(6) 18 5:27 � 10

�6

1:72 � 10

�5

(�2:7;0) (0; 1:16) 1:05

HA11(10) 50 7:10 � 10

�9

2:13 � 10

�8

(�4:66;0) | 1:05

I

IM

: Imaginary Stability Interval,

I

R

: Real Stability Interval,

D

1

= max

�

max

i;j

a

ij

;kbk

1

;



^

b





1

; kck

1

�

,

A, b,

^

b, and c are the de�ning parameters of a RK pair.

Many authors in the past have claimed RK pairs of orders higher than eight as not

being particularly suited for practical purposes. However, there have not appeared

any comparisons concerning pairs of this type for requested tolerances more stringent

than 10

�14

. Such accuracies are some times requested for problems in astronomy,

high energy physics, molecular dynamics, etc. For this reason, as well because we

want to test a new step-size selection algorithm to be discussed in the next section,

we chose a 10th order, 17-stage RK method by Hairer [13] and we embedded a non-

defective 6th order method, to be used for error estimation, by appending one extra

stage. Table 2.7 contains the last column of A and the weights for this method. The

remaining parameters may be found in [14] or [13]; higher precision data may be

obtained from the current authors. As it is customary in the literature the numbers

in these tables, except of three cases, are rational approximations accurate in 20

signi�cant digits (this type of presentation allows the easy presentation of a method

in a single Butcher tableau).

In conclusion, among the pairs discussed in this section, NEW6(4) corresponds

to the absolute minimum of





T

(7)





2

. Concerning the pairs NEW8(6), NEW8(5), and

NEW8(4) better values of





T

(9)





2

might be obtained, however, at the expense of

increasing D

1

(not recommended).

3. A New Step-Size Selection Algorithm. There are currently two widely

used methods that have appeared in the literature for changing the step-size of p (q)-
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Table 2.2

Coe�cients of the pairs NEW4(2) and NEW4(3).

0

5

14

5

14

13

22

�

52

605

819

1210

1

2576

4745

�

252

365

1089

949

1

19

130

343

1215

1331

3159

73

486

4th-order

19

130

343

1215

1331

3159

73

486

2th-order

4

55

203

990

13

18

3th-order

11

130

637

1215

605

3159

�

73

243

1

2

Table 2.3

Coe�cients of NEW6(4) (exact rationals).

0

4

27

4

27

2

9

1

18

1

6

3

7

66

343

�

727

1372

1053

1372

11

16

13339

49152

�

4617

16384

5427

53248

95207

159744

10

13

�

6935

57122

23085

48334

333633360

273642941

972160

118442467

172687360

610434253

1

611

1891

�

4617

7564

6041007

13176488

12708836

22100117

�

3584000

62461621

6597591

7972456

6th-order

131

1800

0

1121931

392080

319333

1682928

262144

2477325

4084223

15177600

1891

25200

4th-order

2694253

26100360

0

83647323

535804360

691202281

1789061040

�

1275547648

10565208225

2

5

1891

25200

order RK codes. The �rst is to apply the formula (see [15])

h

n+1

= h

n

�

TOL

EST

n

�

1

p

,(3.1)

where the new step-size sought h

n+1

= x

n+1

�x

n

is predicted in terms of an estimate

of the local error EST

n

which is based on the approximation

EST

n

� y

n

� ŷ

n

,(3.2)

assuming y

n

, ŷ

n

to be the pth, qth order approximate solutions respectively at the

previous grind-point x

n

and TOL the requested tolerance. If

EST

n+1

� TOL

then the computed solution y

n+1

is accepted and the integration is carried on, oth-

erwise (3.1) is re-evaluated by substituting EST

n

! EST

n+1

. This methodology is

termed error per step (EPS) mode (see Shampine [24]).

An alternative is to consider the same algorithm (3.1), but to use instead of (3.2),

the approximation

EST

n

�

y

n

� ŷ

n

h

n

.(3.3)
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Table 2.4

Coe�cients of NEW7(5). Rational approximations accurate in 20 signi�cant digits. The coe�cients of the corresponding 7(6) method may be found in [18].

1

18

1

18

1
9

0

1
9

1
6

1

24

0

1
8

89

200

2183971

4000000

0 �

8340813

4000000

3968421

2000000

56482

115069

695768212

7463744411

0 �

1803549175

7007942496

3474507053

6790877290

2188198899

15264927763

74

95

�

11894934857

8390623634

0

53094780276

9800512003

�

8415376229

2277049503

�

18647567697

10138317907

27551494893

11905950217

8
9

30828057951

7654644085

0 �

4511704

324729

16217851618

1651177175

282768186839

40694064384

�

104400780537

15869257619

5409241639

9600177208

1 �

133775720546

36753383835

0

49608695511

4066590848

�

59896475201

7901259813

�

48035527651

5727379426

86266718551

10188951048

�

7751618114

23575802495

2289274942

8464405725

7th order

597988726

12374436915

0 0

3138312158

11968408119

480882843

7850665645

988558885

3512253271

5302636961

26425940286

1259489433

12163586030

1016647712

23899101975

5th order

1421940313

46193547077

0 0

1943068601

5911217046

�

3019049881

6506827856

7688913279

9493187186

586186883

5187186385

1114095023

8014791121

1016647712

23899101975
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Table 2.5

Coe�cients of NEW8(6). Rational approximations accurate in 20 signi�cant digits. The coe�cients of the corresponding 8(7) method may be found in [18].

