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We study the numerical treatment of Boussinesq PDE equation using the methods of lines. For
the space discretization we choose either Classical Finite differences or Fourier pseudospectral
methods. Both cases result in a system of second order ordinary differential equations (ODEs)
that is quadratic. In order to take advantage of this special feature, we choose to solve the ODE
system using a new type of hybrid Numerov method specially constructed for such problems.
Other efficient ODE solvers taken from the literature are used to solve the system of ODEs
as well. By taking all the combinations of space discretization methods and ODE solvers we
discuss the stability and accuracy features revealed from the numerical tests. c© 1994 John
Wiley & Sons, Inc.
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I. INTRODUCTION

The Boussinesq nonlinear equation that describes motions of long waves in shallow water
under gravity and in one dimensional nonlinear lattice, is given by

∂2u

∂t2
=

∂2u

∂x2
+ q

∂4u

∂x4
+

∂2
(
u2

)

∂x2
(1.1)

L0 < x < L1, t > t0

where u = u (x, t) and |q| = 1 is a real parameter. Taking q = −1 gives the good
Boussinesq equation (GB) while taking q = 1 we get the bad Boussinesq equation (BB).
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It is assumed that the initial displacement

u(x, t0) = g1(x); L0 ≤ x ≤ L1,

and the initial velocity

∂u(x, t0)
∂t

= g2(x), L0 ≤ x ≤ L1,

are known.
According to Manoranjan et. al. [8], the function

u(x, t) = q1{Qsech2(

√
Q

6
(x− ct + xo)) + b− q1

2
} (1.2)

satisfies (1.1). In the above equation Q is the amplitude of the pulse, b is an arbitrary
parameter, xo is the initial position of the pulse and

c = ±
√

2q1 · (b + Q/3)

is the velocity. If q1 = 1 then (1.2) satisfies the single soliton BB, while for q1 = −1
satisfies the GB equation.

There is a constant interest in numerical methods for solving (1.1). Abrosi [1], Bratsos
[2], Feng [5], Wazwaz [12] have dealt with this subject producing mainly finite difference
methods. In [11] an earlier version of the current was presented.

II. THE METHOD OF LINES

A. Finite differences

If we semi-disrcetize (1.1) along space using central differences we obtain a system of
ordinary differential equations of the form

U ′′ = (R + q · T ) · U + R · U∗ (2.1)

where

U = [U0 U1 · · ·UN ]T

∼= [u(L0, t) u(L0 + h, t) · · ·u(L1, t)]T ,

is a vector approximation of u(x, t) at the lines L0, L0 + h, · · · , L1 − h,L1 with step
length h = (L1 − L0)/N .

Whereas we define the vectors

U∗ = [U2
0 U2

1 · · ·U2
N ]T ,

and

U ′′ = [U ′′
0 U ′′

1 · · ·U ′′
N ]

∼= [
∂2u(L0, t)

∂t2
∂2u(L0 + h, t)

∂t2
· · · ∂

2u(L1, t)
∂t2

]
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as well. The matrices R and T are O
(
h4

)
finite difference approximations for second

and fourth derivatives respectively having the form

R =
1
h2
·




35
12 − 26

3
19
2 − 14

3
11
12

· · · 0
11
12 − 5

3
1
2

1
3 − 1

12

− 1
12

4
3 − 5

2
4
3 − 1

12

. . . . . . . . .

− 1
12

4
3 − 5

2
4
3 − 1

12

− 1
12

1
3

1
2 − 5

3
11
12

0 · · · 11
12 − 14

3
19
2 − 26

3
35
12




,

and

T =
1
h4
·




35
6 −31 137

2 − 242
3

107
2 −19 17

6 · · · 0
17
6 −14 57

2 − 92
3

37
2 −6 5

6

5
6 −3 7

2 − 2
3 − 3

2 1 − 1
6

− 1
6 2 − 13

2
28
3 − 13

2 2 − 1
6

. . . . . . . . .

