
On Modified Runge-Kutta Trees and Methods.

Ch. Tsitourasa, I. Th. Famelisb,∗, T. E. Simosc

aTEI of Chalkis, GR-34400 Psahna, Greece
bDept. of Mathematics, TEI of Athens, GR-12210 Egaleo, Greece

cUniv. of Peloponnese, GR-22100 Tripolis, Greece

Abstract

Modified Runge–Kutta (mRK) methods can have interesting properties as
their coefficients may depend on the step-length. By a simple perturbation
of very few coefficients we may produce various function-fitted methods
and avoid the overload of evaluating all the coefficients in every step. It is
known that, for Runge–Kutta methods, each order condition corresponds
to a rooted tree. When we expand this theory to the case of mRK meth-
ods, some of the rooted trees produce additional trees, called mRK rooted
trees, and so additional conditions of order. In this work we present the
relative theory including a theorem for the generating function of these
additional mRK trees and explain the procedure to determine the extra al-
gebraic equations of condition generated for a major subcategory of these
methods. Moreover, efficient symbolic codes are provided for the enumer-
ation of the trees and the generation of the additional order conditions.
Finally, phase-lag and phase-fitted properties are analyzed for this case and
specific phase-fitted pairs of orders 8(6) and 6(5) are presented and tested.

Keywords: Rooted trees, integer partitions, truncation error, Runge
Kutta Methods, Initial Value Problems, Mathematica.

1. Introduction

We consider the numerical solution of the non-stiff initial value problem,

y′ = f(x, y), y(x0) = y0 ∈ IRm, x ∈ [x0, xf] (1)

∗Corresponding author
Email addresses: tsitoura@teihal.gr (Ch. Tsitouras), ifamelis@teiath.gr (I.

Th. Famelis), tsimos@mail.ariadne-t.gr (T. E. Simos)
Preprint submitted to CMA May 1, 2011

Administrator
Text Box

where the function f : IR × IRm → IRm is assumed to be as smooth as
necessary. The general s−stage embedded Runge–Kutta pair of orders
p(p − 1), for the approximate solution of the problem (1) can be repre-
sented using the following Butcher tableau [2, 3]:

c A
b

b̂

where A ∈ IRs×s is strictly lower triangular, bT , b̂T , and c ∈ IRs with
c = A ·e, e = [1, 1, · · · , 1]T ∈ IRs. The vectors b and b̂ define the coefficients
of the (p− 1)−th and p−th order approximations respectively.

Starting with a given value y(x0) = y0, this method produces approx-
imations at the mesh points x0, x1, x2 · · ·xf . Throughout this paper, we
assume that local extrapolation is applied, hence the integration is advanced
using the p−th order approximation. For estimating the error, two approx-
imations are evaluated at each step from xn to xn+1 = xn + hn. These
are:

ŷn+1 = yn + hn

s∑

j=1

b̂jfj and yn+1 = yn + hn

s∑

j=1

bjfj,

where

fi = f(xn + cihn, yn + hn

i−1∑

j=1

aijfj), i = 1, 2, · · · , s.

The local error estimate
En = ‖yn − ŷn‖

of the (p−1)−th order Runge–Kutta pair is used for the automatic selection
of the step size. Given a tolerance parameter TOL, if TOL > En, the
algorithm

hn+1 = 0.9 · hn · (TOL

En

)
1
p

provides the next step length. Whereas if TOL < En we reject the current
step and evaluate another smaller one using the same formula but with hn+1

now being hn.
Let yn(x) be the solution of the local initial value problem

y′n(x) = f(x, yn(x)), x ≥ xn, yn(xn) = yn.

2

Then En+1 is an estimate of the error in the local solution yn(x) at x = xn+1.
The local truncation error tn+1 associated with the higher order method is

tn+1 = yn+1 − yn(xn + hn) =
∞∑

q=1

hq
n

λq∑

i=1

σqiTqiPqi = hp+1
n Φ(xn, yn) + O(hp+2

n)

where

Tqi = (Qqi − ξqi

q!
)

and σqi are real numbers depending on the order of the group of automor-
phisms on a particular labelling of tree t that corresponds to the elementary
differential [5]. This order is known as the ’symmetry group’ of the tree The
ξqi are positive integers, Qqi are algebraic functions of A, b, c and Pqi are
differentials of f evaluated at (xn, yn). For a p−th order method the order
conditions

Tqi = 0, for q = 1, 2, · · · , p and i = 1, 2, · · · , λq,

must hold.
The number of elementary differentials for each order is λq and coincides

with the number of rooted trees of order q. It is known [1] that

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48 · · · , etc .