0
9

142

9

142

24514

238491

178422123

9178574137

a

32

12257

79497

12257

317988

0 a

43

50

129

2584949729

6554704252

0 a

53

26222057794

17776421907

34

73

4418011

96055225

0 0

2947922107

12687381736

3229973413

17234960414

23

148

2875139539

47877267651

0 0

2702377211

24084535832

�

135707089

4042230341

299874140

17933325691

142

141

�

7872176137

5003514694

0 0 �

35136108789

26684798878

�

114433184681

9760995895

299204996517

32851421233

254

39

14920944853

17030299364

�

3559950777

7399971898

0 0 �

29299291531

4405504148

�

42434013379

9366905709

20642871700

5300635453

12951197050

1499985011

59527523

6331620793

83

91

�

8196723582

10570795981

0 0 �

46181454005

5775132776

�

196277106011

29179424052

63575135343

11491868333

9348448139

857846776

195434294

9727139945

�

617468037

15757346105

143

149

�

6373809055

5357779452

0 0 �

150772749657

21151088080

�

58076657383

6089469394

9252721190

1221566797

132381309631

11748965576

704633904

13813696331

656417033

8185349658

�

1669806516

10555289849

1 �

2726346953

6954959789

0 0

24906446731

6359105161

�

65277767625

23298960463

39128152317

16028215273

�

40638357893

16804059016

�

7437361171

21911114743

1040125706

5334949109

�

1129865134

5812907645

6253441118

10543852725

8th order

438853193

9881496838

0 0 0 0

11093525429

31342013414

481311443

1936695762

�

3375294558

10145424253

9830993862

5116981057

�

138630849943

50747474617

7152278206

5104393345

b

12

6th order

289283091

6008696510

0 0 0 0

3034152487

7913336319

7170564158

30263027435

7206303747

16758195910

�

1059739258

8472387467

16534129531

11550853505

�

3
2

b

b

12

a

32

=

685501333

8224473205

; a

43

=

12257

105996

; a

53

= �

9163901916

6184003973

; b

12

=

b

b

12

=

5118195927

53798651926
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Table 2.6

Coe�cients of the pairs NEW8(5) and NEW8(4) (rational approximations accurate in 21 signi�cant digits).

0

�

1

25

�

1

25

43

381

78991

290322

�

46225

290322

43

254

43

1016

0

129

1016

209

500

1697713059

4222509269

0 �

15238032203

10156496298

11056598884

7292015089

1
2

5543

107844

0 0

2048383

8149188

1953125

9902211

3512968824

20344613659

968421479

14765520605

0 0

956894283

7559277968

�

465115410

11816446109

91302285

4596652571

16831644835

20344613659

�

134489695

1465284848

0 0 �

95668987870

6901605883

�

34399893283

12958171610

25465019788

10579016529

76986202126

5122674515

1
2

145536625

3474014636

0 0 �

13033589681

17022116763

55898639

2339992721

921475172

7161215321

11025931622

10224678207

�

80727265

11312405923

16831644835

20344613659

3439391366

8230170613

0 0

1368653752008

33650418007

19151417051

2883993186

�

22521917029

12057970022

�

953123275013

22272368203

3209473745

8387593463

�

16775244890

6391208017

1

1195929791

15149569322

0 0 �

35554033801

20785156544

8903076353

16738414228

�

80781378317

13468382457

28101089032

14865674913

1974790781

11858655590

20344613659

3512968824

7562197625

30319520681

8th-order

1

20

0 0 0 0

7

45

49

180

1
5

1
5

13

180

1

20

5th-order

1

20

0 0 0 0 �

29

45

49

180

1
5

1

13

180

1

20

4th-order

2350230046

49054484501

0 0

3649218174

13461577499

545839447

89426176087

4566413657

29908515761

0

1
5

1
5

13

180

1

20

For the 8 (5) pair the weights

^

b

1

,

^
b

6

,

^
b

7

,

^
b

8

, and

^
b

11

are used for satisfying the Vandermonde-type

order conditions. The selection

^

b

9

6= b

9

leads to a discrete 5th-order method, while the choice

^
b

10

= b

10

(which leads to

^

b

11

= b

11

) reduces the function evaluation cost by two on each rejected

step.

For the 8 (4) pair respectively,

^
b

1

,

^

b

4

,

^
b

5

, and

^

b

6

are also determined by the Vandermonde-type

order conditions. We choose

^
b

7

6= b

7

for di�erentiating the two formulas of the pair. By enabling

^
b

8

= b

8

,

^

b

9

= b

9

,

^
b

10

= b

10

, and

^

b

11

= b

11

we save 4 additional function evaluations per rejected

step.
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Table 2.7

The 18th stage and the weights of a 6th order method embedded on the 10th order method by

Hairer [14] accurate in 35 signi�cant digits (the coe�cients not shown here are zero).

a

181

= 0:1244583237380809954699899879762212895

a

184

= 0:1162345947121548004449147563160955277

a

185

= 0:558326901621830362279750817795746137

a

1817

= 0:360455344846126119423652113622303570

^

b

1

= 0:0393630905025897955056132664695664138

^

b

6

= �0:191595786899679171477345886461634539

^

b

7

= �0:300942551737801790479195962782573550

^

b

8

= 0:0502863100126882161332912629630520846

^

b

9

= 0:312955944580504207128641776975301314

^

b

10

= 0:272544983278987797380351250616265108

^

b

11

= 0:227452895241389737387242521628091427

^

b

12

= 0:1186672587001410554480603361726046575

^

b

13

= 0:187

^

b

14

= 0:3

^

b

17

= �0:0257321436788198470266585655806729151

^

b

18

= 0:01

This is called error per unit step (EPUS) [24].

An heuristic argument in favor of the asymptotic validity of EPS mode for

p (p� 1) pairs used in local extrapolation (or higher order) mode, may be found

in Hairer et al. [14].

What is ideally expected by en e�cient algorithm for step-size change is to

� allow a RK method to perform the integration with a as few as possible steps

and a reasonable number of rejections;

� keep the maximal global error (ge) on the whole of the integration interval

[x

0

; x

e

] in direct proportionality to the requested tolerance.

The second of these requirements stems from the desire of code developers to

allow the user an a priori knowledge of the global error behavior of the code with

respect to the imposed tolerances. Assume a relation of the form

ge = C � TOL

E

(3.4)

where C, E are constants (see Enright and Pryce [10]). If tolerance proportionality

holds, then the user can easily adjust TOL in order to attain a predictable lower

value of the global error. For example, assume that two integrations are performed

on the same problem and by the same code by imposing TOL equal to 10

�t

, 10

�t�1

respectively. If the solutions at both tolerances agree at say d decimal digits, then we

may trust the solution corresponding to the stringent tolerance as being accurate at

d+1 decimal digits. Consequently d+ d

0

correct digits may hopefully be obtained by

simply shifting to TOL = 10

�t�d

0

. This argument is explained as follows. Assuming

E = 1, the respective global errors ge

1

and ge

2

satisfy the relations

ge

1

� C � 10

�t

ge

2

� C � 10

�t�1

�

) ge

2

�

1

10

ge

1

;

and we may trust the solution provided at TOL = 10

�t�1

for accuracy at d+1 decimal
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digits. Next, for TOL = 10

�t�d

0

a similar argument shows that ge

3

� 10

�d

0

ge

1

and

we expect that the third integration o�ers d+ d

0

accurate decimal digits.