− 1
6 2 − 13

2
28
3 − 13

2 2 − 1
6

− 1
6 1 − 3

2 − 2
3

7
2 −3 5

6

5
6 −6 37

2 − 92
3

57
2 −14 17

6

0 · · · 17
6 −19 107

2 − 242
3

137
2 −31 35

6




B. Pseudospectral methods

We may also solve equation (2.1) using Fourier pseudospectral differentiation matrices R
and T [6]. First we discretesize the interval [0, 2π] in N equistand points and compute
in case that N is odd [13]:

Rkj =




−N2+2

12 , k = j

− 1
2 (−1)k−j csc2 (k−j)π

N , k 6= j

For N even matrix R elements can be found in [13]. Now the matrix T = R2.
Since (1.1) is posed on [L0, L1] we convert it to [0, 2π] through the linear transformation

x ←→ L0 +
1
2π

(L1 − L0)x.

So, matrix R becomes ( 2π
L1−L0

)2R, and matrix T converts to ( 2π
L1−L0

)4T .
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III. HYBRID STÖRMER–TYPE METHODS

We consider the initial value problem of second order

U ′′ = f(U), U(t0) = U [0], U ′(t0) = −U ′[0], (3.1)

where f : <N+1 −→ <N+1 and U [0], U ′[0] ∈ <N+1. Observe that U ′ is not involved in
(3.1). The independent variable t can be considered as an extra component of U , setting

U ′′
N+1 = 0, U

[0]
N+1 = t0, U

′[0]
N+1 = 0.

For the last 20-25 years hybrid Numerov type methods have been widely used to solve this
problem [3]. Recently a new methodology for deriving such methods has been proposed
[9, 10] and studied more theoretically in [4].

In vector notation an s-stage Numerov type method takes the form

U [k+1] = 2U [k] − U [k−1]+
λ2 · (bT ⊗ Is

) · f (Y )
Y = (e + c)⊗ U [k] − c⊗ U [k−1]+

λ2 · (A⊗ Is) · f (Y )

(3.2)

where λ is the step forward in time, e = [1 1 1 · · · 1]T ∈ <s and Is is the identity matrix
in <s×s. The coefficients of the method are the two s-dimensional vectors b, c and the
matrix A ∈ <s×s. In case that aij = 0 when i ≥ j the method is explicit.

The two step nature of the method is obvious from (3.2) since

U [k+1] =
[
U

[k+1]
0 U

[k+1]
1 · · ·U [k+1]

N

]
≈ U (t0 + kλ) ,

U [k] ≈ U (t0 + (k − 1)λ) ,

U [k−1] ≈ U (t0 + (k − 2)λ) ,

etc.

A. Order conditions

The coefficients in b, c, A are derived after matching the corresponding Taylor expansions
of the numerical scheme and the theoretical solution. This leads to an expression of the
form

q21F21λ
2 + q31F31λ

3 + · · ·
+(q71F71 + · · ·+ q7,10F7,10)λ7

+(q81F81 + · · ·+ q8,21F8,21)λ8 + O(λ9)
(3.3)

where q’s are expressions of the coefficients while F ’s are elementary differentials with
respect to U ′, f and ∂mf

∂tm m = 1, 2, · · ·. In order to satisfy a seventh order of accuracy we
have to nullify all coefficients of λ in (3.3) up to λ8. So, various equations qij = 0 have
to be solved such as

q11 = be− 1, q21 = bc, q31 = bc2 − 1
6 ,

q41 = bc3, q42 = bAc, q51 = bc4 − 1
12 , etc.

There are 43 in total equations to be solved for achieving 7th order [4].
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B. A Particular quadratic method

Here we intend to solve (2.1) which is a problem in the form of (3.1). This problem is
quadratic and we observe that many of the elementary differentials from (3.3) vanish (e.g.
F41 = 0, F51 = 0). So, we may derive a special method that needs to satisfy a subset of
the equations of the general case. Since q41, q51 and many other equations of condition
are discarded, only 14 equations remain to be solved, are given in Table I. In this table
powers of vectors and the operation ”*”, may be understood as component-wise ones.

