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Abstract

We present an implicit hybrid two step method for the solution of
second order initial value problem. It costs only six function evalua-
tions per step and attains eighth algebraic order. The method satisfy
the P-stability property requiring one stage less. We conclude dealing
with implementation issues for the methods of this type and give some
�rst pleasant results from numerical tests.
Keywords: Initial Value Problem, Second Order, Oscillatory so-

lutions.
Mathematics Subject Classi�cation: 65L05, 65L06

1 Introduction.

We are interested in solving the initial value problem of second order

y00 = f (x; y) ; y (x0) = y0; y
0 (x0) = y

0
0: (1)

where y; y0 and y00 2 <m: In this paper we investigate the class of the above
problems with periodic solutions. Our result are methods which can be
applied to numerous problems in celestial mechanics, quantum mechanical
scattering theory, in theoretical physics and chemistry and in electronics
[15, 16].

Implicit hybrid two step methods satisfying P-stability property are used
for about twenty years for solving (1), [4, 6, 7]. This stability property is
particular relevant when (1) is a system whose theoretical solution consists
of a periodic part of moderate frequency with a high frequency oscillation
of small amplitude superimposed [4].

Implicitness furnishes each step a nonlinear equation in a single unknown
yn+1 � y (xn+1) = y (x0 + nh). In [19] we used seven stages for achieving P-
stability and eighth order of accuracy. Khiyal and Thomas [13] also proposed
a seven stage eighth order P-stable method with only the four implicit stages
among them.
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The construction this type of methods is usually based on interpolatory
nodes. These nodes carry a lot of information which is useless even for
conventional methods. So, an alternative implementation of such methods
was introduced in [17, 20, 21]. and studied theoretically by Coleman [8] or
Chan et. al. [5] through B-series and P-series respectively.

Here we propose a six stage method of the form:

yn+1 = 2yn � yn�1 + h2
sX
j=1

bjf (xn + cjh; gj) : (2)

with

gi = (1 + ci) yn � ciyn�1 + h2
sX
j=1

aijf (xn + cjh; gj) ; i = 1; 2; � � � ; s = 6:

Here gi are only �rst order approximations of y (xn + cih) while traditional
methods demand for most of the gi = y (xn + cih)+O

�
h8
�
. In the following

we will present the order conditions for achieving various algebraic orders
and after a periodic stability analysis we will derive a P-stable method of
eighth order.

2 Algebraic order of the new method.

When solving (1) numerically we have to pay attention in the algebraic order
of the method used, since this is the main factor of achieving higher accuracy
with lower computational cost. Thus this is the main factor of increasing the
e¢ ciency of our e¤ort. Using the notation of Nyström methods we consider
the matrix of the coe¢ cients

A =

26666664

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

37777775 ;

and the vectors

b =
�
w1 w2 b1 b2 b3 b4

�
;

and
c =

�
1 0 c1 c2 c3 c4

�T
:

Now the method can be formulated in a table like the Butcher tableau, [1, 2]:

c A

b
:
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Table 1: Equations of condition up to eighth order
b � e = 1,
b � c = 0,
b � c2 = 1

6 ,
b � c3 = 0,
b � c4 = 1

15 ,
b � c5 = 0,
b � c6 = 1

28 ,
b �A � c4 = 1

840 ,
b � c7 = 0,
b �
�
c A � c4

�
= 0,

b �A � c5 = 0 !! Be careful. This equation is missing from JCAM paper

Under the simplifying assumptions

Ae = 1
2

�
c2 + c

�
;

Ac = 1
6

�
c3 � c

�
;

Ac2 = 1
12

�
c4 + c

�
;

Ac3 = 1
20

�
c5 � c

�
;

(3)

with
e = [ 1 1 1 1 1 1 ]T

and
ci =

�
1 0 ci1 ci2 ci3 ci4

�
;

we get the eighth order conditions given in Table 1 (see [8]):
Our methods include 48 parameters. Thirty �ve equations are required

assuming order conditions and satisfaction of (1). This leaves thirteen coef-
�cients as free parameters.