In total, if a particular code is expected to o�er global errors directly propor-

tional to the requested tolerances, then it is very likely that just three integrations

of a particular problem will lead to a solution accurate at any desired degree. Of

course, in practice, a posteriori fourth integration is able to verify this expectation.

Alternatively, if the global error of a code is not expected to be proportional to the

requested tolerance this reasoning is destroyed and a (possibly large) number of trial

and errors might be necessary for estimating the solution of a problem at a given

accuracy.

In practice, tolerance proportionality holds whenever E is close to 1. For a step-

size change algorithm which results to tolerance proportionality we expect asymptot-

ically to hold E � 1 for any test problem (or at least we expect this to approximately

hold for a su�ciently wide set of problems). In practical numerical experiments we

have veri�ed the observation of Shampine [25] that for p (p � 1) pairs, E is close to 1

only when LEM and EPS or a Lower Order Mode (LOM) and EPUS are used. In all

other combinations it seems that tolerance proportionality does not hold. Clearly, the

second of the above requirements may be interchanged with the exact knowledge of E

in (3.4) (C being again problem dependent). An a priori determination of these con-

stants seems to be adequate for the e�cient global error prediction in a speci�c code

(using the same reasoning as in the previous case when E = 1). We should note that

both these requirements characterize a code implementation and not a method itself.

Di�erent choices (for example the application of (3.3) instead of (3.2)), in general, lead

to di�erent code behaviors. Sometimes this may result to tolerance proportionality

being achieved, in some others it might destroy this property.

Some authors in the past have claimed lower order mode to be more reliable

because this implementation supposedly provides a more accurate error estimation.

We should note that both methods of implementation (LEM and LOM), under the

estimator of the proper type, use the same O

�

h

q+1

�

local error estimation, while the

�rst of them just propagates a more accurate solution (Shampine [21]). In short, and

in view of the tests performed in the next section, we will characterize (in accordance

to [10]) the e�ciency of a pair according to the function evaluation cost for a given

problem and tolerance. The respective reliability will be primarily connected here to

the ability of a method to perform the integration of a speci�c set of test problems

with an average of the resulting global errors in direct proportionality to the requested

tolerances. In the same respect, of a secondary importance will be the ability of the

pair to induce relatively small values of the quantity max

�

h

�
LE

TOL

�

(see equation 3.5

below; see also Table 4.2 and the relative footnote inside there). The reliability of a

pair is thus to a larger extend related to the error estimator of a pair and the step-size

selection algorithm, than the higher-order method itself.

Next assume we have a pair of orders p (q), accepting also here the possibility

q > p. A close inspection of (3.1) reveals that tolerance proportionality holds whenever

the estimation EST (as provided by (3.2), (3.3)), is locally of the same order of h,

as the order of the global error induced by the method that propagates the solution.

Speci�cally O (h

p

) for p (p � 1) pairs used in LEM and O

�

h

p�1

�

for the same type of

pairs used in LOM. Consequently, we expect the same type of behavior for a general

p (q) code when the step-size change algorithm (3.1) is used with

EST

n

= h

p�min(p;q)�1

(y

n

� ŷ

n

) = h

�

(y

n

� ŷ

n

) .(3.5)

The estimation provided by (3.2) is also in frequent use in p (p� 2) order Nystrom
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pairs, where tolerance proportionality in general does not hold under this type of

implementation. However, we expect this to happen under the estimation (3.5). A

numerical example included in the next section supports this claim.

A problem occurring when comparing results with an order di�erence greater than

1, is that we loose a desirable scale invariance. Thus for example if we are solving a

circuit problem with an independent variable t in units of seconds and after working

on the same problem a bit, decide to change units to nanoseconds the error tolerance

we should use for obtaining the same accuracy changes. So if we integrate twice a

problem with independent variables t and �t; using a p(p � 1 � �) method, then we

must use tolerances TOL and TOL = �

�

in order to achieve the same accuracy.

4. Numerical Tests|Conclusions. We distinguish the pairs that are going to

be tested into �ve groups, primarily according to their e�ective number of stages, and

secondly according to the order of each one of them. In the �rst group we include the

pairs NEW4(3), SS3(2) [28], and NEW4(2) . In the second group we include the pairs

SS5(4) and NEW6(4). In the third group we include the pairs NEW7(6), SS6(5) and

NEW7(5). The pairs NEW8(7) and NEW8(5) are tested with respect to NEW8(6),

all of them are members of group 4. The �nal group includes the pair HA11(10),

a 10th order method with 17 stages (see [13]), applied as a pair using Richardson

extrapolation with 50 stages (= 17 + 17 + 16; see Shampine [23]), HA10(6) and as

a reference the pairs NEW8(6) from group 4 and NEW8(4). The latter is included

here mainly for assessing the asymptotic validity of tolerance proportionality when

using the local error estimation provided by (3.5) in the algorithm (3.1). We did not

include in these tests 5(4) or 6(5) pairs, as these use 6 or 8 stages respectively and no

new methods, among those presented here, utilize such a number of stages.

The e�ciency gains comparisons were conducted among the guidelines of the tests

performed in [28], [19] (see also Enright and Pryce [10]). We must note that since

there is no stepsize limit on the DETEST implementation we used for the numerical

results presented here, tolerance proportionality holds even for the problems of class

C tested, [10]. So we included in all the tables of e�ciency gain the problems of this

class as well.

The pairs in [28], especially the third, �fth, and sixth order ones, may alternatively

be considered as similar to those of Shanks if we just consider them as resulting under

the employment of Shanks device on pairs of one order higher than that of which

they actually are. (Thus essentially, the Sharp and Smart pais di�er from those of

Shanks only on the number of stages being used.) So in these tests we classi�ed them

according to their stages and not according to their order. All the methods of each

group were tested for the same range of requested tolerances as shown in Table 4.1.

