
Article Submitted to Journal of Symbolic Computation

Symbolic Derivation of Runge-Kutta Order
Conditions.

I.Th. Famelis
∗1

, S. N. Papakostas
2

and Ch. Tsitouras
3

1Department of Mathematics, Faculty of Applied Mathematics and Physical
Sciences, National Technical University of Athens, Zografou Campus, GR15780

Athens, Greece
2Hegemo SA, 369 Sigrou Avenue, GR17654 Athens, Greece

3Department of Applied Sciences,TEI of Chalkis, GR 34400 Psahna, Greece

Abstract

Tree theory, partitions of integer numbers, combinatorial mathematics
and computer algebra are the basis for the construction of a powerful
and efficient symbolic package for the derivation of Runge Kutta order
conditions and principal truncation error terms.

1. Introduction

Ordinary Differential Equations (ODEs) are widely used to model physical prob-
lems. Thus, methods for the numerical treatment of ODEs are of great impor-
tance. There exist various classes of methods for the numerical solution of ODE
problems and the class of Runge–Kutta (RK) methods are amongst the most
popular ones. The construction of such methods needs the derivation and so-
lution of equations called order conditions. Such a procedure is a tedious task
since the number of the nonlinear order conditions to be solved increases as the
order of a method increases.

Thus, the use of computer algebra system, such as Mathematica, for both the
derivation and the solution of the order conditions is needed. It is impossible to
give a general algorithm for the solution of order conditions for all families and
for all algebraic orders. Actually, such algorithms can be given for each family
separately (Papakostas et. al., 1996),(Tsitouras, 1998),(Tsitouras, 2001). Here,
our concern is to furnish a code for the construction of the order conditions.
In the past there have been several attempts to meet that problem. As a first

∗Corresponding author, Email: ifamelis@math.ntua.gr

1

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 2

thought, a straight forward approach utilizing Taylor series expansions is very
inefficient. Keiper (1990) was probably the first who wrote a package for the
symbolic manipulation program Mathematica. However that first package was
limited in deriving low order conditions. Later, around 1993-94 four researchers
presented their proposal about this subject.

In Hosea (1995), a recurrence due to Albrecht for generating order conditions
is refined to produce truncation error coefficients. The code written in ANSI
C, is called RKTEC and is available from Netlib. Then Harisson (1994), and
Papakostas (1992-93) suggested the tensor notation deriving very interesting
symbolic codes. That early package due to Papakostas helped a lot in the trun-
cation error calculations in a some papers of our group (Papakostas et. al., 1996),
(Tsitouras, 1998). Finally Sofroniou (1994), gave an integrated package for the
derivation of Runge–Kutta order conditions.

Papakostas (1996), proposed to avoid the derivation of trees in such a package.
So, in the following sections we present the theory of RK order conditions and
the elements of Combinatorial Mathematics and Tree Theory we have used to
approach the construction of a powerful and efficient symbolic package for the
derivation of Runge–Kutta order conditions and principal truncation error terms.
Approaching the tree construction as matrix products produces a very fast and
portable package which is cheap in memory usage too.

2. Runge–Kutta Order Conditions

The most common ODE problem is the initial value problem

y′ = f(t, y(t)), y (x0) = y0. (1)

Runge–Kutta type methods are the basic representatives of the class of single
step numerical methods for the numerical solution of the above problem. Such
methods make no use of the past approximations. When getting the value yk as
the numerical approximation of y (tk) the methods proceed to the evaluation of
yk+1 as an estimation of y (tk+1) =y (tk + hk) according to the following formula:

yk+1 = yk + hk

s∑
i=1

bifi (2)

with

fi = f

(
tk + cihk, yk + hk

s∑
j=1

aijfj

)
, i = 1, 2, · · · , s.

This is the s−stage Runge–Kutta method. The methods coefficients are usually
represented by the Butcher tableau

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 3

c1 a11 a12 a1s

c2 a21 a22 a2s
...
cs as1 as2 ass

b1 b2 · · · bs

,

or in matrix form

c A
bT ,

with c∈ �s, b∈ �s, and A∈ �s×s.
For RK methods we always assume that the simplifying assumption (the row-

sum condition) holds:

ci =
s∑

j=1

aij, i = 1, 2, · · · , s

or in matrix notation c = Ae, e = [1, 1, · · · , 1]T ∈ �s. The above condition
ensures that all points where f is evaluated are first order approximations.

Setting t′ = 1, then (1) reduces, without loss of generality, to the most conve-
nient autonomous system y′ = f (y) for which the row-sum condition is essential.