More details can be found in [4].
The set T (q) = {Tq1, Tq2, · · · , Tq,λq} is formed by the q−th order trun-

cation error coefficients. It is common practice that a (q − 1)−th order
method has

‖T (q)‖2 =

√√√√√
λq∑

j=1

T 2
qj

minimized.
In this work we are interested on a modification of Runge -Kutta meth-

ods called Modified Runge -Kutta (mRK). mRK methods can have interest-
ing properties as their coefficients may depend on the step-length. By a sim-
ple perturbation of very few coefficients we may produce various function-
fitted methods and avoid the overload of evaluating all the coefficients in
every step. For this class of methods the works of Franco [8], Vyver [24]
and Simos et. al. [15] can be found in the literature .

3

When we expand the Runge-Kutta tree theory to the case of mRK meth-
ods, some of the rooted trees produce additional trees, called mRK rooted
trees, and so additional conditions of order. Here we present the relative the-
ory including a theorem for the generating function of these additional mRK
trees and explain the procedure to determine the extra algebraic equations
of condition generated for a major subcategory of these methods. Moreover,
efficient symbolic codes are provided for the enumeration of the trees and
the generation of the additional order conditions. Finally, phase-lag and
phase-fitted properties are analyzed for this case and specific phase-fitted
pairs are presented and tested.

2. Modified Runge–Kutta methods

Vanden Berghe et. al. [22] proposed the modified Runge–Kutta methods
where the stages are evaluated by:

fi = f(xn + cihn, γiyn + hn

i−1∑

j=1

aijfj), i = 1, 2, · · · , s.

So the parameter vector γ = [γ1 γ2 · · · γs]
T is introduced. The s−stages

modified Runge–Kutta method is represented by the Butcher tableau:

c1 γ1

c2 γ2 a21 O
...

...
...

. . .

cs γs as1 · · · as,s−1

b1 · · · bs−1 bs

If γi 6= 1 for some 1 ≤ i ≤ s, f becomes involved in the expression
for truncation error coefficients T ′s then little can be said about algebraic
order conditions for this type of methods. Modified Runge–Kutta are used
considering

γi = 1 + γi2v
2 + γi4v

4 + · · · ,
where v = ωh for some real parameter ω. In that case powers of h produce
extra truncation error coefficients and the corresponding truncation error
becomes:

tn+1 =
∞∑

q=1

hq
n(

λq∑

i=1

σqiTqiPqi +
λ̃q∑

i=1

σ̃qiT̃qiP̃qi) = hp+1
n Φ̂(xn, yn) + O(hp+2

n)

4

where T̃qi = Q̃qi. Again, σ̃qi real numbers and Q̃qi are algebraic functions of
A, b, c and vectors

g2 = [γ12, γ22, γ32, · · · , γs2]
T , g4 = [γ14, γ24, γ34, · · · , γs4]

T , etc.

The expressions P̃qi are differentials of f and y(x) evaluated at (xn, yn) (see

Tables 2, 3) and T̃qi = 0 for q = 1, 2, · · · , p and i = 1, 2, · · · , λ̃q are the
additional q − th order conditions for the modified Runge–Kutta methods.
Respectively, λ̃q is the number of the additional elementary differentials,
and therefore the additional order conditions for the modified Runge–Kutta
methods. Franco [8] and Vyver [24] have already presented the additional
equations of condition up to order five. In a more recent work Paŕıs and
Rández [13] following the same theory and present embedded pairs of 4(3).
Moreover, Simos et. al. have presented phase–fitted mRK [14] and modified
Runge–Kutta-Nyström methods [15].

It is known by Butcher theory [4] that, for the family of Runge–Kutta
methods, each elementary differential, and so each order condition, corre-
sponds to a rooted tree. So, by enumerating the Runge Kutta related rooted
trees one can calculate the number of order conditions λq, for q = 1, 2, · · · , p.
In this work our aim is to comprehend and generate the mechanism of pro-
duction of the additional generated trees and order conditions something
that has not been presented in the literature before.

Following a simple practical approach one can see that, for the case of
modified Runge–Kutta methods some of the RK rooted trees, especially
those that their leaves can be collected in couples, or in groups of four,
six ... etc, produce the additional modified rooted trees and so additional
order conditions. These RK rooted trees are presented along with their
corresponding error coefficients for orders 3 − 5 in Table 2 and for order
6 in Table 3. In order to compute the λ̃q for q = 1, 2, · · · , p we have to
enumerate the total number of modified RK trees. We prove the following
theorem that gives the generating function of the trees for the all modified
RK methods.