Before we proceed with e�ciency comparisons among the various pairs, it is es-

sential to check their reliability. There are two measures of reliability. Tolerance

proportionality and local error estimation performance (see Sharp [27]). The outline

of the results concerning tolerance proportionality are presented in Table 4.2. We

present there the value E which is the average of the observed estimations of E for

all 25 DETEST problems. This value must be as close to 1 as possible. In the next

two columns we indicated the variance of E from 1 and E; both of which have to be

small enough. Then the average of mean square residuals [10] are recorded. Finally,

max

�

h

�
LE

TOL

�

over all tolerances and problems for each method is also given. This

quantity exhibits a wide variation among the methods tested here. We see that the

lower this quantity is, the greater the achieved accuracy by a speci�c pair, irrespec-

tively of the requested tolerance (and consequently the function evaluation cost).
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Recently, a di�erent step-size selection algorithm has been used for the pair

PHNW8(5)(3) in Hairer, Norsett, Wanner [14], based on a technique similar to one

that has been proposed for numerical quadratures. We used the type Ia algorithm of

[17] to reproduce the coe�cients of this 8th order method and, for error estimation, we

embedded, at no cost, a 6th order method. We name the resulting pair PHNW8(6).

In ([14], page 255), the obligatory selection b

12

=

b

b

12

, led to the rejection of that

pair, since the error estimator uses no stage with c

i

= 1: This may cause problems

if a discontinuity lays just before 1: Then as an alternative, the authors proposed

the pair PHNWH8(5)(3): On the contrary, NEW8(6) simply uses c

i

's very close to 1,

while PHNW8(6) do not. The NEW8(6) results over the problem EULR [14] were

satisfactory enough and encourages us to further exploit of p (p� 1� �) pairs. In

the left picture of �gure 10.7 of the same book [14], there is also a good example of

how tolerance proportionality is lost when a traditional step-size algorithm is used in

conjunction with an 8(6) pair. Here, we shall also assume the opportunity to test the

step-size change algorithm in [14] with respect to that provided by (3.5) for the range

of tolerances used for testing the pairs of group 4.

We additionally tested on the D class of the DETEST problems [15], a 8(6)

Nystrom pair by Dormand, El-Mikkawy and Prince [7], when both the local error

estimation of (3.2) and (3.5) are used. For a range of requested tolerances 10

�5

,: : :,

10

�11

, we observed the second of these implementations to be 0:6% more e�cient.

While the estimation (3.2) gives a value of

�

E = 1:1255 (see Table 4.2), (3.5) yields

�

E = 0:981, which, as expected, suggests that tolerance proportionality in the latter

case holds. Hence, this type of implementation seems to be more preferable in the

case of p (p � 2) order Nystrom pairs (mainly for reasons of tolerance proportionality,

than for those of e�ciency gain).

If we intent to propose pairs of orders p (p� 3) or p (p� 4) as a serious alternative

to the traditional ones, we need further numerical evidence about how the local error

in the higher order formula relates to the local error in the lower order formula.

Consequently, according to the tests developed by Sharp [27], we proceed with a

second reliability check, in order to test the accuracy of the local error estimate. For

this reason we selected the D-class test problems from DETEST, which imposes a

severe test on the estimator.

For each problem, tolerance, and step-size we count the number of accepted steps

for which

h

�

LE

TOL

� 2

�5

; 2

�5

� h

�

LE

TOL

� 2

�4

; :::; 2

j�1

� h

�

LE

TOL

� 2

j

; :::; 2

5

� h

�

LE

TOL

;

where LE is the maximum norm of the true local error in the lower order formula.

This data can be arranged in a histogram of twelve intervals. As in [27] we chose to

present the cumulative percentage of each histogram. So, according to Table 4.3, the

estimation of the local error of the 6th order formula of the pair NEW8(6); for the

problem D3 and for tolerance 10

�3

, indicates that 41% of the steps lay in the interval

[�1; 1=32] and 19% of the steps lay in the interval [1=32; 1=16]: This explains the

number 60 under the �4 column. For this method we also observe that 12% of the

steps lay in the interval [1=16; 1=8] ; 16% in the interval [1=8; 1=4] ; 6% in the interval

[1=4; 1=2] and �nally 6% of the steps are in the interval [1=2; 1] : We observe that

no steps were propagated with the true local error of the lower order formula being

greater than TOL = h

�

(here, � = 1):

A reliable estimator requires all 100's to be in the 0-column and all numbers in �1

or �2 columns to be as small as possible. Great numbers in the left columns of these
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tables, or even worse 100's to the right of 0-column, indicates possible poor reliability

for the pairs under consideration. In order to measure this factor of reliability, we

introduce the reliability index. If for a speci�c problem and tolerance, r

�5

; r

�4

; :::; r

6

are the cumulative percentages under the respective columns, then the corresponding

reliability index is evaluated as

ri = r

�5

�

1� 2

�5

�

+ r

�4

�

1� 2

�4

�

+ � � �+ r

6

(2

6

� 1) =

i=6

X

i=�5

�

�

2

i

� 1

�

�

r

i

:

So the reliability index of a method with only one 100 under the zero-column is zero

which is the best possible value. For example the RI of DP8(7) for TOL = 10

�3

and

for the problem D1 is estimated to be RI=

31

32

�7+

15

16

�7+

7

8

�25+

3

4

�50+

1

2

�88+0 �100 =

116:72 ' 117; as we see in the corresponding RI-column of Table 4.3.

Interpreting the RI values of Tables 4.3, 4.4, we conclude that the average relia-

bility index of NEW8(6) is 138; while the corresponding value of PD87 is 187. These

tests suggest that the estimators of p(p � 2) pairs seem to be at least as reliable as

those of the conventional pairs. Furthermore the performance of HA10(6) motivates

us to suggest this method for general use, since its RI seems to be no worse than that

of famous methods, like FE54 or DP54 (see [27]).

The tables 4.3 and 4.4, involve information for accepted steps only. Therefore

high percentage of rejected steps may not a�ect the RI values, even if rejections mean

poor error estimation. Anyway, RI values were in direct proportionality with the

number of rejected steps, in any test we carried out. On the other hand, re-evaluation

of steps, surely decreases e�ciency. So in order to avoid presenting more tables, we

refer to the tables concerning e�ciency for an indication about this matter.

