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Neural Networks With Multidimensional Transfer Functions

C. Tsitouras

Abstract—\We present a new type of neural network (NN) where with bT,E)T,c € R andA € R**¢ is strictly lower trian-
the data for the input layer are the valuex: € ®, the vectory €  gular. The procedure that advances the solution ftom y..)

R™ associated to an initial value problem (IVP) withy’'(z) =
S(y(x)) and a steplengthk. Then the stages of a Runge—Kutta

to xn+1 = zn + hy, cOMputes at each step two approximations

(RK) method with trainable coefficients are used as hidden layers ¥n»+1> Yn+1t0y(2nt1) of ordersp andp—1, respectively, given

for the integration of the IVP using f as transfer function. We take

as output two estimationsy™*, 3* of IVP at the point =+ k. Training

the RK method at some test problems and counting the cost of the
method under the coefficients used, we may achieve coefficients
that help the method to perform better at a wider class of problems.

Index Terms—initial value problem (IVP), orbits, oscillators,
Runge—Kutta (RK), vector transfer function.
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NOMENCLATURE

independent variable

My2y,---,my] € R™, depended variable

€ ™, approximations of y(z) at =,

R x R™ — R™, function of z,y
[fla.f%'"afm] € éRlxm

€ R, RK coefficients

coefficients of RK matrix A € R5%°

[a,-l Q2 ... @521 0 .. 0], af e R

stepsize ;41 — T,

number of truncation error coefficients of order ¢
truncation error coefficients of order ¢
coresponding elementary differentials

[tilati% "‘7ti,\] € §Ri)‘

scalar product between b € ®1%* and ¢ € R*
dot product

€ R™, output of 7—st hidden layer
maximum absolute norm, Euclidean norm
efficiency measure (better small)

objective function to minimize

order of RK method

I. INTRODUCTION

by

Yngl =Yn + I Z bif;

i=1
and
i=1
with
i—1
foi=f|zn+cihn,yn+hn Z a;; £, | € R™
=1

fori = 1,2,...,s > p. From this embedded form (called
RKp(p — 1)) we can obtain an estimate

Unt1 = [[¥nt1 — Yntilloo

of the local truncation error of the — 1 order formula. So the
step-size control algorithm

TOL)l/p

Un+1

hn+1 =0.8- hn . < (l)

is in common use, with TOL being the requested tolerance. The
above formula is used even if TOL is exceededihy,;, but
thenh, 1 is simply the recomputed current step. See [28] for
more details on the implementation of these type of step size
policies.

XPLICIT Runge—Kutta (RK) pairs are widely used for the Less experienced readers are refered to [14, p. 173], while [2],
numerical solution of the initial value problem

y = f(z.y).

v(zo)=yo € R™, z € [xo,z.]

[7] are classical for the area of numerical analysis of ordinary
differential equations.

Il. DERIVATION OF RK PAIRS

wheref : ® x & — R™. These pairs are characterized by the
extended Butcher tableau [2], [7]
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The derivation of better RK pairs is of continued interest the
last 30—40 years [6], [5], [17], [31], [20], [23], [24], [19]. The
main framework for the construction of RK pairs is matching
Taylor series expansions §f(x + h) — y,41 after we have
expanded variou,;'s. The final series has the form

y(@ +h) — ypt1 = ht1idis + h*tarday
+ A (ta1dar + ta2da0)

pt tardyg + taodap
+tyadys + tyaday

1045-9227/02$17.00 © 2002 |IEEE
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In this expansion scalarg; are the:th order conditions de- TABLE |
pending explicitly ond.b.c ande = [1 1 1]T cRs. e g NUMBER OF ORDER CONDITIONS FORV ARIOUS ORDERS
, b, I P .e.g.,
1
tii=be— 1ty =bc— = orderi |1 2 3 4 5 6 7 8
. . 21 & |1 1 2 4 9 20 48 115

t31 = ch2 — g,tgg =bAc — 6,

fi = b — 2t = bA? — 2

a=Dbe =l =Dhac = oo with minimizations requiring repeated calls ¢fand evalua-

fer — bed 1 b A 1 tions or even inversions of Jacobians. Recent literature has an-