When advancing a Runge–Kutta method, applied to the above simplified prob-
lem, we actually try to approximate the corresponding Taylor series expansion:

y(tk+1) = y(tk) + hk · f(yk) + . . . +
hp

k

p!
· f (p)(yk) + O(hp+1). (3)

Moreover, in the case of a system we have to consider

y′′ =
∂f (y (t))

∂t
=

∂f

∂y
f = f ′f,

y′′′ =
∂2f

∂y2
(f, f) +

∂f

∂y
· ∂f

∂y
f = f ′′ (f, f) + f ′f ′f,

y(4) = ∂3f
∂y3 · (f, f, f) + ∂f

∂y
· ∂f

∂y
· ∂f

∂y
f+

∂f
∂y

· ∂2f
∂y2 · (f, f) + 3 · ∂2f

∂y2 ·
(

∂f
∂y

· f, f
)

= f ′′′ · (f, f, f) + f ′f ′f ′f + f ′f ′′ (f, f) + 3f ′′ (f ′f, f) ,
· · ·

and so on. The elementary differentials f ′′(f, f), f ′′′(f, f, f), f ′f ′′(f, f), f ′′(f ′, f, f)

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 4

are Frechet derivatives (Lambert, 1991, pp158). In case that equation (1) is a
scalar autonomous problem we may use a simplified approach since for instance
f ′f ′′(f, f) =f ′′(f ′, f, f)=f ′f ′′f 2 ∈ � (Papageorgiou and Tsitouras , 2002).

On the other hand we may expand fi’ s in the numerical solution around the
point (tk, yk) and derive the expression:

yk+1 = yk + hq11y
′
k + h2q21y

′′
k + h3 (q31f

′′(f, f) + q32f
′f ′f) +

(q41f
′′′ (f, f, f) + q42f

′f ′′ (f, f) + q43f
′′ (f ′f, f) + q44f

′f ′f ′f) + · · · (4)

where qij depend exclusively on the coefficients A, b, c.
Subtracting (4) from (3) we get the local truncation error of the method.

y (tk+1) − yk+1 = h (q11 − 1) f + h2
(
q21 − 1

2

)
· ∂f

∂y
f+

h3
((

q31 − 1
6

)
f ′′(f, f) +

(
q32 − 1

6

)
f ′f ′f

)
+ · · · (5)

A RK method has order p if the local truncation error behaves like O(hp+1).
That means that in the above expression the coefficients of powers of h up to
p are zero. The equations that must hold so that a RK method attains order p
are called order conditions. So, requiring t11 = q11 − 1 = 0, t21 = q21 − 1/2 = 0,
t31 = q31 − 1/6 = 0, t32 = q32 − 1/6 = 0, we get the order conditions for a third
order method. The coefficient of hp+1 is called the principal local truncation error
term. The minimization of this term is one of the consideration in the procedure
of constructing RK methods.

J. C. Butcher established in the 60’s a theory based in tree theory for deriving
the order conditions of a Runge–Kutta method. His book (Butcher, 1987), is
recommended for the interested reader. A simplified version of that theory can
be found in (Lambert, 1991).

A rooted tree of n−th order is a set of n nodes joined by lines. One of the
nodes is the root and its branches are not allowed to grow together again.

A rooted tree.

�
�
�

�
�

�

�
�
�

� � � �

�
��

�
�

�
�

�
��

�

The unique matching between a rooted tree and an order condition becomes
clear after splitting the tree, cutting the branches beginning from the root. In
order to work with trees we consider the following notation. A tree will be named
with a notation τij where the first index states the number of nodes and the
second index an internal enumeration in the class of trees with i nodes. So, the
one node tree • will be τ11. The two nodes rooted tree will be

τ21

�
�
�

�

and the two rooted trees with three nodes:

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 5

τ31

τ32
�

�
�

�
�

�

�
�
�

�

�

�
�

�
.

Every tree with p nodes can be constructed by taking trees with cumulative
order p − 1 and graft them onto a new root. Using this point of view we can
notate every tree as τ = [τij, τkl, . . . , τmn] where τij, τkl, . . . , τmn are the trees
which are grafted to a new root to form τ . If the same tree (e.g. τkl) in the
grafting appears n times, we replace all τkl in this notation with one τn

kl.
So, for our example tree we may write τ = [τ11, τ11, τ21, τ32] = [τ 2

11, τ21, τ32]
where

τ11τ11

τ32τ21

�
�
�

�
�

�
�

� �

� � � �

are grafted to a new root.
We define the following functions on rooted trees, (Lambert, 1991, pp164):
• Order r(τ):

r
([

τn1
ij , τn2

kl , · · · , τnp
mn

])
= 1 + n1r(τij) + . . . + npr(τmn)