From all the other tests we conducted concerning the e�ciency of the new methods

with respect to the older ones we include here Tables 4.6, 4.7, 4.8, and 4.9. Alterna-

tively we include for all the RK methods of our study in Figures 4.1, 4.2, 4.3, 4.4, and

4.5 the graphical representation of the geometric mean of the maximum global errors

over the whole integration interval, for all problems in each case

�

Q

5

i=1

ge

i;TOL

�

1=5

,

against the geometric mean of the cost in function evaluations

�

Q

5

i=1

fe

i;TOL

�

1=5

for

each tolerance. This type of interpretation of DETEST comparisons is compatible

with the tabular format used here and it is preferred over other types of graphical

display for reasons explained in [16] and [19].

By studying all these tables and �gures we notice that the new maximal order

(equivalently minimal-stage) pairs are more competitive both than the pairs proposed

in [28] and other p (p � 1) pairs from the literature. It seems that in the construction

of RK pairs of orders p(q) every e�ort should be made for obtaining pairs with as

high a value of p as possible. The numerical results presented here seem to con�rm

the dominant role played by





T

(p+1)





2

over





T

(p+2)





2

on the performance of a pth

order RK method. We may also state that in all these cases the non-defective pairs

with a greater number of stages seem to compete better than those with fewer stages

(provided they are tested at suitably stringent tolerances), something that is already

clear from the numerical results presented in [28] or even earlier

1

. Of course this is in

accordance with the known result that higher order methods outperform those of a

1

The one exception concerns HA10(6) and HA11(10). However, this is exclusively due to the

ine�cient way that the latter pair was constructed (for illustration purposes).
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Fig. 4.1. |, NEW4(2); - - -, NEW4(3); and | - |, SS3(2).

Table 4.1

#group Range of Tolerances

1 10

�2

; 10

�3

; : : : ; 10

�5

2 10

�3

; 10

�4

; : : : ; 10

�9

3 10

�5

; 10

�6

; : : : ; 10

�11

4 10

�5

; 10

�6

; : : : ; 10

�11

5 10

�10

; 10

�12

; : : : ; 10

�24

lower order (the former methods also require more stages) and it seems that it might

be more appropriate to classify RK pairs according to the number of their stages

and not just their order. The pairs 4(2) (or 4(3)), 6(4), 7(5), and 8(6) exhibit an

appreciated performance for mild to more stringent accuracies and are suggested as

good candidates for use by code developers. Runge-Kutta pairs of orders exceeding

8 seem to show their advantages when applied at requested tolerances higher than

10

�14

and it seems that their use should be limited in practice on these situations

only. Even the 10(6) pair must be taken seriously since according our results, seems

to be an interesting alternative. We consider these e�ciency and reliability tests as

a starting point for a wider application of pairs selected according to the prominent

criterion of utilizing, for a given order, a minimal number of stages, because of a

reduced-cost embedded error estimator attained this way.
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Fig. 4.2. |, NEW6(4); and - - -, SS5(4).

Fig. 4.3. |, NEW7(5); - - -, SS6(5); and | - |, NEW7(6).
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Fig. 4.4. |, NEW8(6); | - |, PD8(7); and - - -, PHNW8(5)(3).

Fig. 4.5. |, HA10(6); | - |, HA11(10); and - - -, NEW8(6) .
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Table 4.2

DETEST reliability statistics for the methods tested in this article.

Method

�

E

P

25

i=1

jE

i

�1j

25

P

25

i=1

j

E

i

�

�

E

j

25

av (rms) max

�

h

�
LE

TOL

�

NEW4(3) 1:0089 0:0652 0:0638 0:0329 0:47

#1 SS3(2) 0:9945 0:1157 0:1153 0:0894 6:1

NEW4(2) 0:8963 0:1423 0:1101 0:0636 0:1

#2 SS5(4) 1:0970 0:1255 0:0963 0:2329 2:1

NEW6(4) 1:0458 0:0929 0:1025 0:1361 2:8

NEW7(6) 1:0254 0:0896 0:0865 0:1213 5:9

#3 SS6(5) 1:0977 0:1284 0:1095 0:1680 0:05

NEW7(5) 1:0578 0:0858 0:0849 0:1068 0:4

PD8(7) 1:0572 0:0852 0:0746 0:1385 1:7

#4 NEW8(7) 0:9840 0:1133 0:1127 0:2033 2:9

NEW8(6) 0:9931 0:1241 0:1227 0:1440 0:1

NEW8(5) 1:0075 0:0813 0:0804 0:1170 1:8

#4 PHNW8(5)(3) 0:9514 0:1000 0:0914 0:1916 > 10

PHNW8(6) 0:9923 0:0590 0:0590 0:1186 0:4

NEW8(6) 1:0032 0:0342 0:0340 0:1318 0:03

#5 NEW8(4) 0:9912 0:0138 0:0134 0:0632 1:75

HA10(6) 0:9659 0:0482 0:0497 0:2066 0:12

HA11(10) 0:9933 0:0414 0:0407 0:2161 2:18

#3 NY8(6), eq. (3.2) 1:1255 0:1255 0:0335 0:1016 |

NY8(6), eq. (3.5) 0:9810 0:0526 0:0488 0:1079 |

The various measures presented here concern the good behavior of the pairs under the present test

conditions, and NOT their e�ciency. More details may be found in [10] and [27].

LE is the global error of the local problem for the propagation formula.(see [15]).

The quantity max

�

h

�

LE

TOL

�

seems to be in direct proportionality with the numbers of steps deceived

and steps bad deceived of DETEST (see [10]).

Table 4.3

Cumulative percentages histograms for Prince-Dormand 8(7) method in the left and for

NEW8(6) method in the right hand of the table.