43 = PCAC— gy laa = Y swered for the most of the claimed there drawbacks of discrete

methods. For example RK can be combined with continuous
(021 /9y2) 2, dus = (3f /9y)3 ], etc. See [2, pp. 170-171] for[27] or highly differentiable solution [18]. Perhaps their tech-

a list of order conditions and the coresponding elementary dffque 1S promising in parallel computers or stiff systems where
n?nlmear equations has to be solved anyway.

ferentials. in order rivi hird-order RK method w .

e_e tials. Soin order to c_je e athird ° de - e_t od _e s€ Recently Wang and Lin [32] proposed the so called RK NNs.
s = 3 and we have to satisfy four equations = to; = t31 = ) , X e X .

t45 = 0 for the six coefficientss , by, b, azs, ca, cs (by default Their approach is from system identification point of view and
82 1723 T8 O they are interested in estimating the functjphy an NN. They

Ae = c, restrictse; = 0,a21 = ¢2,a31 = ¢z — azz). Once a . .
third-order method is found, nothing can be said about the erréll%ed a classical RK method [12] of fourth order with constant

it may produce when applied to some problem since the m stepsize because it is easier to prove some theoretical results.

nitude ofd,;,¢ > 3 is unpredictable. Some better accuracy is om prgctlcal cons_lderatlon we might ob;erve _better resu_lts
. . : when using newer higher order methods with variable stepsize
expected if we reduce the norm of the principal truncation error . e
iImplementation. Perhaps some modification is needed for the
learning algorithms reported there, since the simplification of
dealing with scalar problems does not work for RK of orders
whereT™ = [t;1,ti2,...,t;, ] € R'*, are the conditions for exlcef:h(jmg 3[14,p. lz[ﬁ]' ndent to solve VP nor ¢ v th
satisfying ordet. Values ofi, for various orderg are given in N IS paperwe neither indent to solve nor to ve_nfy ©
Table 1. function f. We are interested in deriving better RK pairs of a

This technique is used widely for derivation of better RK ofre(?;:ribed(?ﬁsp(p B '1)t udsi]:’]gs it_;aj%es. IThus we :jntroer]lce a
higher orders too [5], [21], [17], [20], [26]. The order condi- cearorwar consisted from hidden fayers and each one

tions are solved using various simplifying assumptions consiﬁgmamsﬁl neurons.

ering different families of pairs. After we express all the coef- INPUT:

ficients of the family with respect to some free parameters we 2, hERy € R™
continue minimizing|7‘?+4)||, for these parameters. Although ’ ’
minimization of||7®+%)||, for ap-order RK method seems theand the function

best choice for a general problem, a lot of speculation is raised

etc.d;;’s € R™ are elementary differentials ¢f, e.g.,ds; =

170, = \/t?u +1tih +tis +

for problems where itis believed that;’s can be handled. Such fiRx R = R
problems are Hamiltonians [3], orbits [25], periodic [29], [16], i i
[19], Schrédinger [1] and many others. First hidden layerk; = f(z,y).

Unfortunately in most cases analytical consideration of test Second hidden layek, = f(x + c2h,y + haoiki).
problems produces complicated algebra and enforces us to pro- 1nird hidden layerks = f(z + csh,y + h(azik: +
ceed with oversimplifications. In other cases we deal with some ag2ks)).
side properties such as symplectiness, [7, p. 312]. Tenths of ~°° i1
symplectic RK methods were appeared last years and no one th hidden layerk, = f(z +ch,y +h3 25, asjk;).
of them was even competitive to the conventional ones. OUTPUT.

An interesting alternative could be the consideration of RK 5
type neural networks (NNs), where the various new families y'=y+ hzbiki-
pairs are tested on some model problems to give good predic- =1
tions for their coefficients. The corresponding drawing of the above NN is shown in Fig. 1.