• Symmetry σ(τ):

σ
([

τn1
ij , τn2

kl , · · · , τnp
mn

])
= n1! · · ·nk!σ (τij)

n1 · · ·σ (τmn)np

• Density γ(τ):

γ
([

τn1
ij , τn2

kl , · · · , τnp
mn

])
= r

([
τn1
ij , τn2

kl , · · · , τnp
mn

])
γ (τij)

n1 · · · γ (τmn)np

• Elementary weights Ψ (τ) :

Ψ
([

τn1
ij , τn2

kl , · · · , τnp
mn

])
= (A (Ψ (τij))

n1) ∗ (A (Ψ (τkl))
n2) ∗ · · · ∗ (A (Ψ (τmn))np)

• Elementary differentials F (τ) :

F
([

τn1
ij , τn2

kl , · · · , τnp
mn

])
= f (n1+···+np)

F (τij) , · · · , F (τij)︸ ︷︷ ︸

n1 times

, · · · , F (τmn) , · · · , F (τmn)︸ ︷︷ ︸
np times

with r (•) = σ (•) = γ (•) = 1, F (•) = f and Ψ (•) = e, while “ * ” denotes
the component–wise product between vectors†.

According to Butcher’s theory, equation (5) has the form

†w = u ∗ v, with u, v, w ∈ �s means wi = uivi for i = 1, 2, · · · , s. In the same sense
wk =w ∗ w∗ · · · ∗ w, k times.

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 6

y (tk+1) − yk+1 =
∞∑
i=1

∑
τ∈Ti

hi 1

σ (τ)

(
bΨ (τ) − 1

γ (τ)

)
F (τ)

where Ti is the set of rooted trees of order i, σ and γ are integer–valued functions
of τ , Ψ ∈ �s, is a certain composition of A, b, c, with a form that depends only
on τ and F is an elementary differential.

So, a Runge–Kutta method is of order p if and only if

X (τ) =
1

σ (τ)

(
bΨ (τ) − 1

γ (τ)

)
= 0,

for every τ ∈ Ti, for i = 1, 2, · · · , p. The above relation defines the order condi-
tions, which are linear in the components of b and nonlinear in the components
of A, c and relates them to the rooted trees.

Now, we can derive the order conditions.
1st order

X (•) =
1

σ (•)

(
bΨ (•) − 1

γ (•)

)
= b · e − 1 = 0

2nd order τ21 = [τ11]

X (τ21) =
1

σ (τ21)

(
bΨ (τ21) −

1

γ (τ21)

)
= b · c − 1

2
= 0

3rd order τ31 = [τ21] and τ32 = [τ 2
11] producing

X(τ31) = bAc − 1/6 = 0

and

X(τ32) = 1/2 · (bc2 − 1/3) = 0.

There are four rooted trees of fourth order and so we can continue to produce
all the required order conditions for a RK method to have order p or to compute
the principal local truncation error term. The order conditions are the same for
all classes of RK methods (e.g. Explicit RK, Implicit RK) (Hairer et. al. , 1993,
pg 207) .

The number of order conditions increases rapidly (Table 1) as desired order
increases and moreover there is a barrier (Table 2) in the maximum attained
order related to the method’s number of stages (Riordan, 1958, pg 138), (Hairer
et. al. , 1993). Whilst, the formation of expressions of order conditions or prin-
cipal local truncation error term is a tedious task when is done by hand, even if
we follow the Butcher’s theory.

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 7

Table 1: Total number of conditions to achieve order p.

Order p 1 2 3 4 5 6 7 8 9 10
No. of conditions 1 2 4 8 17 37 85 200 486 1205

Table 2: Order barriers.

No. of RK stages 1 2 3 4 5 6 7 8 9
Max. attained order 1 2 3 4 4 5 6 6 7

3. Tree Theory and Partitions

As we have mentioned in previous sections, a tree is a mathematical object
defined to be a connected linear graph which contains no cycles. A tree with
one node, the root, distinguished from all other nodes is called a rooted tree.
According to Butcher’s theory, an one-to-one relation can be defined between
the set of order p conditions and the set of rooted trees with p nodes. So, the
formation of the trees with p nodes can lead us to the corresponding order
conditions of order p.

To understand the procedure of constructing all trees of order p we will need
elements from combinatorial mathematics and the fact that a tree with p nodes
(of order p) can be constructed by taking trees with cumulative order p− 1 and
graft them onto a new root. In other words, the set of trees with p nodes can be
formed by taking combinations with repetition of k trees with cumulative order
p − 1.