�5�4�3�2 �1 0 1 RI problemTOL �5�4�3�2�1 0 1 RI

7 7 25 50 88 100 117 10

�3

5 32 68 100 63

4 4 4 25 79 100 69 D1 10

�6

6 63 100 36

2 2 2 5 69 100 44 10

�9

77 100 39

34 39 45 56 84 95 100 293 10

�3

32 40 72 88 100 163

8 31 62 100100 131 D2 10

�6

45 89 100 78

31 79 100 63 10

�9

7 63 100 37

63 67 71 71 84 88 100 381 10

�3

41 60 72 88 95 100 278

8 40 54 76 88 100 194 D3 10

�6

36 55 97 100 121

9 48 89 100 88 10

�9

38 79 100 68

73 73 76 82 88 100 311 10

�3

60 73 78 88 95 100 308

18 48 62 84 92 100 226 D4 10

�6

5 29 47 71 95 100 174

22 49 94 100 103 10

�9

1 2 46 91 100 83

85 88 90 93 97 100 362 10

�3

75 75 82 88 93 100 327

27 54 75 89 99 100 259 D5 10

�6

1 47 60 88 94 100 211

33 54 95 100 117 10

�9

1 1 2 53 96 100 91
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Table 4.4

Cumulative percentages histogram for Hairer10(6) method.

�5�4�3�2�1 0 1 RI problem TOL

26 74 100 57 10

�6

5 98 100 53 D1 10

�9

99 100 45 10

�12

20 76 94 100 70 10

�6

1 39 72 100 66 D2 10

�9

22 75 100 54 10

�12

26 58 81 96 100 184 10

�6

22 55 95 100 108 D3 10

�9

39 75 100 67 10

�12

28 48 71 83 95 100 244 10

�6

8 44 64 95 100 142 D4 10

�9

3 49 81 100 80 10

�12

59 77 82 90 96 99 100 417 10

�6

18 39 52 85 98 100 210 D5 10

�9

33 52 95 100 115 10

�12
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Table 4.5

Cumulative per DETEST problem e�ciency gains for all the methods tested here.

Method vs Method Total A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1 E2 E3 E4 E5

NEW4(2) NEW4(3) 1:6% 0 �4�2�4 1 4 0 �1 1 0 1 0 0 0 0 0 0 1 1 �1 0 2 0 2 3

NEW4(2) SS3(2) 50% 4 4 3 2 12 11 2 1 �4 8 1 0 1 1 10 12 13 7 10 5 2 3 2 7 5

NEW6(4) SS5(4) 15:7% 3 0 4 4 �2 2 2 2 �2 4 3 1 2 2 0 0 1 1 0 0 4 0 �1 6 2

NEW7(5) NEW7(6) 13:1% 2 �1 3 1 �1 2 1 1 1 3 1 1 2 2 1 1 1 1 0 �1 1 2 3 2 5

NEW7(5) SS6(5) 7:4% 0 �2 0 3 �2 3 1 1 5 �1 2 1 2 1 2 0 0 �1�2�2 2 2 1 1 1

NEW8(7) PD8(7) 3:5% �2 2 0 �1 0 0 0 0 0 1 �1�1 0 0 �1 1 1 1 1 1 �2 1 3 2 3

NEW8(6) NEW8(7) 7:5% 2 �2 4 2 0 1 1 1 1 0 1 1 1 1 1 1 2 0 0 �1 1 0 �1 0 1

NEW8(6) NEW8(5) �3:4% �3�1 1 �2 5 �2�3 0 �1�2 �2�2�2�2 1 1 2 1 1 2 �2 1 0 �1 1

NEW8(6) PHNW8(5)(3) 12:8% �1�1 7 2 1 2 �1 3 1 �1 0 1 0 1 1 2 2 1 0 0 �1 3 2 1 7

NEW8(6) PHNW8(6) 6:5% �1 2 2 1 3 0 �2 1 2 1 �1�3�1�1 1 1 3 2 1 1 0 0 2 0 2

HA10(6) NEW8(6) 2:9% 0 �4 3 9 1 2 �3�1 3 2 �3�6�4�4 0 �1�1�1 0 �2 3 1 4 7 3

HA10(6) NEW8(4) 19:1% �3 2 3 6 13 2 �5 1 1 2 �2�7�4�4 1 1 1 3 4 4 0 3 4 7 14

HA10(6) HA11(10) 22:8% 4 �1 3 3 �1 2 3 3 1 3 3 1 3 3 2 3 3 3 1 �1 4 3 2 3 2

Unity represents 10% and each number is rounded to the nearest integer. Positive numbers mean,

that the �rst method is better.
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Table 4.6

E�ciency gains of NEW4(2) relative to SS3(2), for the range of tolerances 10

�2

, : : :, 10

�5

.

log

global

error

A1A2A3A4A5 B1B2B3 B4 B5 C1 C2 C3C4C5 D1D2D3D4D5 E1E2E3E4E5

0 4 6 5

�1 8 9 10 13

�2 1 11 �4 4 �1 15 17 1 3

�3 3 2 11 1 0 11 0 �1 1 0 10 2 3 2

�4 4 4 5 3 14 4 1 1 0 2 2 4 3 7 5

�5 5 2 3

50% 4 4 3 2 12 11 2 1 �4 8 1 0 1 1 10 12 13 7 10 5 2 3 2 7 5

The �nal row, gives the mean value of e�ciency gain for all tolerances in a problem. Empty places in

the tables are due to the unavailability of data for the respective accuracies. Final row's �rst decimal

number is the average e�ciency gain for all problems in units of 1%.

Table 4.7

E�ciency gains of NEW6(4) relative to SS5(4), for the range of tolerances 10

�3

, : : :, 10

�9

.

log

global

error

A1A2A3A4A5 B1B2B3B4 B5 C1C2C3C4C5 D1D2D3D4D5 E1 E2 E3 E4E5

0 �2

�1 �2�1

�2 �1�1 0

�3 3 0 1 1 0 0 0

�4 2 �1 2 1 �3 1 1 0 0 0 0 1 1 1 1 �1 1 �1

�5 3 �1 3 �1 2 2 2 �3 2 1 1 1 1 0 0 1 1 2 0 0 �1

�6 3 �2 4 3 �1 2 2 2 �2 4 2 1 1 1 0 0 1 2 2 2 0 �1 2

�7 3 �2 5 4 �2 3 3 2 �1 6 2 2 2 2 0 0 0 2 4 0 �1 4 1

�8 4 0 6 4 �2 3 2 8 3 2 3 3 0 0 0 7 0 �1 6 3

�9 4 1 4 �2 3 2 5 4 4 0 10 7 2

�10 3 2 4 2 5 5 8 3

15:7% 3 0 4 4 �2 2 2 2 �2 4 3 1 2 2 0 0 1 1 0 0 4 0 �1 6 2
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Table 4.8

