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Abstract. A Runge–Kutta–Nyström (RKN) pair of orders 4(3) is presented in this paper. A test orbit from the Kepler problem
is chosen to be integrated for a specific tolerance. Then the two free parameters of the above RKN4(3) family are trained to
perform best. Thus a neural network approach is formed and its objective function is minimized using a differential evolution
optimization technique. Finally we observe that the produced pair outperforms standard pairs from the literature for the Kepler
orbits over a wide range of eccentricities and tolerances.
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INTRODUCTION

Explicit Runge–Kutta–Nyström pairs are widely used for the numerical solution of the initial value problem

y ′′ = f (x,y), y(x0) = y0 ∈ℜm, y ′(x0) = y ′0 ∈ℜm, x∈ [x0,xe]

where f : ℜ×ℜm 7→ℜm. These pairs are characterized by the extended Butcher tableau [1]:
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with bT , b̂T ,b′T , b̂′T ,c∈ ℜs andA∈ ℜs×s is strictly lower triangular. The procedure that advances the solution from
(xn,yn,y′n) to xn+1 = xn + hn computes at each step the approximationsyn+1, ŷn+1 to y(xn+1) of ordersp and p− 1
respectively, given by
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It also produces another two approximationsy′n+1, ŷ
′
n+1 to y′(xn+1) of ordersp andp−1, given by
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with fni = f (xn+cihn,yn+hn ∑i−1
j=1ai j fn j)∈ℜm for i = 1, 2, ..,s≥ p. From this embedded form (called RKNp(p−1))

we can obtain an estimateun+1 = max(‖yn+1− ŷn+1‖∞ ,
∥∥y′n+1− ŷ′n+1

∥∥
∞) of the local truncation error of thep−1 order

formula. So the step-size control algorithm

hn+1 = 0.9hn · (TOL
un+1

)1/p,



is in common use, with TOL being the requested tolerance. The above formula is used even if TOL is exceeded by
un+1, but thenhn+1 is simply the recomputed current step. See [6] for more details on the implementation of these type
of step size policies.

DERIVATION OF RK PAIRS OF ORDERS 4(3)

The derivation of better RKN pairs is of continued interest the last30− 40 years, see [5] and references therein.
The main framework for the construction of RKN pairs is matching Taylor series expansions ofy(x+ h)− yn+1 and
y′(x+h)−y′n+1 after we have expanded variousfni’s.

It is common knowledge that a pair of orders four and three that we are interested has to satisfy the following
equations of condition:
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1
2
, b′c2 =

1
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since we setAe= c2/2 andb = b′(e−c) with e= [11· · ·1]T ∈ℜs.
Here we consider the family of Dormand et. al. [2] that needs four stages per step (s= 4). This family uses FSAL

device so it effectively needs only three stages per step. FSAL demandsc4 = 1 anda4i = bi , i = 1,2,3. Thus the
parameters available for fulfilling the above mentioned five equations of condition are:c2, c3, b′1, b′2, b′3, b′4 anda32.
Two of them are set free, namelyc2, andc3. All the other coefficients are defined by the simplifying assumptions.

Similarly we produce the coefficients for the lower order formulas. Then

b̂′e= 1, b̂′c =
1
2
, b̂′c2 =
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are to be solved for̂b′1, b̂′2, b̂′3 andb̂′4. So we set̂b′4 =−1/3 and compute the rest coefficients. Finally,

b̂.e= 1/2 andb̂.c = 1/6

are to be solved for̂bi , i = 1,2,3,4. We setb̂3 = 0.15 andb̂4 = −1/20 and evaluatêb1 andb̂2. The fixed coefficients
for the lower order formulas affect mainly the step size. For example smaller values may produce smaller estimations
for the error and in consequence this is similar of using more lax tolerances. So for reasons of comparison we use the
ones chosen in [4].

After solving all the equations we conclude to the following expressions with respect toc2 andc3:
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.

The main question raising now is how to selectc2 andc3? Traditionally the norm of the fifth order truncation error
is minimized. This technique does not consider the nature of the problems. Thus many authors considered many other
approaches utilizing various properties of the problems. For example periodic problems have been studied extensively
and very promising methods have been produced for them.

For a p-order RKN method, the minimization of thep+ 1 order term in the truncation error expansion seems the
best choice in a case of a general problem. Although a lot of speculation is raised for problems where it is believed
that their properties can be handled. Such problems are Hamiltonians, orbits, periodic, Schrödinger and many others.

Unfortunately in most cases analytical consideration of test problems produces complicated algebra and enforces us
to proceed with oversimplifications. In other cases we deal with some side properties such as symplectiness.

Our purpose here is to produce a RKN4(3) pair that is best for the two body problem. It is very difficult to derive
simple algebraic formulas for the coefficients that may produce better pairs for this problem.

An interesting alternative could be the consideration of Runge-Kutta type neural networks, where the various new
families pairs are tested on some model problems to give good predictions for their coefficients.



TABLE 1. Coefficients of NEW4(3)
0
63
83

3969
13448

62
119

811706573
7006891122

139302871
7006891122

1 1004
5859 − 8405

456057
155771
448818

b 1004
5859 − 8405

456057
155771
448818

b′ 1004
5859 − 689210

8665083
18536749
25582626

1193
6498

b̂ 9883
44982

40549
224910

3
20 − 1

20

b̂′ 7375
23436

558092
456057 − 184093

897636 − 1
3

THE NEW RUNGE–KUTTA–NYSTRÖM PAIR

We consider the well known Kepler problem

y′′1 =− y1√
y2
1+y2

2
3

y′′2 =− y2√
y2
1+y2

2
3

x≥ 0, y(0) = [1− ε,0]T , y′(0) = [0,
√

1+ε
1−ε ]T with ε the eccentricity of the orbit.

We construct a Neural Network (NN) similar to the one given in [4] for Runge–Kutta methods. In the input we
give the eccentricityε, the tolerance TOL, the endpointxe and the two parametersc2 andc3. Then the corresponding
problem is integrated and we record the endpoint global errorgeand the number of the function evaluationsN. The
output is a measure of the efficiency:

eff = N · ( ge
TOL

)0.25.

We tested DEP4(3) pair forc2 = 0.25,c3 = 0.7, ε = 0.5, TOL= 10−4, xe = 20π and foundeffDEP= 5140.26. Then we
trained the coefficients in this NN and we goteffNEW = 1348.60for c2 = 63/82andc3 = 62/119. The neural networks
are actually nonlinear optimizers and a differential evolution (DE) technique was used for this purpose here. DE is a
population based method which seems to perform better here where the output comes after a hole run of the Initial
Value Problem.DeMat software forMatlab was used as DE method, see [3].

Finally we tested the new pair for a wide range of tolerances and eccentricities. Actually for TOL=10−2, 10−3,

10−4, 10−5, 10−6 andε = 0.05,0.10, ,0.15, · · · ,0.95we recorded the valueseffTOL,ε
DEP for DEP4(3) pair andeffTOL,ε

NEW for
the new pair. The average of the corresponding quotientseffTOL,ε

DEP /effTOL,ε
NEW is 1.445 which means that the new pair is

about45%more efficient in the family of Kepler problems.
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