The NN we introduced is more general than a common mul-
. RK'N EURAL NETWORK tilayer NN since at each neuron acts a different component of

The literature combining numerical analysis and especiafffe multidimensional functiorf. This NN can be trained for

numerical IVP and NNs is limited. Lagarés al. [13] presented & Variety of inputs(z,, hq,¥¢, f¢),¢ = 1,2,... H and fumish

a neural-network approach of solving IVP, but they do not giV&® Proper coefficientsy, cs, ... cs, by, ..., by, azz, ... as,5-1
comparisons with the traditional multistep or RK methods. Mufchieving the desirable minimization of the value
tistep methods depending directly and linearly on a set of points H H 9

give extremely accurate results. In [13] ten points are used and - — Z %Hy; — y(zg + hq)||2 - Z €y
hy

it seems theoretically difficult to compete multistep methods =1 a=1 h{1)+1-
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Fig. 1. The neural system calculating R-K coefficients.
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It is supposed thaf,’s belong to the same parametric type oéasily derive a two parameter general family of coefficients de-
functions and most of the times are identically the same. If weending on the values, cs. So we have [2, p. 174]

do not know the analytical solution of the IVP (to be avoided for
model problems) we may estimate the true values of the sample
pointsy(x, + h,) by an accurate integration with higher order

method at very stringent tolerance.

Let us illustrate now a paradigm for the derivation of the gra-
dient directions that can be used to derive learning algorithms.
For the third-order RK metho = 3) we takes = 3. We can

_ 2 — 303 + CQ(—3 + 603)

b1
66263
2— 303
by = a2 oo
6c5 — 6cacs
2—-3
by = 2

—6cacy + 66%
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(2 —c3)es
a3z =
( 24 362)
o 1
by =1— —
! 262
o 1
by = —
2 262
by =0
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be determined dynamically. The tolerance TOL and the region
[0, z.] where we want to test the RK pair determine the whole
line of NN. The output of each NN ig* andu* = h >~7_, (b; —
l?i)ki in order to evaluate a new stép based on (1). Then we
may proceed to the next NN in line with inputs+ i, h*, y*
and of course the transfer functighn

The number of inputs is dynamically determined each time

we backpropagate for another training and the value we get as
final output is the efficiency of the pair which is to be optimized.
It is worth to notice that there might be rejections of some NN

and we need to evaluate only

3_‘32 — 9 (v _ h 9 (v5 — ¥(zg + hy)) from this line ifu* is not less than TOL. The cost of evaluating
- (yq y(x’l + ’1)) ’ . . i R
dcy dcy these NN must be also considered in the final evaluation of the
with efficiency eff. So here we simply choose
a(yz _Y(x(l—’_hq)) — ]anZj»:l kaJ ($q+17hq+17YQ+17fq+l) = <$q+h;7h27y(1+hzbzkzqu> .
802 802 i=
. The cost of the pair for the integration we made is not simply
and similarly the true global erroge at grid points but it has to involve the
de? . hed 35, bik; total number off -evaluationsV; needed. A measure of the ef-
Fox = 2 (y; — y(zg + hy)) R ficiency is presented in [22]
3 3

_ ge 1/p
off = Vy (TOL) '
The smaller the eff the better the efficiency, so we indent to

If we expand)_;_, b;k; in power series ok, we get

hqazjﬂ bik; — Bt <%d + %d ) L0 (h"’) minimize eff for some test IVPs hoping for a better performance
dca o dca T ey 2 4 in a wider class of problems.
hq32§=1 bik; W [ Otu Otz 5 In the latter case the values of the forfl=/9¢s) and
T B hy - <8—C3d41 des d43> +0 (hg) (8¢/decs3) of the paradigm concerning third-order RK methods
are difficult to evaluate because the various elementary
where differentials are changing every time. Denoting &ﬂfﬂ the
Ota 1 1 Otu 1 1 corresponding elementary differential of theth input we
Doy <E - 1—203> " Oes <E - ECQ> calculate . g
Ot _ 1 Ot 1 G2 S Lo (v~ ey + i) M0 2 U
dcy 127 ez 6 dea I hg dca
Ocs dcs dcs Ocs = Z y(zg +hy))
and s a=1
3
dy = g—};éfg,dzy; = <%) f x <%tc41 al? 4+ %t@ 5 +O(hy ))
Ay = af 82f T2 s g, = anf af Sincety;, i = 1,2, 3,4 that depend on the RK method remain
dy dy? constant during the integration, we may admit some averaging

value of the form
Pe Tl 0e
802 - 802 7(903 -

Evaluating the elementary differentialat (., yq) is supposed

to be an easy task for a model problem. They are also evaluated

once at the beginning of training only. Notidg, = d43 inthe

scalar case, but this is not true for systems of equations Sitygéh

(8f/dy), (82 f/0y?) and f are matrices then. T, = 1 <9 +9-(1-2¢2)*4+9-(3 - 403)2>
The technique we used is obligatory since the analytic eval- > 7 5184 +(3 —4des + ¢ - (—4+ 6¢3))?

