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A new methodology for the generation of explicit or implicit Runge-Kutta (RK) methods is presented. In the
proposed methodology, Evolutionary Algorithms will be used to generate RK methods. Candidate vectors
of coefficients will be evolved in order to find RK coefficients which satisfy the RK algebraic system and
simultaneously have as small as possible local truncation error.
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1 Introduction
The problem of constructing Runge–Kutta (RK) methods has drawn a lot of attention and has evolved to a rather
specialized branch of numerical mathematics [7, 10, 13, 16, 17]. Several authors have created such methods for
the numerical solution of the Initial Value Problem (IVP) :

y′(x) = f
(
x, y(x)

)
,

y(x0) = y0,
(1)

with x0 ∈ IR, y0 ∈ IRn, y : IR → IRn, f : IR × IRn → IRn. Given a step–size hn = xn+1 − xn, an s–stage
explicit RK pair is defined as follows :

yn+1 = yn + hn

s∑

j=1

bi ki, ŷn+1 = yn + hn

s∑

j=1

b̂i ki,

where

ki = f

(
xn + ci h, yn + h

i−1∑

j=1

aij kj

)
, i = 2, . . . , s,

and it provides for each n, n = 1, . . . , an approximation yn+1 to y(xn+1) where y(x) is the solution of IVP (1).
The reference solution ŷn+1 is used for the control of the step–size. The local error estimate En = ‖yn − ŷn‖
of the (p − 1)−th order Runge-Kutta pair is used for the automatic selection of the step size. Given a Tolerance
TOL > En, the algorithm hn+1 = 0.9 · hn · (TOL/En)1/p, furnishes the next step length. In case TOL < En

then we reject the current step and try again with the left side of above formula being hn.
The number s of ki’s must be chosen large enough, and the parameters must be determined so that the Taylor

series of y(xn + h) matches that of yn+1 through the terms involving hp. These requirements generate a system
of nonlinear algebraic equations in the parameters [3]. The number of equations grows rapidly with the size of the
algebraic order p and it is in general smaller than the number of the parameters. Since there are free parameters
there are infinitely many solutions of the above system.
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Using Butcher trees [6] we are able to formulate RK algebraic system of equations i.e. the conditions which
any s-stage RK method must satisfy, to be of any particular order.

In [1, 2] the solution of the RK algebraic system was transformed to the solution of unconstrained optimization
problem. In this paper we propose a method that uses the Evolutionary Algorithms (EA) [8] to generate RK
methods. EA are very effective when the objective function has many local optima (as in our case) and can be
applied in situations where the objective function is not differentiable or /and discontinuous.

The paper is organized as follows. In Section 2 the algebraic system for the coefficients of a RK pair is
presented. In Section 3 the Differential Evolution Algorithm (DE) is described. The proposed pair of orders 5(4)
is exhibited in Section 4 while in Section 5 some preliminary results from the application of the proposed method
are shown.

2 Order conditions for Runge–Kutta methods
The general s−stage embedded Runge-Kutta pair of orders p(p− 1), for the approximate solution of the IVP (1)
can be defined by the following Butcher scheme [4, 5]

c A
b

b̂

where A ∈ IRs×s, is strictly lower triangular, b>, b̂>, c ∈ IRs with c = A · e, e = [1, 1, . . . , 1]> ∈ IRs. The
vectors b̂, b define the coefficients of the (p − 1)−th and p−th order approximations respectively.

Let yn(x) be the solution of the local initial value problem,

y′

n(x) = f(x, yn(x)), x > xn, yn(xn) = yn.

Then En+1 is an estimate of the error in the local solution yn(x) at x = xn+1. The local truncation error tn+1

associated with the higher order method is

tn+1 = yn+1 − yn(xn + hn) =

∞∑

q=1

hq
n

λq∑

i=1

TqiPqi = hp+1
n Φ(xn, yn) + O(hp+1

n ),

where Tqi = Qqi − ξqi/q! with Qqi algebraic functions of A, b, c and ξqi positive integers. Pqi are differentials
of f evaluated at (xn, yn) and Tqi = 0 for q = 1, 2, · · · , p and i = 1, 2, · · · , λq . λq is the number of elementary
differentials for each order and coincides with the number of rooted trees of order q. It is known that [3]

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48, . . . ,

The set T (q) = {Tq1, Tq2, · · · , Tq,λq
} is formed by the q−th order truncation error coefficients. It is usual

practice a (q − 1)−th order method to have minimized ‖T (q)‖2 =
√∑λq

j=1 T 2
qj .

In the present paper we are interested for deriving 5(4) pairs. For a fifth order method
∑i=5

i=1 λi = 17 equations
have to be satisfied. For the companion fourth order formula another

∑i=4
i=1 λi = 8 equations have to be satisfied.

So in total 25 constrains required. In addition ‖T (6)‖2 =
√∑20

j=1 T 2
6j is to be minimized.