1 2 . . . k
. . .� � � �

�
��

�
�

�
�

�
��

�

A very important concept is generating functions (Liu, 1968). Let (α0, α1,
. . . , αr, . . .) be a symbolic representation of a sequence of events (or in more
simple situations a sequence of numbers). The function

F (x) = α0µ0(x) + α1µ1(x) + · · · + αrµr(x) + . . .

is called the ordinary generating function of the sequence (α0, α1, . . . , αr, . . .)
where the (µ0, µ1, . . . , µr, . . .) is a sequence of functions of x that are used as
indicators. The indicator functions are usually chosen in such way that no two
distinct sequences will yield the same generating function. Generating functions
are usually used to enumeration problems of combinatorial mathematics, such as
in combinations of objects, but can be used to construct (generate) the elements
of the sequence (α0, α1, . . . , αr, . . .) as well.

If we set as Ti = {t|t rooted tree of order i}, and as Fi(x) the generating
function of combinations objects taken from Ti with repetition then

Fi(x) =
∏
t∈Ti

(1 + tx + t2x2 + · · · + tnxn + · · ·).

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 8

In this case the sequence (α0, α1, . . . , αr, . . .) is the set Ti. Expanding this relation
can be written as

Fi(x) = 1 + C(i, 1)x + C(i, 2)x2 + · · · + C(i, n)xn + · · · .

where C(i, k) is an expression for the combinations with repetition of order i
objects (e.g. trees) in k positions. This is given as a sum of all possible combi-
nations where each combination of objects is represented as a product of these
objects, (Liu, 1968, p 30). For instance

F3(x) = (1 + τ31x + τ 2
31x

2 + · · ·)(1 + τ32x + τ 2
32x

2 + · · ·)
= 1 + (τ31 + τ32)x + (τ 2

31 + τ 2
32 + τ31τ32)x

2 + · · ·
= 1 + C(3, 1)x + C(3, 2)x2 + · · · + C(3, n)xn + · · · .

This approach can be used, as well, in the the case of rooted trees enumeration
problems. For that purpose we set t = 1 in the above relations and so C(i, n) is
a number (Liu, 1968, pp 31-32), (Papaioanou, 2000, pp 125-126).

In our case, using the above theory, we can form the generating function of the
set of rooted trees. Taking into consideration that every tree can be formed by
taking combinations with repetition of other trees and grafting them together,
then the generating function of rooted trees is

F (x) = x
∏

Fi(x)

= x(1 + C(1, 1)x + C(1, 2)x2 + · · · + C(1, n)xn + · · ·)
(1 + C(2, 1)x + C(2, 2)x2 + · · · + C(2, n)xn + · · ·)
(1 + C(3, 1)x + C(3, 2)x2 + · · · + C(3, n)xn + · · ·) · · · .

Expanding the above product and collecting the proper powers of x, all trees of
order p+1, that are produced by the grafting of k other trees, can be determined
by the term x

∑p
k=1 C̃kx

k where the C̃k is the sum of products of k trees with
cumulative order p (or equivalently the combinations with repetition of k trees
with cumulative order p). So, for our purpose, it is essential to form the products
τ i1
π1#τ i2

π2# · · · τ ik
πk# where τπj# ∈ Tπj

and i1π1+i2π2+· · ·+ikπk = p, k = 1, 2, . . . , p.
This connects our problem with the set of unrestricted partitions of an integer.
The term x that multiplies the sum represents the grafting of the trees that are
combined in the k positions onto a new root.

An unrestricted partition of an integer p, is by definition, a collection of
integers, without regard of order, whose sum is p. For example, an unrestricted
partition of 5 is 1, 1, 1, 2. This is usually written as 132. So, an unrestricted
partition of p has the form πi1

1 πi2
2 · · ·πik

k where i1π1 + i2π2 + · · · + ikπk = p, a
notation similar to the one used for the trees.

In conclusion, in order to construct all the rooted trees of order p + 1 we have
to find all the unrestricted partitions of p and for each of them to form all the

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 9

corresponding combinations with repetition τ i1
π1#τ i2

π2# · · · τ ik
πk# selecting τπj# from

Tπj
.