TABLE I. Order conditions for 7th order quadratic Numerov-type methods

be = 1

bc = 0

bc2 − 1
6

bAc2 = 1
180

b (c ∗Ae) = − 1
12

1
2
b(Ae)2 + 1

2
b(c ∗Ae) + 1

8
bc2 = 1

120

b(c ∗Ac2) = 1
72

bA2c = 0

b.(Ae ∗Ac) + 1
6
b(c ∗Ae) + 1

2
b(c ∗Ac) = − 1

72

1
2
bA2c2 = 2

40320

bA(c ∗Ac) + 1
6
bAc2 + 1

180
bc = 8

40320

b(c ∗A2c) + 1
6
b(c ∗Ac) + 1

120
bc2 = 12

40320

1
2
b(Ac)2 + 1

6
b(c ∗Ac) + 1

72
bc2 = 20

40320

1
2
b(Ae ∗Ac2) + 1

24
b(c ∗Ae) + 1

4
b(c ∗Ac2) + 1

48
bc2 = 1

1344

A particular choice is given in Table II. The coefficients not reported in this table are
zero.

Notice that s = 6 but the method uses only five new stages in every step because the
f(Y1) = f(U [k−1]) has already been evaluated in the previous step.

IV. NUMERICAL RESULTS

In our numerical testing we integrate both Bad and Good Boussinesq equations for
x ∈ [−100, 100] and t ∈ [0, 60].
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TABLE II. Coefficients of the new 7th order method

c1 = −1, c2 = 0, c3 = 0.3893598766411142

c4 = −0.4099755503817072, c5 = 0.7848105925840123

c6 = −0.8320502943378437

b1 = −0.00416400431581421, b2 = 0.3516135225291974

b3 = 0.2541320627325857, b4 = 0.2632121979604164

b5 = 0.07254557879412268, b6 = 0.06266064229949197

a31 = 0.05505541429588489, a32 = 0.215425080793664

a41 = −0.05259964171766104, a42 = −.07925025213127237

a43 = 0.01090209461347168, a51 = −0.05941628917804282

a52 = 0.02348438379454109, a53 = 0.2404644996321801

a54 = 0.495836535159362, a61 = 0.06878346045410173

a62 = 0.2483265298658323, a63 = −0.07412211033513141

a64 = −0.3229432175469921, a65 = 0.01008403654711381

We consider the initial displacement

U [0] = u(x, 0) = q1{Qsech2(

√
Q

6
x)}

and we solve using three methods for the integration over time.
The first is the simplest Numerov Type method known as Strömer method

U [k+1] = 2U [k] − U [k−1] + λ2 · f
(
U [k]

)
.

The second is the new Numerov Type method presented in Table II. The third method
taken from [9] is of sixth algebraic order method and it was specially suited for oscillatory
problems.

We combine these three methods with both the choices of Methods of Lines presented
in this paper i.e. with finite differences and Fourier pseudospectral method. The mesh–
size along space is taken to be N = 64 as for bigger values the numerical results face
stability problems.

A. Bad Boussinesq

For the case of BB we consider the values of the theoretical parameters in (1.2) Q = 0.369,
b = 0.5, x0 = 0, q1 = 1 and c ≈ 1.11624.

We solve the BB equation for various choices of time step-size λ using the three
methods and finite differences. We present in Table III the maximum absolute error to
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the grid of the numerical solution. We observe that for λ = 3, the Strömer method, and
for λ = 4, the Numerov [9] method, become unstable. In contradiction the new Method
is very stable and keeps the error considerably low as λ increases.

TABLE III. BB Maximum Error with Finite Differences

Störmer New Method Numerov [9]

λ = 0.1 0.050 0.050 0.049

λ = 0.5 0.043 0.050 0.048

λ = 1 0.021 0.050 0.045

λ = 2 0.114 0.049 0.055

λ = 3 ∞ 0.046 0.274

λ = 4 ∞ 0.056 ∞
λ = 5 ∞ 0.136 ∞

When we solve the BB equation for various choices of time step-length λ using the three
methods and Fourier Pseudospectral we get the best performance for all the methods,
(Table IV). Though, as time step-size increases the maximum error of both Strömer
method and Numerov [9] increases considerably. Moreover, we observe that the new
method achieves an amount of error at a time–step almost 10− 20 times larger than its
competitors. In addition, the new Method retains its remarkable stability as time step
length increases whereas the other competitors become once again unstable.