3 Periodic problems.

Following Lambert and Watson [14] and in order to study the periodic prop-
erties of methods posed for solving (1), it is constructive to consider the
scalar test problem

y0 = �!2y; ! 2 <: (4)

When applying an explicit two step hybrid method of the form (2) to the
problem (4) we obtain a di¤erence equation of the form

yn+1 + S
�
v2
�
yn + P

�
v2
�
yn�1 = 0; (5)

where yn � y (nh) the computed approximations at n = 1; 2; : : :, v = !h; h
the step size used, and S

�
v2
�
; P
�
v2
�
polynomials in v2.
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Zero dissipation property is ful�lled by requiring P
�
v2
�
� 1, and helps

a numerical method that solves (4) to stay in its cyclic orbit. We observe
that

P
�
v2
�
= 1� v2b �

�
Is + v

2A
��1 � c;

with Is the identity matrix of dimension s� s. P
�
v2
�
can be written as an

in�nite series:

P
�
v2
�
= 1 + v9b �A4 � c+ v11b �A5 � c+ � � � :

Actually we have to solve only

b �A4 � c = 0;

b �A5 � c = 0;

and

b �A6 � c = 0;

demanding another three coe¢ cients and leaving ten free parameters.
The solution of (4) is

y(x) = ei!x;

and we may write equation (5) as

e2iv + S
�
v2
�
� eiv + 1 = O:

P-stability means that the numerical solution stays in orbit for ever. Thus
we want ��S �v2��� < 2; v 2 (0;+1)

Observe that
S
�
v2
�
= 2� v2b �

�
Is + v

2A
��1 � (e� c)

with Is 2 <s�s the proper identity matrix. After extended search we con-
cluded to a method with coe¢ cients given in Table 2.

4 Implementation issues.

First we introduce

zi = gi � (1 + ci) yn + ciyn�1 = h2 �
sX
j=1

aijf (xn + cih; gj) : (6)

Similar to implicit Runge-Kutta methods [11, p. 118], we observe that:
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Table 2: Coe¢ cients of the new method
a11 = �0:33083649953596372; a12 = �0:28554560691201376;
a13 = 0:096020140660069509; a14 = 0:065976488202945502;
a15 = 0:93159949396176978; a16 = �0:25151621006087468;
a21 = �0:22800572156136017; a22 = 0:75775376332106239;
a23 = 0:044036478175189789; a24 = 0:044036478175189789;
a25 = �0:38981527654872163; a26 = �0:22800572156136017;
a31 = �0:14560363007308039; a32 = �1:9592986015796962;
a33 = �0:024082528198053865; a34 = 0:028081493431889852;
a35 = 2:1942941895272906; a36 = �0:18249268029751431;
a41 = 1:0027874805872521; a42 = �1:2518397436149883;
a43 = �0:092326475684278097; a44 = �0:14449049731422181;
a45 = 0:12503961031290593; a46 = 1:0396765308116860;
a51 = 0:10278432173227921; a52 = 0:18924763112443292;
a53 = 0:019851517364212751; a54 = 0:019851517364212751;
a55 = 0:023382022388299996; a56 = 0:10278432173227921;
a61 = 0:28697954935636091; a62 = 0:16149513085428000;
a63 = 0:085716485163353987; a64 = 0:055672832706229981;
a65 = 0:62654046521477468; a66 = 0:20765925988127187;
b1 = 0:29173891914469542; b2 = 0:12330286145746479;
b3 = 0:084958219397839784; b4 = 0:084958219397839784;
b5 = 0:12330286145746479; b6 = 0:29173891914469542;
c1 = c6 = 0:33749364930837850; c2 = c5 = 0;
c3 = c4 = 0:76794866228752001:

yn+1 = 2yn � yn�1 +
6X
j=1

djzj ;

with

d =
�
d1 d2 d3 d4 d5 d6

�
= b �A�1:

For solving nonlinear equations (6) we use modi�ed Newton iteration accord-
ing to the scheme (brackets in the exponent include the iteration counter):