In order to program the procedure mentioned above in a symbolic computation
environment, such as Mathematica, the tree oriented notation is not the best
choice. In a programming point of view the best way is to work by forming the
matrix notation products of the expressions involving the method coefficients
following the lines of the previous section. This simplifies the whole procedure
and produces a faster code. Moreover, the main concern is neither the derivation
of the trees themselves nor the order condition expressions with the elementary
differentials. The main consideration is to produce the order conditions or the
principal error terms. So, in the code, that will be presented in the next section,
the τij are not the trees but the corresponding matrix multiplication expressions
Ψ(τij). Moreover the outer products is formed based on pointwise multiplication.

4. New Symbolic Code

Following (Papakostas, 1996), we have build a package with the name Trees16
for the symbolic environment of Mathematica. The backbone of the package are
the modules TT, S and G.

The function T calls the module TT to produce a list of the method coef-
ficient matrix notation products corresponding to the rooted trees of a given
order. This is done recursively. To achieve that TT applies exactly the ideas
of tree construction from the previous section. TT needs function Partition
of Mathematica package Combinatorica to build the unrestricted partitions
of an integer and the modules Combinations and Combinations2 to form
combinations without repetition.

Using the same ideas and the formulae given in section 2, module S builds a
list with elements the values of symmetry of the rooted trees of a given order
and G a list of the corresponding density values.

After setting as working directory the directory which the package file is stored
the package can be loaded by giving the following input:

In[1]:=� Trees16
Using the package functions we can either form the order conditions that

should be fulfilled so that a Runge–Kutta method attains a given order or the
principal truncation error terms of a method of a given order.

To get the list of the order conditions the following command should be typed
in the Mathematica environment:
RKCond[a,b,c,e,order]

In the above command a, b, c, e can be Mathematica symbols and order a
number for the desired order. The symbols a, b and c correspond to the method
matrices according the Butcher Tableau notation and e to an array of ones with
dimension the number of stages of the method.

In the following example we get as an outcome a list with elements lists of
order 1 to 6 conditions.

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 10

In[2]:=RKCond[a, b, c, e, 6]
Out[2]:={

{−1 + b · e}, {−
(

1

2

)
+ b · c}, {−

(
1

6

)
+ b · a · c,−

(
1

3

)
+ b · c2},

{−
(

1

24

)
+ b · a · a · c,−

(
1

12

)
+ b · a · c2,−

(
1

8

)
+ b · (c a · c) ,−

(
1

4

)
+ b · c3},

{−
(

1

120

)
+ b · a · a · a · c,−

(
1

60

)
+ b · a · a · c2,−

(
1

40

)
+ b · a · (c a · c) ,

−
(

1

20

)
+ b · a · c3,−

(
1

30

)
+ b · (c a · a · c) ,−

(
1

15

)
+ b ·

(
c a · c2

)
,

−
(

1

20

)
+ b · (a · c)2,−

(
1

10

)
+ b ·

(
c2 a · c

)
,−

(
1

5

)
+ b · c4},

{−
(

1

720

)
+ b · a · a · a · a · c,−

(
1

360

)
+ b · a · a · a · c2,−

(
1

240

)
+ b · a · a · (c a · c) ,

−
(

1

120

)
+ b · a · a · c3,−

(
1

180

)
+ b · a · (c a · a · c) ,−

(
1

90

)
+ b · a ·

(
c a · c2

)
,

−
(

1

120

)
+ b · a · (a · c)2,−

(
1

60

)
+ b · a ·

(
c2 a · c

)
,−

(
1

30

)
+ b · a · c4,

−
(

1

144

)
+ b · (c a · a · a · c) ,−

(
1

72

)
+ b ·

(
c a · a · c2

)
,−

(
1

48

)
+ b · (c a · (c a · c)) ,

−
(

1

24

)
+ b ·

(
c a · c3

)
,−

(
1

72

)
+ b · (a · c a · a · c) ,−

(
1

36

)
+ b ·

(
a · c a · c2

)
,

−
(

1

36

)
+ b ·

(
c2 a · a · c

)
,−

(
1

18

)
+ b ·

(
c2 a · c2

)
,−

(
1

24

)
+ b ·

(
c (a · c)2) ,

−
(

1

12

)
+ b ·

(
c3 a · c

)
,−

(
1

6

)
+ b · c5}}

Moreover, A, b, c, e can be matrices in the Mathematica notation of lists. These
matrices may have either symbolic or numeric entries. In the former case the
outcome is going to be the analytic expressions of the order conditions that
should become zero to attain the desired order. In the latter case a list of the
quantities that the method fail to fulfill the order conditions.

To get the list of the principal truncation error terms the following command
should be typed in the Mathematica environment:
RKTrunc[a,b,c,e,order]

In the above command a, b, c, e can be Mathematica symbols and order a

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 11

number for the desired order or matrices with symbolic or numeric entries as
mentioned above.