The 17 equations of condition for orders 1 through 5 are given in Table–1. In this table operation “*” may
understood as component-wise multiplication: [u1 u2 · · ·un]> ∗ [v1 v2 · · · vn]> = [u1v1 u2v2 · · ·unvn]>.
This operation has the less priority. Parentheses, powers and dot products are always evaluated before “*” Notice
that cj = c ∗ c ∗ · · · ∗ c︸ ︷︷ ︸

j times

.

An explicit RK5(4) pair uses 7 stages. Using FSAL property the last stage is reused as the first of the
next step. So effectively only 6 stages needed per step. FSAL determines c7 = 1 and a7j = bj , j =
1, 2, . . . , 6. Finally 27 coefficients are available for satisfaction of the 25 constrains. Namely c2, c3, c4, c5, c6,
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Table 1 The truncation error coefficients for orders 1 through 5.

T1,1 = be− 1, T2,1 = bc − 1
2 , T3,1 = 1

2bc2 − 1
6 , T3,2 = bAc − 1

6 ,
T4,1 = 1

4bc3 − 1
24 , T4,2 = b(c ∗ Ac) − 1

8 , T4,3 = 1
2bAc2 − 1

24 , T4,4 = bA2c − 1
24 ,

T5,1 = 1
24bc4 − 1

120 , T5,2 = 1
2b(c2 ∗ Ac) − 1

20 , T5,3 = 1
2b(Ac)2 − 1

40 , T5,4 = 1
2b(c ∗ Ac2) − 1

30 ,

T5,5 = b(c ∗ A2c) − 1
30 , T̃5,6 = 1

6bAc3 − 1
120 , T̃5,7 = bA(c ∗ Ac) − 1

40 , T̃5,8 = 1
2bA2c2 − 1

120 ,

T̃5,9 = bA3c − 1
120 .

b1, b2, b3, b4, b5, b6 , b̂1, b̂2, b̂3, b̂4, b̂5, b̂6, a32, a42 , a43, a52, a53, a54 , a62, a63, a64, and a65. We set
b̂7 = 1/20 6= b7 = 0 in order to avoid coincidence of vectors b and b̂.

Traditionally simplifying assumptions are made in order to reduce the difficulty of the problem. These define
various families of solutions. Especially Ac = c2/2 and b2 = b̂2 = 0, are common in all families ever appeared.
Using for example the latter assumptions then T3,2 coincides with T3,1 and need not to be satisfied separately.

3 Differential Evolution
Differential Evolution (DE) [15] is a population – based algorithm for global optimization. It attains a set of
possible solutions, for the problem under consideration, and evolves them using some operators in order to find
the optimum one.

More specifically, in the DE algorithm terminology, each solution is called individual and the set of all the
possible solutions is called population of individuals. Let ui denote the ith individual of the population. Then,
DE is described by the following four distinct steps:

Step 1. (Initialization step) Initialize randomly the individuals of the population. Set the mutation factor, F, and
the crossover factor, CR, to fixed values within the interval [0, 1] and choose an objective function for
the problem under study.

Step 2. (Mutation step) Mutate each individual ui
g (called the target individual) of the population to form a trial

vector, vi
g+1, by applying one of the following operators,

vi
g+1 = ur1

g + F (ur2
g − ur3

g ),

vi
g+1 = ur1

g + F (ur2
g − ur3

g ) + F (ur4
g − ur5

g ),

vi
g+1 = ubest

g + F (ur1
g − ur2

g ),

vi
g+1 = ui

g + F (ui
g − ubest

g ) + F (ur1
g − ur2

g ),

vi
g+1 = ubest

g + F (ur1
g − ur2

g ) + F (ur3
g − ur4

g ),

where r1, r2, r3, r4 are random integers such that, r1 6= r2 6= r3 6= r4 6= i 6= best. The index best is
used to represent the individual with the optimum objective function value in the current population.

Step 3. (Recombination (Crossover) step) For each element of the trial vector, vi
g+1, obtain a random value,

r ∈ [0, 1]. If r 6 CR, set ui
g+1 = vi

g+1, otherwise set ui
g+1 = ui

g [12].
Step 4. (Selection step) For each individual of the population ui

g+1 evaluate its value through the objective
function. If this value is better than the one of the target individual ui

g, then the individual ui
g+1 replaces

the target individual in the next generation. Otherwise, the target individual is retained in the next
generation of the DE algorithm. If the termination criterion is not satisfied, then go to the second step.
As a termination criterion we can use a predefined number of generations or an error goal value of the
objective function.