Theorem 1. Let Nk, k = 1, 2, 3, · · · be the number of the rooted trees with k
nodes then the corresponding generating function for the modified RK trees
is the following

M(x) = x · 1

(1− x)N1
· 1

(1− x2)N2+1
· 1

(1− x3)N3
· 1

(1− x4)N4+1
· · ·

= x
∞∏

i=1

∞∑

j=0

Πi,j xij (2)

5

where

Π2i−1,j =

(
N2i−1 + j − 1

j

)
, Π2i,j =

(
N2i + j

j

)
, i = 1, 2, 3, · · ·

Proof. Following the lines Calvo and Sanz–Serna [6], we consider that
each tree is produced by other trees that are grafted in new root. The dif-
ference form the ordinary rooted trees that correspond to the Runge–Kutta
methods is that the number of trees with even number of codes an extra tree
exists and that is the ones that leaves are collected in a couple, or in group
of two, four, six So, collected in couples, or in groups of four, six ... etc.
So, if N ′

k, k = 1, 2, 3, · · · is the number of the rooted trees then N ′
2j = N2j +1

and N ′
2j+1 = N2j hold. So, as in the proof found in of Papaioannou [11]

M(x) = x · 1

(1− x)N ′
1
· 1

(1− x2)N ′
2
· 1

(1− x3)N ′
3
· 1

(1− x4)N ′
4

(3)

= x · 1

(1− x)N1
· 1

(1− x2)N2+1
· 1

(1− x3)N3
· 1

(1− x4)N4+1
· · ·

Substituting,

1

(1− xk)N
=

∞∑

j=0

(
N + j − 1

j

)
xkj

we get the result.

Using this theorem we can enumerate the modified trees. In Table–1 we
list the numbers of the additional equations and the total numbers of equa-
tions for various orders and in Appendix B we present the Mathematica code
which implements the generating function (2) coefficients’ and enumerates
the modified RK trees

Table 1: Number of order conditions.
order→ 1 2 3 4 5 6 7 8 9 10 11 12 13
rooted trees 1 1 2 4 9 20 48 115 286 719 1842 4766 12486
modified trees 0 0 1 2 7 18 53 149 435 1266 3734 11057 32969
total trees 1 1 3 6 16 38 101 264 721 1985 5576 15823 45455

The way, that the sets of the additional truncation order coefficients
T̃ (q) = {T̃q1, T̃q2, · · · , T̃q,λ̃q

} are formed, is shown in Tables 2, 3 for orders
6

3 to 6. There, the operation ”*” may be understood as component-wise
multiplication:

[b1 b2 · · · bs]
T ∗ [γ1 γ2 · · · γs]

T = [b1γ1 b2γ2 · · · bsγs]
T .

This operation has the least priority. Parentheses, powers and dot products
are always evaluated before ”*”. Absence of an operation sign means that
we use dot product.

As an example, observe that the original truncation error coefficient
bc5 − 1

6
, generates three additional equations. Namely:

T̃6,16 = b(g2
2 ∗ c) = 0, T̃6,17 = b(g2 ∗ c3) = 0 and T̃6,18 = b(g4 ∗ c) = 0.

Using the same methodology the additional modified order conditions and
trees for higher orders may be derived. On the other hand, truncation error
coefficients like T2,1 = bc− 1

2
or T3,1 = bAc− 1

6
, that do not produce any T̃ ’s

exist.

3. Phase–Lag property and Phase-fitted modified Runge–Kutta
pairs

The application of a modified Runge–Kutta method to the test problem

y′ = iωy, ω ∈ IR, i =
√−1, (4)

leads to the numerical scheme,

yn+1 = (1− iv2b · (Is + ivA)−1γ)yn = (Q(v2) + iR(v2))yn,

where v = ωh, h is the step length, Is ∈ IRs×s being the identity matrix and
Q, P are polynomials in v2.

Actually we have

Q(v2) = 1− τ2v
2 + τ4v

4 − τ6v
6 ± · · · ,

and
R(v2) = τ1v − τ3v

3 + τ5v
5 ∓ · · ·

with

τ0 = 1, τ1 = bγ, τ2 = bAγ, τ3 = bA2γ, τ4 = bA3γ, · · · etc.

7

Table 2: RK truncation error coefficients and trees producing additional Modified RK
truncation error coefficients, trees and their corresponding additional elementary differ-
entials for orders 3-5.
order T tree T̃ mod. tree P̃

3 T31 = bc2 − 1
3

¡ÃÃr T̃3,1 = bg2 ÃÃar f ′y

4 T41 = bc3 − 1
4

¡¤¤Ãr T̃4,1 = b(g2 ∗ c) ¤¤ÃÃar f ′′(y, f)

T42 = bAc2 − 1
12

¡
¤¤Ã

r T̃4,2 = bAg2 ¡
ÃÃ

r
ar

f ′f ′y

5 T5,1 = bA2c2 − 1
60

»»¡
¤¤Ã

r T̃5,1 = bA2g2 »»¡
ÃÃ

r
ar

f ′f ′f ′y

T5,2 = bAc3 − 1
20

¡
¤¤Ã

r
Q

T̃5,2 = bA(c ∗ g2) ¡
ÃÃ

r
arQ

f ′f ′′(f, y)