In the following example we get as an outcome a list with elements of the
principal truncation error terms for a method of order 6.

In[3]:=RKTrunc[a, b, c, e, 6]
Out[3]:=

{−
(

1

5040

)
+ b · a · a · a · a · a · c,

−
(

1
2520

)
+ b · a · a · a · a · c2

2
,

−
(

1

1680

)
+ b · a · a · a · (c a · c) ,

−
(

1
840

)
+ b · a · a · a · c3

6
,

−
(

1

1260

)
+ b · a · a · (c a · a · c) ,

−
(

1
630

)
+ b · a · a · (c a · c2)

2
,

−
(

1
840

)
+ b · a · a · (a · c)2

2
,
−

(
1

420

)
+ b · a · a · (c2 a · c)

2
,

−
(

1
210

)
+ b · a · a · c4

24
,−

(
1

1008

)
+ b · a · (c a · a · a · c) ,

−
(

1
504

)
+ b · a · (c a · a · c2)

2
,−

(
1

336

)
+ b · a · (c a · (c a · c)) ,

−
(

1
168

)
+ b · a · (c a · c3)

6
,−

(
1

504

)
+ b · a · (a · c a · a · c) ,

−
(

1
252

)
+ b · a · (a · c a · c2)

2
,
−

(
1

252

)
+ b · a · (c2 a · a · c)

2
,

−
(

1
126

)
+ b · a · (c2 a · c2)

4
,
−

(
1

168

)
+ b · a ·

(
c (a · c)2)

2
,

−
(

1
84

)
+ b · a · (c3 a · c)

6
,
−

(
1
42

)
+ b · a · c5

120
,

−
(

1

840

)
+ b · (c a · a · a · a · c) ,

−
(

1
420

)
+ b · (c a · a · a · c2)

2
,

−
(

1

280

)
+ b · (c a · a · (c a · c)) ,

−
(

1
140

)
+ b · (c a · a · c3)

6
,

−
(

1

210

)
+ b · (c a · (c a · a · c)) ,

−
(

1
105

)
+ b · (c a · (c a · c2))

2
,

−
(

1
140

)
+ b ·

(
c a · (a · c)2)

2
,
−

(
1
70

)
+ b · (c a · (c2 a · c))

2
,

−
(

1
35

)
+ b · (c a · c4)

24
,−

(
1

336

)
+ b · (a · c a · a · a · c) ,

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 12

−
(

1
168

)
+ b · (a · c a · a · c2)

2
,−

(
1

112

)
+ b · (a · c a · (c a · c)) ,

−
(

1
56

)
+ b · (a · c a · c3)

6
,
−

(
1

168

)
+ b · (c2 a · a · a · c)

2
,

−
(

1
84

)
+ b · (c2 a · a · c2)

4
,
−

(
1
56

)
+ b · (c2 a · (c a · c))

2
,

−
(

1
28

)
+ b · (c2 a · c3)

12
,
−

(
1

252

)
+ b · (a · a · c)2

2
,

−
(

1
126

)
+ b · (a · c2 a · a · c)

2
,
−

(
1
63

)
+ b · (a · c2)

2

8
,

−
(

1

84

)
+ b · (c a · c a · a · c) ,

−
(

1
42

)
+ b · (c a · c a · c2)

2
,

−
(

1
42

)
+ b · (c3 a · a · c)

6
,
−

(
1
21

)
+ b · (c3 a · c2)

12
,

−
(

1
56

)
+ b · (a · c)3

6
,
−

(
1
28

)
+ b ·

(
c2 (a · c)2)

4
,

−
(

1
14

)
+ b · (c4 a · c)

24
,
−

(
1
7

)
+ b · c6

720
}.

5. Comparisons Conclusions

Nowadays, Sofroniou code is the one that is usually used to produce the Runge–
Kutta methods order conditions and the principal local truncation error terms.
The code is provided as a standard Mathematica package with the name Numer-
icalMath’Butcher. The two functions of Butcher package are the RungeKut-
taOrderConditions[order] and ButcherPrincipalError[order] .

We have compared the Sofroniou versus our New Symbolic Code both in time
in seconds that is required and the memory in bytes needed by the system to
perform the symbolic computation. For that purpose we have used the Mathe-
matica build in functions Timing and MemoryInUse. The comparisons were
performed in the Mathematica 4.0 environment on a Pentium III 600 Mhz sys-
tem having 384 Mbytes RAM memory which was running Windows 2000 Server
Operating System. The results are presented in Tables 3 - 6 and Figures 1-4 for
various orders.