E�ciency gains of NEW7(5) relative to SS6(5), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1B2 B3B4 B5 C1C2C3C4C5 D1D2D3D4D5 E1E2E3E4E5

�5 �1�2�3

�6 2 0 1 0 �1�1

�7 0 2 0 1 0 1 1 1 0 0 0 0 1 1

�8 0 0 3 �3 2 1 �1 2 0 0 1 2 1 0 �1�1�1�3 1 2 0

�9 0 0 2 �2 3 0 0 4 �1 1 1 1 1 1 �1�1�2 2 2 1 0 3

�10 0 �3 0 3 �3 3 1 1 6 �1 2 1 2 2 2 3 3 1 1 1

�11 1 �2 0 3 �2 4 1 1 8 �1 2 2 2 2 2 3 3 2 2 0

�12 1 �2 4 �1 2 2 11 3 2 2 3 4 3 3 0

7:4% 0 �2 0 3 �2 3 1 1 5 �1 2 1 2 1 2 0 0 �1�2�2 2 2 1 1 1

Table 4.9

E�ciency gains of NEW8(6) relative to PHNW8(5)(3), for the range of tolerances 10

�5

, : : :,

10

�11

.

log

global

error

A1A2A3A4A5 B1B2 B3B4B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1 E2E3E4E5

�2 �2

�3 �1�1

�4 0 0

�5 1 0 0

�6 6 1 0 2 2 1 0 0

�7 8 1 2 �2 1 �2 0 �1�1 2 2 2 0 �1 3 3

�8 0 �2 9 1 1 3 �1 4 1 �1 �1 2 0 0 2 2 3 2 1 �1 2 2 6

�9 �1�1 2 1 0 3 0 0 2 2 1 0 3 1 1 7

�10 �1�1 2 1 �1 3 0 0 1 3 1 1

�11 �2 0

�12 1

12:8% �1�1 7 2 1 2 �1 3 1 �1 0 1 0 1 1 2 2 1 0 0 �1 3 2 1 7

5. Appendix: The remaining detailed tables concerning the cumulative

results of Table 4.5. ||

Table 5.1

E�ciency gains of NEW4(2) relative to NEW4(3), for the range of tolerances 10

�2

, : : :, 10

�5

.

log

global

error

A1A2A3A4A5 B1B2 B3B4B5 C1C2C3C4C5 D1D2D3D4D5 E1E2E3E4E5

0 �1

�1 1 1

�2 4 1 0 0 1

�3 �2 0 1 0 0 0 0 2 1

�4 �3�4 1 0 0 0 1 0 0 0 0 0 0 1 3

�5 0 �4 2 0 �1 1 0 0 0 2 3

�6 �4 1

1:6% 0 �4�2�4 1 4 0 �1 1 0 1 0 0 0 0 0 0 1 1 �1 0 2 0 2 3
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Table 5.2

E�ciency gains of NEW7(5) relative to NEW7(6), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1B2B3B4B5 C1C2C3C4C5 D1D2D3D4D5 E1E2E3E4E5

�2 �1

�3 1 �1

�4 1 1 1 0 �2

�5 1 1 1 1 �1�1

�6 2 1 1 1 3 1 1 1 1 1 1 0 �1 1 2

�7 2 3 �1 2 0 2 1 3 1 1 2 2 1 1 1 0 1 2 2

�8 2 0 3 0 �1 2 1 1 1 4 1 1 2 1 1 1 1 0 �2 1 3 2 3 1

�9 2 �1 4 1 �1 3 1 2 1 3 1 1 1 2 1 1 3 3 2 7

�10 1 �1 1 �1 1 1 2 1 0 1 2 1 1 2 3 2 6

�11 1 �1 1 1 1 2

�12 �2

13:1% 2 �1 3 1 �1 2 1 1 1 3 1 1 2 2 1 1 1 1 0 �1 1 2 3 2 5

Table 5.3

E�ciency gains of NEW8(7) relative to DP8(7), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1 B2 B3 B4 B5 C1 C2 C3C4 C5 D1D2D3D4D5 E1 E2E3E4E5

�3 0

�4 �1 0 0 0 0 0

�5 0 0 2 1 0 0 1

�6 1 0 0 0 0 �3 0 0 0 2 0 0 1 1 �1 2

�7 0 2 1 1 0 0 0 1 1 1 �1�3 0 0 �1 1 1 1 1 1 �1 0 2 2 4

�8 �2 2 0 0 �1 1 1 1 1 1 �1�1 1 1 �1 1 1 1 1 2 �2 1 4 4 3

�9 �3 2 �1�2 0 1 �1 0 1 1 �1�1 1 1 �1 1 1 1 1 �2 1 4 0 3

�10 �3 2 �1�1 0 �2�1 1 �1�1 0 0 �1 1 �2 1 4 2 4

�11 1 0 �2 1 2 1

�12 1

3:5% �2 2 0 �1 0 0 0 0 0 1 �1�1 0 0 �1 1 1 1 1 1 �2 1 3 2 3

Table 5.4

E�ciency gains of NEW8(6) relative to NEW8(7), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1B2B3B4 B5 C1C2C3C4C5 D1D2D3D4D5 E1 E2 E3 E4E5

�2 �1

�3 �1�1

�4 �1�1

�5 0 �1�1

�6 1 1 2 2 0 �1�1

�7 �1 0 1 1 2 �1 2 1 1 1 1 0 0 �2 1 0 0

�8 1 �3 4 2 0 1 1 2 1 0 0 2 1 1 2 1 1 0 0 0 1 �1�1

�9 2 �2 4 2 1 2 2 1 1 1 0 1 1 1 1 1 2 0 1 1 0 �1 1

�10 2 �2 3 2 1 1 1 0 1 1 1 1 1 1 2 1 0 �1 0 2

�11 �1 1 1 0 0 0

�12 0

7:5% 2 �2 4 2 0 1 1 1 1 0 1 1 1 1 1 1 2 0 0 �1 1 0 �1 0 1
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Table 5.5