�
Ims � h2A
 J

�
�Z [k] = �Z [k] + h2 (A
 Im) � F

�
Z [k]

�
(7)

Z [k+1] = Z [k] +�Z [k]:

Here J = @f
@y (xn; yn) is the Jacobian matrix evaluated at the left point and

kept �xed during the hole step (even in a series of consecutive steps),

Z [k] =
h
z
[k]
1 z

[k]
2 � � � z

[k]
s

iT
;
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is the k�th iteration and �Z [k] are the corresponding increments. The
supervector F

�
Z [k]

�
is an abbreviation for

F
�
Z [k]

�
=

26666664
f
�
xn + c1h; (1 + c1) yn � c1yn�1 + z[k]1

�
f
�
xn + c2h; (1 + c2) yn � c2yn�1 + z[k]2

�
...

f
�
xn + c6h; (1 + c6) yn � c6yn�1 + z[k]6

�

37777775 ;

see [11, pp. 119-120] for details.
A simple choice for the starting value of Z [0] would be z[0]i = 0 for

i = 1; 2; � � � ; s. A more satisfactory approach uses an O(h4) interpolation
based on known values yn�1, yn , y00n�1 and y

00
n. So we may evaluate

z
[0]
i = �1

6
h2 (ci � 1) (ci + 1) ciy00n�1 +

1

6
h2 (ci + 2) (ci + 1) ciy

00
n: (8)

In view of (3) we may use high order stage values from previous steps
forming more accurate interpolants for z[0]i �s, but (8) is e¢ cient enough to
get convergence rapidly for many non-linear problems.

The main drawback of the iteration scheme (7) is that requires the LU
decomposition of an (sm)� (sm) matrix. The computational e¤ort of mag-
nitude raises to O((sm)3) and it is not comparable to diagonally implicit
methods suggested until now and need O

�
m3
�
operations [4, 19].

Since the matrix A is invertible we may overcome this disadvantage using
an approach similar to the one introduced by Butcher [3] and it is now
applied to implicit Runge-Kutta methods [12]. The idea is to premultiply
(7) by h�2A�1 
 I, and transform A to a simple matrix

T�1A�1T = �:

Using the transformation W =
�
T�1 
 Im

�
� Z, the iteration (7) becomes

equivalent to

�
h�2�
 Im � Is 
 J

�
�W [k] = �h�2 (�
 Im)W [k] +

�
T�1 
 Im

�
� F
�
Z [k]

�
W [k+1] =W [k] +�W [k]:

Observe that now we have only s matrices of dimension m�m to factor. A
real LU decomposition uses 23m

3 �ops [10], while a complex LU decomposi-
tion needs 4�23 m

3 �ops. Matrix A has four real eigenvalues and one pair of
conjugate complex ones. According to analysis in [11, pg 122], we sum to
4 � 23m

3+ 4�2
3 m

3 = 16
3 m

3 �ops for the new method neglecting operations like
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back substitution with cost of O
�
m2
�
: Notice that transformations such as

Z = (T 
 Im) �W cost only O (m) :
The main competitor of our new suggestion here is the seven stage

method given in [19]. Transforming the later to the form (2), we observe
that its corresponding matrix A, has one real and three conjugate complex
pairs of eigenvalues. Thus its cost raises to 1 � 23m

3+3 � 4�23 m
3 = 26

3 m
3 �ops.

It would be desirable for A to have seven real eigenvalues to reduce the cost
to 14

3 m
3 �ops only. But A is not invertible and this option is meaningless.

The classical iteration scheme for this method has the form

�
Im + �1h

2J + �2h
4J2 + �3h

6J3 + �4h
8J4

�
�
�
y
[k+1]
n+1 � y[k]n+1

�
= F

�
y
[k]
n+1; y

00[k]
n+1

�
;

(9)

with

y
[0]
n+1 = 2yn � yn�1 + h2y00n

an initial iteration corresponding to (8).
We must avoid the evaluation of J2; J3 and J4; because these computa-

tions use 2m3 �ops each [10], giving a total of 183 m
3 operations.