TABLE IV. BB Maximum Error with Fourier Pseudospectral

Störmer New Method Numerov [9]

λ = 0.1 0.0032 0.0032 0.0044

λ = 0.5 0.0085 0.0030 0.0128

λ = 1 0.0399 0.0036 0.0230

λ = 2 0.2310 0.0046 0.0863

λ = 3 ∞ 0.0065 1.5324

λ = 4 ∞ 0.0315 ∞
λ = 5 ∞ 0.2535 ∞

It is remarkable as time stepsize increases the numerical solution maintains its nice
error characteristics.

B. Good Boussinesq

We employ the same numerical testing for the case o GB equation where the values of the
theoretical parameters in (1.2) are Q = 0.369, b = −0.5, x0 = 0, q1 = −1, c ≈ 0.86833.
As we can see in Tables V and VI we have similar behavior even though the error is
considerably bigger.



488 TSITOURAS & FAMELIS

TABLE V. GB Maximum Error with Finite Differences

Störmer New Method Numerov [9]

λ = 0.1 0.124 0.124 0.124

λ = 0.5 0.121 0.122 0.122

λ = 1 0.116 0.121 0.122

λ = 2 0.097 0.117 0.121

λ = 3 0.067 0.116 0.146

λ = 4 ∞ 0.114 ∞
λ = 5 ∞ 0.120 ∞

TABLE VI. GB Maximum Error with Fourier Pseudospectral

Störmer New Method Numerov [9]

λ = 0.1 0.009 0.009 0.010

λ = 0.5 0.011 0.009 0.014

λ = 1 0.019 0.009 0.020

λ = 2 ∞ 0.009 ∞
λ = 3 ∞ 0.032 ∞
λ = 4 ∞ ∞ ∞
λ = 5 ∞ ∞ ∞

V. CONCLUSIONS

We implemented the the methods of lines for the numerical treatment of Boussinesq
equations. Classical Finite Differences and Fourier pseudospectral methods were used
to form a system of quadratic differential equations. We solved the system using a new
type of hybrid Numerov method hoping to take advantage of its special form.

Numerical testing revealed quite interesting features. First of all, for all the methods
chosen to solve over time, the choice of Fourier pseudospectral method gives a consider-
ably smaller errors. In addition, the proposed Quadratic Numerov type method makes
the overall numerical procedure remarkably stable even if time stepsize takes considerably
big values.
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QUADRATIC STÖRMER FOR BOUSSINESQ 489

3. M. M. Chawla and P. S. Rao, “An explicit sixth order method with phase–lag of order
eighth for y′′ = f(t, y)”, J. Comput. Appl. Math., 17 (1987) pp. 365–368.

4. J. Coleman, “Order conditions for a class of two–step methods for y′′ = f(t, y)”, IMA J
Numer. Anal., 23 (2003) pp. 197–220.

5. Z. S. Feng, “Travelling solitary solutions to the generalized Boussinesq equation”, Wave
Motion, 37 (2003) pp. 17–23.

6. B. Fornberg, “A practical guide to pseudospectral methods”, Campridge Univ. Pr., NY,
1996.

7. A. Iserles, G. Ramaswami and M. Sofroniou, “Runge–Kutta methods for Quadratic Ordi-
nary Differential Equations”, BIT, 38 (1998) pp. 315–346.

8. V. S. Manoranjan, A. R. Mitchell and J. L. Moris, “Numerical solutions of the good Boussi-
nesq equation”, SIAM J Sci. Stat. Comput., 5 (1984) pp. 946–957.

9. G. Papageorgiou, Ch. Tsitouras and I. Th. Famelis, “Explicit Numerov type methods for
second order IVPs with oscillating solutions”, Int. J. Mod. Phys. C, 12 (2001) pp. 657–666.

10. Ch. Tsitouras, “Explicit Numerov type methods with reduced number of stages”, Comput.
Math. Appl. 43 (2002) pp. 943–949.

11. Ch. Tsitouras and I. Th. Famelis,“Quadrature Numerov–type methods for the solution of
the Boussinesq equation by the methods of lines”, IMACS 2005, Paris.

12. A. M. Wazwaz, “Constructions of soliton solutions and periodic solutions of the Boussinesq
equation by the modified decomposition method”, Chaos, Solitons § Fractals 12 (2001) pp.
1549–1556.

13. J. A. C. Weideman and S. C. Reddy, “A Matlab differentiation matrix suite”, ACM TOMS,
26 (2000) pp. 465—519.