E�ciency gains of NEW8(6) relative to NEW8(5), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1 B2B3 B4 B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1 E2E3 E4 E5

�2 2

�3 1 2

�4 1 3

�5 1 1

�6 �1 0 1 2 1 1

�7 4 �2�4 0 �3 �5�3�3 0 1 1 1 �2 0 0

�8 �3 2 3 �3�2 0 �1�2 �2�3�3�3 1 1 1 0 �2 0 0

�9 �3�2 2 �1 5 �2�2 0 �2�1 �2�2�2�1 1 1 3 1 �2 1 0 1

�10 �3�2 1 �2 6 �2�3 0 �2�1 �1�2�1�1 1 1 4 �2 2 0 0 �1

�11 �4�1 1 �2 8 �3 1 �3�1 �1�1�1�1 1 �2 0 �1�2

�12 �4 0 1 �2 0 �2�1 2 �2 4

�3:4% �3�1 1 �2 5 �2�3 0 �1�2 �2�2�2�2 1 1 2 1 1 2 �2 1 0 �1 1

Table 5.6

E�ciency gains of NEW8(6) relative to PHNW8(6), for the range of tolerances 10

�5

, : : :, 10

�11

.

log

global

error

A1A2A3A4A5 B1 B2 B3B4B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1E2E3 E4 E5

�2 0

�3 0 1

�4 0 2

�5 2 1 2

�6 0 1 2 2 2 1

�7 2 2 0 �2 2 0 �4�2�2 2 2 2 2 0 0 1

�8 �1 2 2 2 1 0 �1 1 2 0 �1�3�1�1 1 1 2 2 0 0 2

�9 �1 2 2 1 3 1 �1 0 2 1 �1�2�1 0 0 0 4 0 1 2 1

�10 �1 2 2 1 3 �2 1 1 �1�2�1 0 1 1 2 1 3

�11 �2 2 2 1 3 1 0 �1

�12 2 �2 5

6:5% �1 2 2 1 3 0 �2 1 2 1 �1�3�1�1 1 1 3 2 1 1 0 0 2 0 2

Table 5.7

E�ciency gains of HA10(6) relative to NEW8(6), for the range of tolerances 10

�10

, 10

�12

,

: : :, 10

�24

.

log

global

error

A1A2A3A4A5 B1 B2 B3B4 B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1 E2 E3 E4E5

�8 �5

�10 �4�4

�12 �1�7 0 �1 �8�14�10�10 �4�5�4�2�2 �3�2�1

�14 �3 0 3 �1 0 �6�5 1 0 �6�10 �7 �7 �3 �2�3�2�1�1 �1 0 0

�16 �2�6 1 5 0 1 �4�3 2 1 �4 �7 �5 �5 �2 �1�1�1 1 1 0 1 2 2 0

�18 �1�5 2 7 0 2 �2�2 3 2 �2 �4 �3 �3 0 0 0 1 2 2 2 4 4 1

�20 0 �4 5 10 1 4 �1�1 4 4 �1 �2 �1 �1 1 1 1 2 4 4 3 7 6 2

�22 2 �2 7 13 1 5 1 1 6 5 0 �1 0 0 2 2 3 7 5 10 8 4

�24 2 �2 17 2 2 2 3 9 11 5

�26 3 13 7

2:9% 0 �4 3 9 1 2 �3�1 3 2 �3 �6 �4 �4 0 �1�1�1 0 �2 3 1 4 7 3
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Table 5.8

E�ciency gains of HA10(6) relative to NEW8(4), for the range of tolerances 10

�10

, 10

�12

,

: : :, 10

�24

.

log

global

error

A1A2A3A4A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1D2D3D4D5 E1 E2 E3E4E5

�4 �2

�6 0

�8 �4�1 3

�10 �3 �3 �18 �3�3�1 1 5 �1

�12 1 �1�10 �1�2 �11�9�9 �2�1 1 3 7 �6 0 0

�14 �8�1 1 1 6 1 �8 �3 0 0 �7 �7 �7�7�2 �1 0 3 5 10 �4 2 1

�16 �5 0 2 2 9 2 �5 �2 1 1 �5 �5 �4�4 0 1 2 4 7 �2 3 3 1 8

�18 �3 1 3 4 12 4 �3 0 2 2 �3 �3 �2�3 1 2 3 7 10 0 5 4 3 10

�20 �2 3 4 5 15 6 �1 1 3 4 �1 �1 �1�1 2 3 5 9 2 6 6 6 12

�22 0 4 5 7 18 8 0 3 4 5 0 0 1 1 3 5 4 8 8 8 15

�24 1 5 9 21 4 1 5 6 10 18

�26 12 13 22

19:1% �3 2 3 6 13 2 �5 1 1 2 �2 �7 �4�4 1 1 1 3 4 4 0 3 4 7 14

Table 5.9

E�ciency gains of HA10(6) relative to HA11(10), for the range of tolerances 10

�10

, 10

�12

,

: : :, 10

�24

.

log

global

error

A1A2A3A4A5 B1B2B3B4 B5 C1C2C3C4C5 D1D2D3D4D5 E1 E2 E3 E4 E5

�8 7 5 1

�10 6 5 6 9 6 4 0 8

�12 8 4 5 4 6 4 4 6 6 4 3 4 3 0 4 6 6

�14 5 2 5 6 1 2 4 5 2 5 3 2 4 4 3 3 3 2 1 �1 4 4 4

�16 5 0 3 3 0 1 3 4 1 3 3 1 3 3 2 3 2 1 �1�4 4 2 2 5 8

�18 4 �1 2 2 �1 0 3 3 0 2 2 1 3 3 2 2 2 1 �2 4 1 1 4 7

�20 4 �1 0 1 �2 0 3 3 �1 2 2 0 2 2 1 2 1 0 �3 4 0 0 3 0

�22 3 �3�1 1 �3 2 2 �2 1 2 0 2 2 0 4 �1�1 2 �3

�24 �4 �4 �4

22:8% 4 �1 3 3 �1 2 3 3 1 3 3 1 3 3 2 3 3 3 1 �1 4 3 2 3 2