Factoring the polynomial (9) in h2J , we get the scheme

�
Im � �1h2J

� �
Im � �2h2J

� �
Im � �3h2J

� �
Im � �4h2J

�
�
�
y
[k+1]
n+1 � y[k]n+1

�
= F

�
y
[k]
n+1; y

00[k]
n+1

�
This can be solved by four consecutive LU decompositions of the corre-
sponding factors. If the roots �1; �2; �3; �4 were real then the hole procedure
would sum to a total cost of only 4 � 23m

3 = 8
3m

3 operations as m ! 1:
But these roots form a set of two complex conjugate pairs �1 = �2 and
�3 = �4. We have then to perform two complex LU decompositions since
LU =

�
Im � �h2J

�
implies L U =

�
Im � �h2J

�
: The cost in this case is

2 � 4�23 m
3 = 16

3 m
3.

The �nal observation of our analysis is that our new fully implicit method
has the same cost of 163 m

3 operations per step with the older diagonally
implicit method given in [19].

5 Numerical Tests.

Two problems are chosen for our comparisons that are well known in the
relevant literature. These problems were run for our new method and its
main competitor [19]. We ran both formulas for the same number of steps
within the integration step and recorded the end point global errors. We
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Table 3: Accurate digits for the Du¢ ng equation
correct digits

steps New [19]
450 3.8 2.9
900 6.1 5.4
1350 7.5 6.7
1800 8.5 7.7
2250 9.2 8.5
2700 9.8 9.2
3150 10.3 9.7
3600 10.7 10.2
4050 11.2 10.5

avoid recording computer times since they heavily depend on programming
defects. The iteration schemes for the two methods are somewhat di¤erent
and small programming modi�cations may give considerable di¤erences in
the e¢ ciency.

5.1 Du¢ ng equation

First we considered the following problem

y00 = �y � y3 + 1

500
� cos (1:01x) ;

y (0) = 0:200426728067; y0 (0) = 0;

with theoretical solution

y(x) = :200179477536 cos(1:01x) + 2:46946143 � 10�4 cos(3:03x)
+ 3:04014 � 10�7 cos(5:05x) + 3:74 � 10�10 cos(7:07x):

We solved the above equation in the region x 2
�
0; 120:51:01 �

�
because y

�
120:5
1:01 �

�
=

0.
The results are given in Table- 3 where a gain of more than a half digit

is shown.

5.2 Elastodynamics problem

Our second test problem was the linear elastodynamics sti¤ model [9]:

@2u
@t2

+ @4u
@x4

� x (1� x) @2u
@x2

� u = 0; 0 < x < 1; t > 0;
u(0; t) = u(1; t) = 0;
@3u
@x3

(0; t) = @3u
@x3

(1; t) = 0

u (x; 0) = x (1� x) ; @u
@t (x; 0) = 0
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with analytical solution

u(x; t) = x (1� x) cos(t):

Using the method of lines we consider an approximation on a uniform grid
yi (t) � u (i�x; t) with �x = 1=N: Then we semidiscretisize on the spatial
variable by second order symmetric di¤erences. The �nal linear equation
has the form26664

y001
y002
...

y00N�1

37775 =
�
� 1

h4
A4 + IN�1 +

1

h2
UA2

�
�

26664
y1
y2
...

yN�1

37775 ;
with

A4 =

2666666664

2 �2 �2=3 � � � O
�4 6 �4 1
1 �4 6 �4 1

. . .
... 1 �4 6 �4
O �2=3 �2 2

3777777775
2 <(N�1)�(N�1);

A2 =

26666664
�2 1 � � � O
1 �2 1

. . .
... 1 �2 1
O 1 �2

37777775 2 <
(N�1)�(N�1);

and U = diag (�x; 2�x; � � � ; (N � 1)�x) :
We integrated that sti¤ problem in the interval x 2 [0; 20�] for N = 40.