4 Proposed Method
From the Evolutionary Algorithms, here, we will use the Differential Evolution (DE) algorithm described in
Section 3. The individuals of DE will be candidate vectors of RK coefficients. The objective function will be the
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sum of the absolute values of the local truncation error equations. Using the `1 norm instead of the `2 norm (used
in [1, 2]) we avoid the square increment of the error. Moreover, the usage of the `1 norm does not affect proposed
method’s operation. The individuals - RK coefficients will be evolved according to the DE steps in order to find
the one with the smallest possible local truncation error. To assure that each individual satisfies the algebraic
system of RK order conditions we shall make use once again of the DE algorithm. The aim of the second DE
algorithm will be to solve the optimization problem that arises if we take as objective function the sum of the
`1 norm of the RK order conditions. Thus for each individual (initial individual) of the first DE, we initialize
in a neighborhood around this individual the population of the second DE. The output of the second DE will be
an individual-RK coefficients that satisfy the RK order conditions within some precision. This output-individual
will replace the initial individual in the first DE and then the new individual will be evaluated by computing the
absolute values of the local truncation error equations.

A high level description of the proposed method is given by the following steps:

Step 1. Initialize randomly the population of the DE algorithm.
Step 2. For each individual of this population

Step 2a. Initialize a local population in a neighborhood around the individual.
Step 2b. The individuals of the local population are evolved according to the steps of the DE algorithm. The

objective function will be the the sum of the absolute values of the RK order conditions. The DE
algorithm will terminate when the RK order conditions are satisfied.

Step 2c. Replace the individual with the best individual found from the local population.
Step 3. Evaluate each individual using as objective function the sum of the absolute values of the RK local

truncation error equations.
Step 4. Evolve the individuals according to the DE steps. If the new individual is not a RK method, apply Steps

2a–2c in order to satisfy the RK order conditions.

Applying the above described method to the set of equations for a RK pair of orders 5(4) we constructed a method
presented in Table–2. This pair does not belong to any known family of solutions.

Table 2 The coefficients of the new pair.

c2 = 0.20427299377517 c3 = 0.30783191706654 c4 = 0.79929778653982
c5 = 0.90075677981782 c6 = c7 = 1 b1 = 0.09305053181522
b2 = 0.00875587209919 b3 = 0.44668491608246 b4 = 0.57565550417358

b5 = −0.24922802364186 b6 = 0.12508119947141 b̂1 = 0.09213862611890

b̂2 = 0.00802050182998 b̂3 = 0.45114229138473 b̂4 = 0.54617230669534

b̂5 = −0.20560640649727 b̂6 = 0.08313268046832 b̂7 = 1
40 , b7 = 0

a32 = 0.23518899782085 a42 = −3.41195602838532 a43 = 3.2962302133491
a52 = −13.10298053365142 a53 = 11.03548248550554 a54 = −0.40092201922022
a62 = −11.18958543937 a63 = 9.29028080486981 a64 = 0.12483355979476

a65 = −0.19774507863999 ai1 = ci −
∑j=i−1

j=2 aij , j = 1, 2, · · · , 6 a7i = bi, i = 1, 2, · · · , 6

5 Numerical Results–Conclusions
We run the Runge-Kutta pair for the 25 DETEST [9] non–stiff problems and for tolerances 10−2, 10−3, · · · , 10−7.
DETEST was implemented through MATLAB–7 on a Pentium IV computer running Windows XP Professional
at 3.4GHz. For comparison purposes the DP5(4) pair [7] was also run for the same tolerances. We present the
results in Table–3.

These results were developed according to the guidelines given in [14]. So, we notify the percentage difference
in the number of function evaluations required for achieving a given end-point global error for each problem.
Unity represents 10%. Numbers have been rounded to the nearest digit. Positive numbers mean that the first
method is superior. The final row, gives the mean value of efficiency gain for all tolerances in a problem. The
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Table 3 Efficiency gains of NEW5(4) relative to DP5(4), for the range of tolerances 10−2 , . . ., 10−7.

g.e. A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 D1 D2 D3 D4 D5 E1 E2 E3 E4 E5
−1 0 −2 0 −6 −1 0 0 0 0 0 −1 0 0 −1

−2 0 0 0 0 0 −1 0 0 −4 0 0 0 0 0 0 0 0 0 −1 −2 0 0 −1

−3 0 0 −1 0 0 −1 0 0 −3 0 0 0 1 0 0 0 −1 −1 −1 −2 0 0 −1 0

−4 0 0 −1 0 0 0 0 0 −1 0 0 0 1 0 0 0 −1 −2 −2 1 0 0 0 −1

−5 0 0 −2 0 0 0 0 0 0 0 0 0 2 0 0 0 −2 1 0 0 0 −2

−6 0 0 −2 0 0 0 0 1 1 0 0 0 0 1 −1 0 0 −2

−7 0 0 0 0 0 0 0 0 0 0 1 0 −2

−8 0 0 1 0 0 0 0 −2

−3% 0 0 −1 0 0 −1 0 0 −2 0 0 0 1 0 0 0 −1 −1 −1 −2 1 0 −1 0 −2

left most lower number is the average efficiency gain for all problems. Empty places in the tables are due to the
unavailability of data for the respective tolerances. See [11] for more details.

We finally observe that the new method is in average 3% less efficient than Dormand–Prince 5(4) for the
DETEST problems. It is remarkable that a pair not belonging to any known family of solutions gives so good
results.
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