T5,3 = b(c ∗ Ac2)− 1
15

¡
¤¤Ã

rQ T̃5,3 = b(c ∗ Ag2) ¡
ÃÃ

r
ar

Q f ′′(f, f ′y)

T5,4 = b(c2 ∗ Ac)− 1
10

¡
¤¤

rQ££ T̃5,4 = b(c2 ∗ Ac) ¡
¤¤

rQ
a
Q f ′′(y, f ′f)

T5,5 = bc4 − 1
5

¡Ã¤¤CCr T̃5,5 = bg2
2 ÃÃa¤¤¤¤

a
s f ′′(y, y)

T̃5,6 = b(g2 ∗ c2) ÃÃa¤¤CCr f 3(y, f, f)

T̃5,7 = bg4 """"
aaat f ′y

8

Table 3: Order 6 RK truncation error coefficients and trees producing additional Modified
RK truncation error coefficients, trees and their corresponding additional elementary
differentials.
T tree T̃ mod. tree P̃

T6,1 = bA3c2 − 1
360

»»@
¡

¤¤Ã

r T̃6,1 = bA3g2 »»@
¡

ÃÃ

r

r a

f ′f ′f ′f ′y

T6,2 = bA2c3 − 1
120

»»¡
¤¤Ã`

r T̃6,2 = bA2(c ∗ g2) »»¡
ÃÃ

r
ar`

f ′f ′f ′′(f, y)

T6,3 = bA(c ∗ Ac2)− 1
90

»»¡
¤¤Ã

cr T̃6,3 = bA(c ∗ Ag2) »»¡
ÃÃ

r
ar

c f ′f ′′(f, f ′y)

T6,4 = bA(c2 ∗ Ac)− 1
60

»»¡
¤¤

cr CC T̃6,4 = bA(g2 ∗ Ac) »»¡
¤¤

r
a rcc f ′f ′′(y, f ′f)

T6,5 = bAc4 − 1
30

¡
¤¤ÃJJ

r
Q

T̃6,5 = bAg4 ¡¡r
t""""

aaaa
f ′f ′y

T̃6,6 = bA(c2 ∗ g2) ¡
ÃÃ

r
arQJJ

f ′f (3)(f, f, y)

T̃6,7 = bA(g2
2) ¡

ÃÃ
r

aa rQQ
f ′f ′′(y, y)

T6,6 = b(c ∗ A2c2)− 1
72

»»¡
¤¤Ã

cr T̃6,8 = b(c ∗ A2g2) »»¡
ÃÃ

r
ar

c f ′′(f, f ′f ′y)

T6,7 = b(c ∗ Ac3)− 1
24

¡
¤¤Ã

r
Q

c T̃6,9 = b(c ∗ A(c ∗ g2)) ¡
ÃÃ

r
arQ

c f ′′(f, f ′′(f, y))

T6,8 = b(Ac ∗ Ac2)− 1
72

¡
¤¤Ã

rQ
¤¤

T̃6,10 = b(Ac ∗ Ag2) ¡
ÃÃ

r
ar

Q
¤¤

f ′′(f ′f, f ′y)

T6,9 = b(c2 ∗ A2c)− 1
36

»»¡¤¤CC
Ã

r T̃6,11 = b(g2 ∗ A2c) »»¡rCCCC
a Ã

f ′′(y, f ′f ′f)

T6,10 = b(c2 ∗ Ac2)− 1
18

¡
¤¤Ã

rQ T̃6,12 = b(g2 ∗ Ac2) ¡
Q´
rQQ

a
f ′′(y, f ′′(f, f))

T̃6,13 = b(g2 ∗ Ag2) ¡
ÃÃ

r
ar

QQ
a

f ′′(y, f ′y)

T̃6,14 = b(c2 ∗ Ag2) ¡
ÃÃ

r
ar

Q f (4)(f, f, f ′y)

T6,11 = b(c3 ∗ Ac)− 1
12

¡
¤¤

rQCC££ T̃6,15 = b(c ∗ g2 ∗ Ac) ¡
¤¤

rQ
a
Q££ f (3)(y, f, f ′f)

T6,12 = bc5 − 1
6

¡Ã¤¤CCcr T̃6,16 = b(g2 ∗ c3) ÃÃa¤¤CCrc f (4)(f, f, f, y)

T̃6,17 = b(g2
2 ∗ c) ÃÃa¤¤¤¤

a
sc f (3)(f, y, y)

T̃6,18 = b(g4 ∗ c) """"
aaatc f ′′(f, y)9

For explicit methods, these are finite series.
The phase lag of a modified Runge–Kutta method is the difference be-

tween the angles of theoretical and numerical solutions. Thus, it is defined
as the argument of polynomial Q(v2) + iR(v2), which is

δ(v2) = v − arg(Q(v2) + iR(v2)).