It is obvious that the New code is much faster and needs less memory compared
to Sofroniou code. For high order methods the Sofroniou code time measurements
are expanding making the usage of the functions practically difficult to use. On
the other hand the New code time measurements remain low and make them

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 13

handy to use. More over Sofroniou code has failed to work for order 17 methods
as the system run out of memory resources and the Mathematica kernel was
halted.

Hosea’s algorithm is strictly numerical (using floating point numbers) and
evaluates a somewhat different truncation error coefficients following Albrecht
approach, e.g. t32 = 1

2
bc2−bAc in this case. The results of the codes due to Harri-

son and Papakostas (Papakostas, 1992-93) are more or less similar to Sofroniou’s
results.

Finally, another remarkable fact is that the source code of the new package
covers less than two journal pages and this helps in the direction of better and
easier understanding.

Table 3: New code vs Sofroniou code order conditions time in secs.

order New Sofroniou % Improvement
7 0.04 0.05 20
8 0.08 0.11 27
9 0.15 0.26 42
10 0.271 0.781 65
11 0.571 2.564 78
12 1.272 8.192 85
13 3.155 26.498 88
14 7.992 91.882 91
15 21.301 354.099 94
16 57.353 1550.97 96

Table 4: New code vs Sofroniou code order conditions Memory requirement in bytes.

order New Sofroniou % Improvement
7 1759344 1373776 -28
8 1780744 1435760 -24
9 1834752 1592216 -15
10 1968608 1991960 1
11 2311640 3033264 24
12 3192328 5750344 45
13 5493136 12629496 57
14 11560104 30676680 62
15 27644224 78364656 65
16 70712824 205115872 66

6. Appendix

The Mathematica package implementing the new method.
BeginPackage["Trees16‘", {"DiscreteMath‘Combinatorica‘"}];
Clear["Trees16‘*"]

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 14

Table 5: New code vs Sofroniou principal local truncation error terms time in secs.

order New Sofroniou % Improvement
8 0.11 0.12 8
9 0.21 0.29 28
10 0.371 0.901 59
11 0.731 2.984 76
12 1.552 9.844 84
13 3.665 32.016 89
14 9.163 111.901 92
15 23.614 453.296 95
16 62.3 1909.82 97
17 170.575 ∞

Table 6: New code vs Sofroniou code principal local truncation error terms memory require-
ment in bytes.

order New Sofroniou % Improvement
7 1780120 1452352 -23
8 1832712 1632760 -12
9 1961680 2091800 6
10 2297360 3293352 30
11 3160992 6437112 51
12 5439512 14438888 62
13 11453928 35634168 68
14 27523104 91734176 70
15 70747200 240942752 71
16 188029616 ∞

7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

1400

1600

Order

S
ec

s

Order Conditions Time

Sofroniou
New

Figure 1: The results presented in plots

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 15

7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5
x 10

8

Order

 b
yt

es

Order Conditions Memory

Sofroniou
New

Figure 2: The results presented in plots

8 9 10 11 12 13 14 15 16 17
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Order

S
ec

s

Principal Truncation Error Term Time

Sofroniou
New

Figure 3: The results presented in plots

RKTrunc::usage = " RKTrunc[a,b,c,e,order] finds RK principal truncation

error of order order+1. "

RKCond::usage = " RKCond[a,b,c,e,order] finds RK order conditions

of orders 1 to order. "

Begin["‘Private‘"];

Clear["Trees16‘Private‘*"];

RKTrunc[aa ,bb ,cc ,ee ,orderr]:=

1/S[orderr+1]*(T[aa,bb,cc,ee,orderr+1]-G[orderr+1]);

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 16

8 9 10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5
x 10

8

Order

by
te

s

Principal Truncation Error Terms Memory

Sofroniou
New

Figure 4: The results presented in plots

RKCond[aa ,bb ,cc ,ee ,orderr]:=

Table[T[aa,bb,cc,ee,i]-G[i],{i,1,orderr}];
RunLengthEncode[x List] := (Through[{First, Length}[#1]] &) /@ Split[x];

Combinations[list , num] :=

Module[{i},
Table[Map[Prepend[#, list[[i]]]&,

Flatten[Combinations[list, num - 1]

[[Array[Identity, Length[list] - i + 1, i]]], 1], {1}],

{i, 1, Length[list]}]] /; (num > 1)

Combinations[list , 1] := Compinations[list, 1] = Map[{{#}}&, list];