This type of problem is very interesting since no high oscillations are present
in the solution while its eigenvalues are all negative real laying in the interval�
�4:1 � 107;�1

�
. The results are shown in Table 4. The spatial discretization

error is �xed since �x = 1=40; and limits the accuracy to 10�7:8. The new
method needs almost half steps to achieve this accuracy. The method given
in [19] failed to convergence for large steps.
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Table 4: Accurate digits for the Du¢ ng equation.(nc) means not convergence
correct digits

steps New [19]
90 4.4 (nc)
180 6.7 (nc)
270 7.7 (nc)
360 7.8 (nc)
450 7.8 (nc)
540 7.8 5.6
540 7.8 7.8
630 7.8 7.8
720 7.8 7.8
810 7.8 7.8

References

[1] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput.
18(1964) 50-64.

[2] J. C. Butcher, On Runge-Kutta processes of high order, J. Austral.
Math. Soc. 4(1964) 179-194.

[3] J. C. Butcher, On the implementation of implicit Runge-Kutta meth-
ods, BIT, 6 (1976) 237-240.

[4] J. R. Cash, High order P-stable formulae for the numerical integration
of periodic initial value problems, Numer. Math., 37 (1981) 355-370.

[5] R. P. K. Chan, P. Leone and A. Tsai, Order conditions and symmetry
for two step hybrid methods, Int. J. Comput. Math., 81 (2004) 1519-
1536.

[6] M. M. Chawla, Two step fourth order P-stable methods for second
order di¤erential equations, BIT, 21 (1981) 190-193.

[7] M. M. Chawla and P. S. Rao, High accuracy P-stable methods for
y00 = f(t; y), I.M.A. J. Numer. Anal., 5 (1985) 215-220.

[8] J. P. Coleman, Order conditions for a class of two-step methods for
y00 = f(t; y), IMA J Numer. Anal., 23 (2004) 197-220.

[9] J. M. Franco, I. Gomez and L. Randez, Four-stage symplectic and P-
stable SDIRKN methods with dispersion of high order, Numer. Algo-
rithms, 26 (2001) 347-363

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
Univ. Pr., Baltimore, second edition, 1989.

10



[11] E. Hairer and G. Wanner, Solving Ordinary Di¤erential Equations II,
Springer-Verlag, 2nd ed., Berlin, 1996.

[12] E. Hairer and G. Wanner, Sti¤ di¤erential equations solved by Radau
methods, J. Comput. Appl. Math., 111(1999) 93-111.

[13] M. S. H. Khiyal and R. M. Thomas, E¢ cient eighth order P-stable
methods for second order initial value problems, Int. J. Comput. Math.,
64(1997) 119-151.

[14] J. D. Lambert and I. A. Watson, Symmetric multistep methods for
periodic initial value problems, J. Inst. Math. Appl., 18 (1976) 189-
202.

[15] L. D. Landau and F. M. Lifshitz, QuantumMechanics, Pergamon Press,
New York, 1065.

[16] R. L. Libo¤, Introductory Quantum Mechanics, Addison-Wesley, Read-
ing, MA, 1980.

[17] G. Papageorgiou, Ch. Tsitouras and I. Th. Famelis, Explicit Numerov
type method for second order IVPs with oscillating solutions, Int. J.
Mod. Phys. C., 12 (2001) 657-666.

[18] S. N. Papakostas and Ch. Tsitouras, High algebraic order, high phase-
lag order Runge-Kutta and Nyström pairs, SIAM J. Sci. Comput., 21
(1999) 747-763.

[19] T. E. Simos and Ch. Tsitouras, A P-stable eighth order method for the
numerical integration of periodic initial value problems, J. Comput.
Phys., 130 (1997) 123-128.

[20] Ch. Tsitouras, Explicit two-step methods for second order linear IVPs,
Comput. & Maths with Appl., 43 (2002) 943-949.

[21] Ch. Tsitouras, Explicit Numerov type methods with reduced number
of stages, Comput. & Maths with Appl., 45 (2003) 37-42.

11