A phase fitted method satisfies

tan(v) =
R(v2)

Q(v2)
or equivalently Q(v2) tan(v) = R(v2).

Every conventional Runge–Kutta method of p−th order can be modified
entering just one γi (say γ2) in order to solve the previous equation.

In the present paper we choose to work with two pairs. First choice is
the Runge–Kutta pair of orders 6(5) described in [17]. This pair is chosen
as it has the Euclidean norm of its principal truncation error minimized,
achieving ‖T (7)‖2 ≈ 1.23 · 10−5. It is a nine–stage FSAL (First Stage As
Last) pair that uses effectively only eight stages per step and its coefficients
can be found in [18].

We decide to alter only γ2 and γ4 so, we simultaneously solve the fol-
lowing equations :

Q(v2) tan(v) = R(v2) and Q̂(v2) tan(v) = R̂(v2),

where

Q̂(v2) = 1− τ̂2v
2 + τ̂4v

4 ∓ · · · and R̂(v2) = τ̂1v − τ̂3v
3 ± · · ·

with
τ̂1 = b̂γ, τ̂2 = b̂Aγ, ... etc,

which are linear in these two coefficients. Since, the expressions taken are
very lengthy, here we present a truncated to 16 digits of accuracy form:

γ2 ≈ p2(v)

q2(v)

where

p2(v) = 0.0001684478065771679v8 − 0.001178746962728090v6

+0.01631830414715230v4 − 0.2013737602727960v2 + 1
10

and

q2(v) = 0.0001713341496916277v8 − 0.001219903580379494v6

+0.01582838527751099v4 − 0.2012145820456014v2 + 1

γ4 ≈ p4(v)

p4(v)

where

p4(v) = 0.0001567880312125573v8 − 0.0001703896681492604v6

+0.005537711639359206v4 − 0.1763423156795334v2 + 1

and

q4(v) = 0.0001518439853773218v8 − 0.0001590567442529793v6

+0.005537711639329609v4 − 0.1763423156795325v2 + 1.

For this approximation a least squares approach technique for v ∈ [0, 1] was
applied. Expanding γ2, γ4 in series we have:

γ2 ≈ 1− 0.0001591782272568729v2 + 0.0004578898911942546v4 + O(v6)

γ4 ≈ 1 + O(v6).

Finally we form vectors

g2 = [0,−0.0001591782272568729, 0, 0, 0, 0, 0, 0]T

and
g4 = [0, 0.0004578898911942546, 0, 0, 0, 0, 0]T

to find that the modification of this pair attains orders 6(5). Since b2 =

b̂2 = 0 we may easily verify that all T̃ ’s for the sixth order formula and
˜̂
T ’s

for the lower order one vanish.
Our latter choice is a 12–stages pair of orders 8(6) given in [20] that

shares a very small principal truncation error coefficient ‖T (9)‖2 ≈ 7.35·10−7

and seems to outperform all other methods at stringent tolerances [19].
11

Now, by deciding to alter γ2 and γ5 and by following the same steps as
above, we manage to get the rational forms for the γ’s:

γ2 ≈ p′2(v)

q′2(v)

where

p′2(v) = 0.000032766053976649983v8 − 0.013868369214345342v6

+0.23817284571843967v4 − 0.95295730050968709v2 + 1

and

q′2(v) = 0.000010830539734763642v8 − 0.013492222154389920v6

+0.23613131714014087v4 − 0.95045239692026381v2 + 1

γ5 ≈ p′5(v)

q′5(v)

where

p′5(v) = 0.000075447483510904058v8 − 0.0039691890854295819v6

+0.18468143502673477v4 − 0.89094241368242844v2 + 1

and

q′5(v) = 0.000057868852463954276v8 − 0.0037899552106836919v6

+0.18442706132555963v4 − 0.89094241368255460v2 + 1.

By expanding γ2, γ5 in series we have:

γ2 ≈ 1− 4.4540580527356974 · 10−4v2 + 4.4490984813753475 · 10−5v4

−2.7148314786806795 · 10−6v6 + O(v8)

and

γ5 ≈ 1+1.9849805345038804 ·10−5v4+3.6986894486308681 ·10−6v6+O(v8).

Once again we form the vectors

g2 = [0,−4.4540580527356974 · 10−4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

g4 = [0, 4.4490984813753475·10−5, 0, 0, 1.9849805345038804·10−5, 0, 0, 0, 0, 0, 0, 0]T

and

g6 = [0,−2.7148314786806795·10−6, 0, 0, 3.6986894486308681·10−6, 0, 0, 0, 0, 0, 0, 0]T

to verify that the modified pair preserves the desired initial order.
12

5000 10000 20000

1e−12

1e−10

1e−8

1e−6

1e−4

function evaluations

er
ro

r
T65
T65m
TP86
TP86m

Figure 1: Bessel problem.

4. Numerical Tests

In order to test the efficiency of the modified pairs we apply the following
methods:

1. T65, the pair of orders 6(5) given in [17],

2. T65m, the modification of T65 presented above,

3. TP86, the pair of orders 8(6) found in [20],

4. TP86m, the modification of TP86 presented above,

to a choice of well-known, problems found in the relevant literature. We
concentrate on high order pairs but a similar modification can be used for
lower order methods like the methods presented in the pioneering article of
Houwen and Sommeijer [9].

4.1. Bessel equation

First we consider

y′′ =
(
−100 +

1

4x2

)
y, y (1) = J0 (10x) , y′ (1) = −0.5576953439142885,

13

5000 10000 20000 30000

1e−12

1e−10

1e−8

1e−6

1e−4

function evaluations

er
ro

r
T65
T65m
TP86
TP86m

Figure 2: Inhomogeneous problem.

300 500 1000 2000

10
−10

10
−8

10
−6

10
−4

function evaluations

er
ro

r

T65
T65m
TP86
TP86m

Figure 3: Duffing problem.

14

which has as theoretical solution

y(x) =
√

xJ0 (10x) .

We solve the above equation choosing ω = 10, in order to find the 100th
root of the solution which is equal to 32.59406213134967 [21].

4.2. Inhomogeneous equation

Our second test problem is an inhomogeneous problem:

y′′ = −100y(x) + 99 sin(x), y(0) = 1, y′(0) = 11

with analytical solution

y(t) = cos(10x) + sin(10x) + sin(x).

We integrate it for x ∈ [0, 10π] as in [16]. Again, ω = 10 was considered for
this problem.

4.3. Duffing equation

Finally, we consider the following problem

y′′ = −y − y3 +
1

500
· cos (1.01t) ,

y (0) = 0.200426728067, y′ (0) = 0,

with a theoretical solution given by Van Dooren[23]

y(x) = .200179477536 cos(1.01t) + 2.46946143 · 10−4 cos(3.03t)

+3.04014 · 10−7 cos(5.05t) + 3.74 · 10−10 cos(7.07t).

We now solve in the interval
[
0, 10.5

1.01
π

]
as y

(
10.5
1.01

π
)

= 0, picking ω = 1.01.

For all problems, the 6(5) pairs are run with tolerances 10−3, 10−4, · · · ,
10−9, while for the 8(6) pairs somewhat stringent tolerances 10−5, 10−6, · · · ,
10−11 are applied. For all methods, we measure the number of stages used
and the magnitude of the end point global error. In Figures 1, 2 and 3
we summarize the results providing the corresponding efficient curves in a
logarithmic scale. All computations and drawings are done using MATLAB
[10].

By interpreting the results, we notice that for the Bessel equation the
modified pairs are almost 4 digits more accurate. Moreover, in the inho-
mogeneous problem more than 2 digits of accuracy are gained when using

15

the modified pairs. We note that for both problems T65m is clearly more
efficient than T86, something that is expected since these specific problems
are close to the test problem (4). But even for the nonlinear Duffing equa-
tion the modified pairs gain more than a digit of accuracy. In the past,
much effort was made for the generation of Runge–Kutta pairs for much
less profit [12, 17, 20].

Appendix A. Mathematica code for the enumeration of the ad-
ditional order conditions

In the following lines we give the Mathematica code which implements
the generating function (2) coefficients’ and enumerates the modified RK
trees .

In[1]:=Clear["@"] <<DiscreteMath‘Combinatorica‘
In[2]:=op[n_,k_]:=n!/(k!(n-k)!)
In[3]:=to[m_/;OddQ[m],j_]:=op[t[[m]]+j-1,j]
In[4]:=to[m_/;EvenQ[m],j_]:=op[t[[m]]+j,j]
In[5]:=RunLengthEncode[x_List]:=(Through[{First,Length}[#1]]&)/@Split[x];
In[6]:=nn=16; In[7]:=t=Table[1,{i,1,nn}];
In[8]:=tf[n_]:=Apply[Plus,

Apply[Times,Apply[to,Map[RunLengthEncode,Partitions[n-1]],{2}],{1}]]
In[9]:=Do[t[[i]]=tf[i],{i,1,nn}]
In[10]:=t
Out[10]:=
{1,1,3,6,16,38,101,264,721,1985,5576,15823,45455,131675,384631,1131045}

Appendix B. Mathematica package for the generation of the ad-
ditional order conditions

We implemented a Mathematica [25] package for the production of the

additional trees T̃ . We name it Trees16Mod and it is listed in Appendix
C. Its basic function modtrees gets the body of an order condition Qqi as
input and returns the set of modified trees produced.

In[10]:=<<trees16mod.m;

In[11]:=modtrees[b.a.a.c^2](* the main tree and one additional are produced *)

Out[11]:=
{
b.a.a.c2, b.a.a.g2

}

In[12]:=modtrees[b.a.a.c](* nothing additional produced *)
16

Out[12]:={b.a.a.c}
In[13]:=modtrees[b.c^6](* the main tree and six additional are produced *)

Out[13]:=
{
b.c6, b.

(
c4g2

)
, b.

(
c2g2

2

)
, b.g3

2, b.
(
c2g4

)
, b. (g2g4) , b.g6

}

In order to produce the modified order conditions of seventh order we
need the package trees16 given [7]. That package produced the order
conditions Tqi of the conventional q−th order Runge–Kutta method.

In[14]:=<< trees16.m;

In[15]:=oc7 = RKCond[a, b, c, e, 7][[1]];(* 7th order conditions *)

In[16]:=oc7bod = Table[oc7[[j,2]], {j,1,Length[oc7]}];(* body of the conditions *)

(* The following instruction produces the modified trees of 7th order *)

In[17]:=Complement[Flatten[Table[modtrees[oc7bod[[j]]],{j,1,Length[oc7]}]],oc7bod]

Out[17]:={b. (cA. (cA.g2)) , b.
(
c3A.g2

)
, b. (cA.cA.g2) , b.

(
A.c2A.g2

)
, b. (A.g2)

2 , b.
(
c2A. (cg2)

)
,

b. (A.cA. (cg2)) , b.
(
cA.

(
c2g2

))
, b. (cA. (A.cg2)) , b.

(
cA.g2

2

)
, b. (cA.g4) , b. (A.g2A.A.c) ,

b.
(
c2A.A.g2

)
, b. (A.cA.A.g2) , b. (cA.A. (cg2)) , b. (cA.A.A.g2) , b.

(
c4g2

)
, b.

(
c2A.cg2

)
,

b.
(
(A.c)2g2

)
, b.

(
cA.c2g2

)
, b.

(
A.c3g2

)
, b. (A.(cA.c)g2) , b. (cA.g2g2) , b. (A. (cg2) g2) ,

b. (cA.A.cg2) , b.
(
A.A.c2g2

)
, b. (A.A.g2g2) , b. (A.A.A.cg2) , b.

(
c2g2

2

)
, b.

(
A.cg2

2

)
, b.g3

2,
b.

(
c2g4

)
, b. (A.cg4) , b. (g2g4) , b.g6, b.A.

(
c2A.g2

)
, b.A. (A.cA.g2) , b.A. (cA. (cg2)) , b.A. (cA.A.g2) ,

b.A.
(
c3g2

)
, b.A. (cA.cg2) , b.A.

(
A.c2g2

)
, b.A. (A.g2g2) , b.A. (A.A.cg2) , b.A.

(
cg2

2

)
, b.A. (cg4) ,

b.A.A. (cA.g2) , b.A.A.
(
c2g2

)
, b.A.A. (A.cg2) , b.A.A.g2

2, b.A.A.g4, b.A.A.A. (cg2) , b.A.A.A.A.g2}

In[18]:=Length[%](* Enumerate the order conditions of 7th order *)

Out[18]:=53

Appendix C. The Mathematica Package Source

BeginPackage["Trees16mod‘", {"Combinatorica‘"}];

modtrees::usage = " modtrees[tr] finds all modifications of
RK-tree "

Power2[x_, n_Integer] := Apply[Power3, Table[x, {i, 1, n}]];

modtrees[tr_] :=
Module[{t1, q, q1, q2, i, j, pow},

17

q = tr /. Power -> Power1 /. Power1[c, n_Integer] -> c^n;
q = q /. Power1 -> Power2;
t1 = Tuples[

Map[Tuples,Flatten[Select
[Table[Table[{modi[pow], {Position[q, c^pow][[i]]}},
{i, 1,Length[Position[q, c^pow]]}

], {pow, 1, powmax[q]}
], # =!= {} &],1]

]
];

q2 = {};
Do[q1 = q;

q1 =ReplacePart[q1, Table[t1[[j, i, 1]], {i, 1, Length[t1[[j]]]}],
Table[t1[[j, i, 2]], {i, 1, Length[t1[[j]]]}],
Table[{i}, {i, 1, Length[t1[[j]]]}]

];
q2 = Append[q2, q1], {j, 1, Length[t1]}

];
q2 = Map[First, Split[Sort[q2 /. Power3 -> Times]]]
];

modi[n_] :=
Module[{p, q}, p = Partitions[n];

q = c^p[[Map[First, Split[Map[First, Position[EvenQ[p], True]]]]]];
Do[q = Replace[q, c^i -> Subscript[g, i], 2], {i, 2, n, 2}];
q = Apply[Dot, q, 1];
q = If[EvenQ[n],

Union[{q[[1]]},
Map[First, Split[Sort[Apply[Times, Delete[q, 1], 1]]]]

],
Map[First, Split[Sort[Apply[Times, q, 1]]]]

];
q = Append[q, c^n]

];
powmax[tr_] :=

Module[{p, q, j1}, q = tr; p = Position[q, c^_];
If[p == {}, 1, Do[AppendTo[p[[j1]], 2], {j1, 1, Length[p]}];

Max[Extract[q, p]]]
];

EndPackage[];

18

References

[1] J. C. Butcher, Coefficients for the study of Runge–Kutta integration processes, J.
Austr. Math. Soc. 3 (1963) 185–201.

[2] J. C. Butcher, Implicit Runge–Kutta processes, Math. Comput. 18 (1964) 50–64.
[3] J. C. Butcher, On Runge–Kutta processes of high order, J. Austral. Math. Soc. 4

(1964) 179–194.
[4] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge–

Kutta & General Linear methods, John Wiley & sons, Chichester, 1987.
[5] J. C. Butcher, Numerical methods for Ordinary Differential Equations, Second Edi-

tion, Wiley, Chichester, 2008.
[6] M. P. Calvo and J. M. Sanz–Serna, High order symplectic Runge–Kutta–Nyström

methods, SIAM J. Sci. Comput. 14 No 5 (1993) 1237–1252.
[7] I. Th. Famelis, S. N. Papakostas and Ch. Tsitouras, Symbolic derivation of Runge–

Kutta order conditions, J. Symb. Comput. 37 (2004) 311–327.
[8] J. M. Franco, An embedded pair of exponentially fitted explicit Runge-Kutta meth-

ods, J. Comput. Appl. Math. 149 (2002) 407–414.
[9] P.J. Van der Houwen and B.P. Sommeijer, Explicit Runge–Kutta(–Nystrom) methods

with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal.
24 (1987) 595–617.

[10] MATLAB 7 (Release 14), The MathWorks inc., Natick, MA, 2004.
[11] A. Papaioannou, Enumeration of Graphs (in Greek), NTUA, Athens, 2000.
[12] S. N. Papakostas, Ch. Tsitouras, and G. Papageorgiou, A general family of explicit

Runge–Kutta pairs of orders 6(5), SIAM J. Numer. Anal. 33 (1996) 917–936.
[13] A. Paŕıs , L. Rández , New embedded explicit pairs of exponentially fitted Runge–

Kutta methods, J. Comp. Appl. Math. 3234 (2010) 767–776.
[14] T.E. Simos and J. Vigo-Aguiar, A modified Runge-Kutta method with phase-lag

of order infinity for the numerical solution of the Schrodinger equation and related
problems, Comput. Chem. 25 (2001) 275-281.

[15] T. E. Simos and J. Vigo-Aguiar, Exponentially fitted symplectic integrator, Phys.
Rev. E 67 (2003) No 016701

[16] T. E. Simos, I. Th. Famelis and Ch. Tsitouras, Zero dissipative, explicit Numerov
type methods for second order IVPs with oscillating solutions, Numer. Algorithms 34
(2003) 27–40.

[17] Ch. Tsitouras, A parameter study of explicit Runge–Kutta pairs of orders 6(5),
Appl. Math. Lett. 11 (1998) 65–69.

[18] Ch. Tsitouras, I. Th. Famelis, Phase-Fitted modified Runge-Kutta pairs of orders
6(5), ICNAAM Extended Abstracts (2006) 1962 1965.

[19] Ch. Tsitouras, Optimal Runge–Kutta pairs of orders 9(8), Appl. Numer. Math. 38
(2001), 123–134.

[20] Ch. Tsitouras and S. N. Papakostas, Cheap error estimation for Runge–Kutta pairs,
SIAM J Sci. Comput. 20 (1999) 2067–2088.

[21] Ch. Tsitouras and T. E. Simos, Explicit high order methods for the numerical
integration of periodic initial value problems, Appl. Math.& Comput. 95 (1998) 15–
26.

[22] G. Vanden Berghe, H. De Meyer, M. Van Daele and T. Van Hecke, Exponentially–
fitted explicit Runge–Kutta methods, Comput. Phys. Commun. 123 (1999) 7–15.

19

[23] R. Van Dooren, Stabilization of Cowell’s classical difference method for numerical
integration, J. Comput. Phys. 16 (1974) 186–192.

[24] H. Van de Vyver, An embedded phase-fitted modified Runge-Kutta method for the
numerical integration of the radial Schrödinger equation, Phys. Lett. A 352 (2006)
278–285.

[25] S. Wolfram, The MATHEMATICA Book, 5th ed., Wolfram Med., 2003.

20