Combinations2[list , num] :=

Apply[Times, Flatten[Combinations[list, num], 1], {1}] /; (num > 1)

Combinations2[list , 1] := list;

(*- *)

TT[a ,c ,e ,1] = {c}; G[1] = {1};
G[order] := G[order] =

Module[{temp},
temp = Map[Combinations2[G[#[[1]]], #[[2]]]&,

Map[RunLengthEncode[#] &, Partitions[order-1], {1}], {2}];
temp = Apply[Times, temp, {3}];
temp = Map[Prepend[#, Times]&, temp, 1];

temp = Apply[Outer, temp, {1}];
temp = Flatten[temp];

temp = (1/order) * temp

];

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 17

TT[a ,c ,e ,order] := TT[a,c,e,order] =

Module[{temp},
temp = Map[Combinations2[TT[a,c,e,#[[1]]]/.at->a, #[[2]]]&,

Map[RunLengthEncode[#] &, Partitions[order-1],

{1}], {2}];
temp = Map[CoverList[#]&, temp, {3}];
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1];

temp = temp /. CoverList[every] -> every;

temp = Map[(at . #)&, temp, {1}]];

T[a ,b ,c ,e ,1]= {b.e};
T[a ,b ,c ,e ,order]:= TT[a,c,e,order] /. at -> b;

S[1] = {1};
S[order] := S[order] =

Module[{temp},
temp = Map[Combinations2[MapIndexed[ff, S[#[[1]]]], #[[2]]] &,

Map[RunLengthEncode[#] &, Partitions[order-1], {1}], {2}];
temp=temp /. {ff[a , b]^p -> Factorial[p]*a^p, ff[a , b] -> a};
temp = Apply[MyOuter, temp, {1}];
temp = Flatten[temp, 1]

];

MyOuter[lists] := Flatten[Outer[Times, lists],

Length[{lists}] - 1];

End[]

EndPackage[]

References

Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations,
(1987) Wiley, Chichester

Hairer, E., Nørsett, S.P., Wanner, G., Solving Ordinary Differential Equations
I, second edition, Springer,(1993) Heidelberg

Harrison, A. J., Runge-Kutta Order Conditions Package
http://www.mathsource.com/Content/Enhancements/Numerical/0206-457

Hosea, M. E., A new recurrence for computing Runge-Kutta truncation error
coefficients (1997) SIAM J. Numer. Anal. 32 pp. 1989-2001

Keiper, J. NumericalMath‘Butcher‘.m Wolfram Research Inc (1990)

Lambert, J. D., Numerical methods for ordinary differential systems (1991) Wi-
ley, Chichester

I. Th. Famelis, S.N. Papakostas and Ch. Tsitouras: Symbolic RK conditions 18

Liu, C. L., Introduction to Combinatorial Theory (1968) Mac Grow–Hill

Papageorgiou, G. and Tsitouras, Ch., Runge–Kutta pairs for scalar autonomous
Initial Value Problems Int. J. Comput. Math. (2002) 80 pp. 201-209

Papaioannou, A., Enumeration of Graphs (in Greek) (2000) NTUA, Athens

Papakostas, S. N. Unpublished software (1992-1993)

Papakostas, S. N. Algebraic analysis and the development of numerical ODE
solvers of the Runge–Kutta type, Ph.D. Thesis (in Greek) (1996) Athens

Papakostas, S. N. and Tsitouras, Ch., High algebraic order, high phase-lag order
Runge-Kutta and Nyström pairs (1999) SIAM J Sci. Comput. 21 pp. 747-763

Papakostas, S. N., Tsitouras Ch., and Papageorgiou G., A general family of
explicit Runge-Kutta pairs of orders 6(5) (1996) SIAM J Numer. Anal. 33
pp. 917-936

Riordan, J., An Introduction to Combinatorial Analysis (1958) Wiley, N. York

Sofroniou, M., Symbolic Derivation of Runge–Kutta methods (1994) J. Symbol.
Comput. 18 pp. 265-296

Tsitouras, Ch., A parameter study of a Runge–Kutta pair of orders 6(5) (1998)
Appl. Math. Lett. 11 pp 65-69

Tsitouras, Ch. and Papakostas, S. N., Cheap error estimation for Runge–Kutta
pairs(1999) SIAM J Sci. Comput. 20 pp. 2067-2088

Tsitouras, Ch., Optimal Runge–Kutta pairs of orders 9(8) (2001) Appl. Numer.
Math., 38 pp. 123-134

Wolfram, S., Mathematica. Mathematica book v4.0 (1999) Wolfram med. inc &
Campridge Univ. Pr.