uation of (9e/dc2), (9e/dc3) is difficult, while the presented This means that we follow the direction of minimizing the prin-

algorithms are valid even for higher order methods. Then thefial truncation error coefficients of the RK formula hoping that
are a little more parameters (e.g., for a fifth-order method thejfgi| lead us to a better choice.

are only four parameters), and the calculations are straightforin alternative we may evaluate
ward following RK theory.

ATl
803

4 5
A very interesting realization of the above algorithm may test 9= ~ Bl +h 8||T< i
the reliability of the error estimatar combining many NNs in Ocy aci Ocy
line, where the output of the first is input for the second just Ge ~ ANTD| + B8||T<°)||2
like we proceed with RK steps when integrating an IVP. In this Jes dcg dcs

case a small modification is required since the input data mweith 4 the average step size.
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IV. NUMERICAL RESULTS FORPAIRS OF ORDERS5(4) a)e = 01,02,...,09,2 € [0,20,TOL =
1073,1074,...,107°. We recorded the 63 values

The initial idea of producing coefficients without satisfyin . .
P 9 fying of eff and found that in averagefpp ~ 1527.6 while

any order condition was a total failure. Actually our technique . - :

has reason in existing families where most of the coefficients are forothe new pair we haveff ~ 1150.1, reducing the cost
expressed with respect to a small number of them served as freg 33 /0; _
parameters. Here, we will try to produce more efficient RK5(4) ) FlO*?’_loj'l’ 0'21’6;;)’ 0'3\’/27 reiordg()j’ 4(;]£;§£Lthe_63

pairs. lues of eff and found that i ~ 3277.6
Pairs of orders 5(4) are the most popular ones and can easily values of el -and found that in averagipp ~ N
while for the new pair we haveff ~ 2426.8, reducing

found in the literature. Matlab [15], has included the standard th t 350

functionode45 which uses perhaps the most famous such pairc) € cos 0.05 °(') 15 0.95 € [0,20], TOL

DP5(4) due to Dormand and Prince [5]. For this pair we have®/ ¢ 7 V7o Uto, - U909, % <Al -
“) [5] P 1073,107%,...,107°. We recorded again the 70

= 7 but the last stage of each step may reused as the first .
s g P Y values of eff and found that in averagippr ~ 1617.6

stage in the next step (FSAL). So only six evaluations of the hile for th . haveff ~ 1206.4 reduci
transfer function are wasted every step since the last layer of the )[,i\:el Sosotr 340e/ New pair we havetl ~ 4 reducing
0.

some NN in line is placed again as first layer for the next NN. : , . . . .
So the pair we derived optimizing a simple integration has

Wi thi ty last | first (LLAF).
e name this property last layer as first ( ) Some hidden property that helps it to perform much better than

In [17], we may find an algorithm where all the coefficient tional pairs test in the familv of two bodv (K
of a 5(4) pair may expressed explicitly based on the parametgr@’en lonal pairs for every test in the family of two body (Ke-

co, C3, C4, ¢35 @andbz. Reproducing a learning algorithm here W@,er) prot_)lgm_s. We can ?(gt obtain this hidden _property W.'th a
have to evaluate the 20 truncation error valtgs = bc® — simple minimization of| |_|2' In.[2'0]'a new optlmal RK pair
1/6,. .., t6.20 = bA*c— 1/720 and differentiate them with the of orders 6(5) was found with ml_nlmlzed truncation error, but
free pararﬁeters. when tested on Kepler problem_lt_ was 30% less efficient than
older methods for some eccentricities, while there were eccen-

A. Kepler Orbital Problem tricities where it was almost 50% more efficient. Here the ob-
served deviation from the mean value of efficiency is very small.
The problem has the form Gaining in average 10-15% for methods of the same order
1/ 3 is the usual improvement of RK pairs through the years passed
Qy/ o 4y [6], [5], [17]. Gaining here more than 30% is worth mention.
Yy =1y
2, