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RUNGE-KUTTA PAIRS FOR SCALAR AUTONOMOUS
INITIAL VALUE PROBLEMS
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We present the equations of condition up to sixth order for Runge-Kutta (RK) methods, when integrating scalar
autonomous problems. Two RK pairs of orders 5(4) are derived. The first at a cost of only five stages per step,
while the other having an extremely small principal truncation error. Numerical tests show the superiority of the
new pairs over traditional ones.
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1 INTRODUCTION

The scalar autonomous initial value problem has the form

y0 ¼ f ðyÞ; yðt0Þ ¼ y0

with f : < ! <.
This problem is a special case of the general class of initial value problems of first order:

y0 ¼ f ðx; yÞ; yðx0Þ ¼ y0 2 <m; x 2 ½x0; xe�; ð1Þ

where f : <� <m ! <m.
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Runge-Kutta (RK) pairs are widely used for the numerical solution of the initial value

problem (1). These pairs are characterized by the extended Butcher tableau [1, 2]:

c A

b

b̂b

with bT ; b̂bT ; c 2 <s and A 2 <s�s is strictly lower triangular. The procedure that advances the

solution from (xn; yn) to xnþ1 ¼ xn þ hn computes at each step two approximations ynþ1; ŷynþ1

to yðxnþ1Þ of orders p and p� 1; respectively, given by

ynþ1 ¼ yn þ hn
Xs
i¼1

bifni ð2Þ

and

ŷynþ1 ¼ yn þ hn
Xs
i¼1

b̂bifni

with

fni ¼ f xn þ cihn; yn þ hn
Xi�1

j¼1

aijfnj

 !
ð3Þ

for i ¼ 1; 2; . . . ; s � p. In the following we use letters with cups to denote quantities

pertaining to the lower-order method of a pair. The methods studied in this article obey the

simplifying assumption A � e ¼ c; e ¼ ð1; 1; . . . ; 1ÞT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
s

.

From this embedded form (called RKpðp� 1Þ) we can obtain an estimate

Enþ1 ¼ kynþ1 � ŷynþ1k

of the local truncation error of the p� 1 order formula. So the step-size control algorithm

hnþ1 ¼ 0:9 � hn � TOL

Enþ1

� �1=p

;

is in common use, with TOL being the requested tolerance. The above formula is used even if

TOL is exceeded by Enþ1, but then hnþ1 is simply the recomputed current step. See [16] for

more details on the implementation of these type of step size policies.

2 TREES THEORY FOR RK METHODS

2.1 Taylor series expansions

Setting x0 ¼ 1, then problem (1) reduces, without loss of generality, to the more convenient

autonomous problem y0 ¼ f ðyÞ. When advancing the p-order RK method (2) and (3), applied
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to the latter problem, we actually try to approximate the corresponding Taylor method of the

form

yðxnþ1Þ � yðxnÞ þ hy0ðxnÞ þ 1

2!
h2y00ðxnÞ þ � � � þ 1

p!
hpyðpÞðxnÞ: ð4Þ

On the other hand we may expand fni around the point (xn; yn) and derive from (2) the

expression

ynþ1 ¼ yn þ hq11y
0
n þ h2q21y

00
n þ h3ðq31f 0f þ q32f

00f 2Þ þ � � � ð5Þ

with qij depending exclusively on the coefficients A; b; c.

Verify now,

y00 ¼ @f ðyðxÞÞ
@x

¼ @f

@y
f ¼ f 0f ;

y000 ¼ @2f

@y2
� ðf ; f Þ þ @f

@y
� @f
@y

� f ¼ f 00ðf ; f Þ þ f 0f 0f ;

yð4Þ ¼ @3f

@y3
� ðf ; f ; f Þ þ @f

@y
� @f
@y

� @f
@y

� f þ @f

@y
� @

2f

@y2
� ðf ; f Þ þ 3 � @

2f

@y2
� @f

@y
� f ; f

� �
¼ f 000ðf ; f ; f Þ þ f 0f 0f 0f þ f 0f 00ðf ; f Þ þ 3f 00ðf 0f ; f Þ;
. . . ;

where the elementary differentials f 00ðf ; f Þ; f 000ðf ; f ; f Þ; f 0f 00ðf ; f Þ; f 00ðf 0f ; f Þ are Frechet
derivatives [9, pp 158].

After matching (4) and (5) we arrive at

yðxnþ1Þ � ynþ1 ¼ hðq11 � 1Þf þ h2 q21 � 1

2

� �
@f

@y
f

þ h3 q31 � 1

6

� �
f T � @

2f

@y2
� f þ q32 � 1

6

� �
@f

@y
� @f
@y

� f
� �

þ � � � :
ð6Þ

So requiring t11 ¼ q11 � 1 ¼ 0; t21 ¼ q21 � 1
2
¼ 0; t31 ¼ q31 � 1

6
¼ 0; t32 ¼ q32 � 1

6
¼ 0 we

conclude to the order conditions we have to satisfy for constructing a third order method. The

order conditions up to fourth order are listed in first column of Table I.

In this table we denote by ci the componentwise multiplication c � c � � � c|fflfflfflfflffl{zfflfflfflfflffl}
i

(we assume

c0 ¼ e), for which we allow a higher order of precedence over the regular (matrix-to-matrix

or matrix-to-vector) multiplication (dot product). Moreover, the same symbol will be used

here to denote both type of multiplication. Whenever both type of multiplication are found

simultaneously in a relation and there is a possible conflict, we distinguish the order of

precedence, by the proper use of parenthesis. We also define C ¼ diagðcÞ.
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2.2 Trees and rooted trees

Equation (6) has the form

yðxnþ1Þ � ynþ1 ¼
X1
i¼1

X
t2Ti

hi
1

sðtÞ FðtÞ � 1

gðtÞ
� �

FðtÞ;

where Ti is the set of rooted trees of order i [13], s; g are integer-valued functions of t;F is a

certain composition of A; b; c, the skeleton of which depends only on t and F is an

elementary differential [3].

We then consider that a RK method is of order p if and only if

X ðtÞ ¼ 1

sðtÞ FðtÞ � 1

gðtÞ
� �

¼ 0; for every t 2 Ti; for i ¼ 1ð1Þp:

The above relation defines a set of order conditons, which are linear in the components of b

and nonlinear in the components of A; c (see, for example, Hairer et al. [8] or Butcher [3]). In

the following the symbol T ðiÞ denotes a vector whose elements are all the elements of the set

X ðTiÞ in some prescribed (but otherwise arbitrary) order.

The unique matching between a rooted tree t and an order condition, comes clear after

putting b at root, A at internal nodes c at leaves and using a prefix multiplication. Then we

produce the single FðtÞ from the order conditions. For example using the following tree t we
name its nodes

and we produce FðtÞ ¼ bCA2c2.

TABLE I The equations of condition of RK methods, for orders 1–4

Equation Equation tree-form Elementary differential

t11 ¼ b � e� 1

t21 ¼ b � c� 1
2

t31 ¼ 1
2
b � c2 � 1

6

t32 ¼ b � A � c� 1
6

t41 ¼ 1
6
b � c3 � 1

24

t42 ¼ 1
2
b � A � c2 � 1

24

t43 ¼ b � C � A � c� 1
8

t44 ¼ b � A2 � c� 1
24
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In the same sense we derive the corresponding elementary differential. We put at every

node (including root and the leaves) f ðkÞ where k is the number of successors of the node.

Using the same tree and putting the derivatives

we conclude to the elementary differential FðtÞ ¼ f 00ðf ; f 0f 00ðf ; f ÞÞ.
The two columns at right of Table I, show this relation for order conditions up to four.

The number of equations of condition (equals the number of rooted trees) for orders up to

ten are given in the first row of Table II.

Now observe that Fðt42Þ ¼ f 0f 00ðf ; f Þ 6¼ f 00ðf 0f ; f Þ ¼ Fðt43Þ for systems of ODEs enfor-

cing two separate equations t42 and t43. But this is not necessary in the scalar case since

f 0 � f 00ðf ; f Þ ¼ f 00 � f 0 � f 2 ¼ f 00ðf 0 � f ; f Þ, and these equations may combine in ~tt42 ¼ t42 þ t43.

If for every tree t we write down the degrees of derivatives at the corresponding node, we

observe that we arrive at a connection of trees with the unrestricted partitions of a number

[13]. So t42

� �
corresponds to 1 � 2 while t43

� �
corresponds to 2 � 1. These two

trees resulted in ~tt42 indeed. Similarly t52 ¼ 1
2
bC2Ac� 1

20

� �
corresponding to 3 � 1 and

t53 ¼ 1
6
bAc3 � 1

120

� �
, corresponding to 1 � 3 combine to ~tt52 ¼ 1

2
bC2Ac�

1
20
þ 1

6
bAc3 � 1

120
. The rest order conditions follow this way and are listed in Table III.

The enumeration of order conditions is based in the relevant theory of unrestricted

partitions of a number [13, pp 122]. The number of order conditions up to tenth order are

listed in the last row of Table II.

3 CONSTRUCTION OF THE NEW PAIRS

The most popular RK pairs share orders five and four. 12 þ 7¼ 19 equations of condition

have to be solved then. If we choose a six stages method is possible to use the last stage in such

a way that this evaluation can be taken over as the first evaluation for the next step [7]. This

technique is called FSAL (First Stage As Last) pair, and thereby the number of evaluation per

step will be reduced to five. The free parameters for solving the 19 equations are 20

(c2; c3; c4; c5; a32; a42; a43; a52; a53; a54; b1; b2; b3; b4; b5; b̂b1; b̂b2; b̂b3; b̂b4 and b̂b5Þ. The other

coefficients are restricted by the assumptions Ae ¼ c; c6 ¼ 1; a6j ¼ bj; j ¼ 1; 2; 3; 4; 5

(FSAL), while we fix b̂b6 ¼ 1
40
6¼ b6 ¼ 0.

We tried to solve the problem using a Levenberg-Marquardt method with line search. The

resulted method NEW5(4)a accurate to 15–16 digits can by found in Table IV.

TABLE II The number of order conditions for systems and scalar autonomous equation

Order 1 2 3 4 5 6 7 8 9 10

System 1 1 2 4 9 20 48 115 286 719
Scalar aut. 1 1 2 3 5 7 11 15 22 30
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It is worth mentioning that conventional RK pairs of orders 5(4) share 6 stages. Even a single

fifth order RK method needs six stages to be derived.

A common practice in RK literature for construction of pairs, is the simultaneous mini-

mization of the norm of the coefficients of principal truncation error kT ðpþ1Þk2 that promises

some better performance among pairs of order p. In the previous case there is only one

parameter more than equations we have to solve so it seems difficult to derive a good

kT ðpþ1Þk2. According to Shampine [14] a measure of efficiency of RK methods is

eff ¼ stages � kT ðpþ1Þk1=ðpþ1Þ
2 : ð7Þ

TABLE III The equations of condition for scalar autonomous RK methods

~tt11 ¼ b � e� 1

~tt21 ¼ b � c� 1
2

~tt31 ¼ 1
2
b � c2 � 1

6

~tt32 ¼ b � A � c� 1
6

~tt41 ¼ 1
6
b � c3 � 1

24

~tt42 ¼ 1
2
b � A � c2 � 1

24
þ b � C � A � c� 1

8

~tt43 ¼ b � A2 � c� 1
24

~tt51 ¼ 1
24
b � c4 � 1

120

~tt52 ¼ 1
2
bC2Ac� 1

20
þ 1

6
bAc3 � 1

120

~tt53 ¼ 1
2
b � C � A � c2 � 1

30

~tt54 ¼ b � C � A2 � c� 1
30
þ b � A � C � A � c� 1

40
þ 1

2
b � A2 � c2 � 1

120
þ 1

2
b � ððAcÞ � ðAcÞÞ � 1

40

~tt55 ¼ b � A3 � c� 1
120

~tt61 ¼ 1
120

b � c5 � 1
720

~tt62 ¼ 1
6
� b � C3 � A � c2 � 1

72
þ 1

24
� b � a � c4 � 1

720

~tt63 ¼ 1
4
� b � C2 � A � c2 � 1

72
þ 1

6
� b � C � A � c3 � 1

144

~tt64 ¼ 1
2
bCðAcÞ2 � 1

48
þ 1

2
bC2A2c� 1

72
þ 1

6
bA2c3 � 1

720
þ 1

2
bAC2Ac� 1

120

~tt65 ¼ bCACAc� 1
48
þ 1

2
b � ððAc2Þ � ðAcÞÞ � 1

72
þ 1

2
bCA2c2 � 1

144
þ 1

2
bACAc2 � 1

180

~tt66 ¼ 1
2
bA3c2 � 1

720
þ bA2CAc� 1

240
þ bACA2c� 1

180
þ bCA3c� 1

144
þ 1

2
bAðAcÞ2 � 1

240

þbððAcÞðA2cÞÞ � 1
72

~tt67 ¼ b � A4 � c� 1
720

TABLE IV The coefficients of the new 5 stages NEW5(4) a pair

a21 ¼ 7:983935319765683D� 1 a31 ¼ 1:202381595746123D� 1
a32 ¼ 1:128649860170427D� 1 a41 ¼ 2:369003675496253D� 1
a42 ¼ 4:087329938001282D� 2 a43 ¼ 4:053316066041420D� 1
a51 ¼ 3:942557940083695D� 1 a52 ¼ �6:463834165307711D� 1
a53 ¼ �4:156640553306520D� 1 a54 ¼ 1:6338978367814070
c2 ¼ 7:983935319765683D� 1 c3 ¼ 2:331031455916550D� 1
c4 ¼ 6:831052735337801D� 1 c5 ¼ 9:661061589283534D� 1
c6 ¼ 1 b1 ¼ 6:417799939883591D� 2
b2 ¼ �7:247079043141412D� 2 b3 ¼ 3:787268997297880D� 1
b4 ¼ 4:899267581974183D� 1 b5 ¼ 1:396391331053720D� 1
b6 ¼ 0 b̂b1 ¼ 6:619132135710427D� 2
b̂b2 ¼ �8:196722114333793D� 2 b̂b3 ¼ 3:733280325768971D� 1
b̂b4 ¼ 5:056592903053327D� 1 b̂b5 ¼ 1:117885769040039D� 1
b̂b6 ¼ 2:5D� 2 a6j ¼ bj ; j ¼ 1; 2; 3; 4; 5
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So it is possible to accept an increase in the number of stages if we ensure a considerable

reduction in the norm of the error. We tried a seven stage FSAL method sharing 27 free

parameters. The new pair NEW5(4)b, with minimal kT ð6Þk2 can be found in Table V.

This method was not derived using a constrained minimization procedure. Here we also

preferred the Levenberg-Marquardt method with line search, after we multiplied the order

conditions by a large number.

The main characteristics of our new methods and the most popular 5(4) pair [6], due to

Dormand and Prince [4], can be found in Table VI.

Observing (7) we see that the efficiency measure for the new pair is smaller than the

corresponding value of DP5(4), so some better performance for the former pair is expected.

The derivation of higher order pairs becomes very difficult. For a 6(4) pair we have to

solve 29 equations of condition, so 7 stages are needed in order to get the required 34

coefficients. Seven stages are enough for a conventional 6(4) pair also [16]. Perhaps we

may gain 1–2 stages for higher order pairs but the resulting nonlinear system to be solved

can not be simplified. The common assumptions valid for standard pairs do not apply

in this case. For example, in the general case setting, Ac ¼ 1
2
c2, we drop equations

t43 ¼ b � C � A � c� 1
8
¼ 1

2
b � c3 � 1

8
to equation t41 ¼ 1

6
b � c3 � 1

24
. This does not work in scalar

autonomous cases since t43 is already mixed with t42.

TABLE V The coefficients of the new 6 stages NEW5(4)b pair

a21 ¼ 1:847335922100224D� 1 a31 ¼ �1:645069880057942D� 1
a32 ¼ 9:194285585489098D� 1 a41 ¼ 1:587175467729586D� 1
a42 ¼ 1:962853625884246D� 1 a43 ¼ 5:676905153972640D� 1
a51 ¼ 3:743387591600372D� 1 a52 ¼ �2:643740896944088D� 1
a53 ¼ 1:771817353585664D� 1 a54 ¼ �9:321767771586958D� 2
a61 ¼ 2:502170241513760D� 1 a62 ¼ 2:907083508501376D� 1
a63 ¼ 5:339090024278675D� 2 a64 ¼ 1:033290279145638D� 1
a65 ¼ �3:529823979691512D� 1 a7j ¼ bj ; j ¼ 1; 2; 3; 4; 5; 6; c7 ¼ 1
c2 ¼ 1:847335922100224D� 1 c3 ¼ 7:549215705431156D� 1
c4 ¼ 9:226934247586472D� 1 c5 ¼ 1:939287271083252D� 1
c6 ¼ 3:446629051897131D� 1 b1 ¼ 9:339100081427762D� 2
b2 ¼ 2:612750383228366D� 1 b3 ¼ 2:804013355360740D� 1
b4 ¼ 1:417598731551612D� 1 b5 ¼ �2:144996937291904D� 1
b6 ¼ 4:376724459008408D� 1 b7 ¼ 0; b̂b7 ¼ 2:5D� 2
b̂b1 ¼ 1:105115855660626D� 1 b̂b2 ¼ 3:895429703363805D� 2
b̂b3 ¼ 2:857445777154804D� 1 b̂b4 ¼ 1:055499389515022D� 1
b̂b5 ¼ �3:338705571936740D� 2 b̂b6 ¼ 4:676266564526840D� 1

TABLE VI The main characteristics of the pairs presented here

Method *Stages kT ð6Þk2 eff IR B2 C2 D1

NEW5(5)a 5 1.9� 10� 3 1.75 �3.2 3.1 1.5 1.6
NEW5(4)b 6 8.2� 10� 6 0.85 �3.5 0.7 0.7 0.9
DP5(4) 6 3.8� 10� 4 1.61 �3.3 1.6 1.9 11.6

IR: real stability interval
*: effective number of

B2 ¼ kT ð6Þk2
kT ð5Þk2

, C2 ¼ kT ð6Þ � T̂T ð6Þk2
kT ð5Þk2

, D1 ¼ maxðkAk1; kbk; kb̂bk1; kck1Þ:
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4 NUMERICAL RESULTS

Our new seven stages FSAL pair is compared along with its main competitor DP5(4) on a set

of relevant problems.

The problems chosen are:

4.1 Problem 1. Detest problem A1 [5]:

y0 ¼ �y; yð0Þ ¼ 1; x 2 ½0; 20�

with analytic solution yðxÞ ¼ e�x.

4.2 Problem 2. Detest problem A2:

y0 ¼ � y3

2
; yð0Þ ¼ 1; x 2 ½0; 20�

with analytic solution yðxÞ ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p	 


.

4.3 Problem 3. Detest problem A3:

y0 ¼ � y

4
1� y

20

� �
; yð0Þ ¼ 1; x 2 ½0; 20�

with analytic solution yðxÞ ¼ 20
�

1þ 19 e�x=4
	 


:

4.4 Problem 4:

y0 ¼ �y3=2; yð0Þ ¼ 4; x 2 ½0; 20�

with analytic solution yðxÞ ¼ 4=ð1þ xÞ2.
Both pairs were run at tolerances 10�3; 10�4; . . . ; 10�11, for all problems. A comparison

based on the works of Enright and Pryce [5] (see also Sharp [15]), was carried out. Briefly, let

us assume that the global error satisfies the relation ge ¼ C � TOLE and that its value is

known for several tolerances. The values of E and C can easily be found in the sense of a

least squares approximation. These values are then used, with linear interpolation, in order to

estimate the number of derivative evaluations required to achieve a prescribed accuracy. We

present the efficiency gains of some of the older methods in relation to the new ones, for the

respective problems and the expected accuracies, counted in units of 1%, in tables. The

numbers in these tables are the ratios in function evaluations cost of the two pairs being

tested. The larger value is always being divided by the smaller value and the efficiency gain is

formed by subtracting 1 from this ratio. The gain is multiplied by �1 whenever the first pair

is more efficient than the second. Subsequently the result is multiplied by 100 and rounded to

the nearest integer.
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The final row is the average efficiency for a problem for all expected accuracies, while the

most right number is the average efficiency for all problems.

This type of test was verified by us in a number of recent articles [10–12, 16]. The

cumulative results can be found in Table VII.

By interpreting the results it is obvious that the new method is especially suited for scalar

autonomous problems and clearly outperforms DP5(4). The average gain is by no means

remarkable for pairs of the same order.
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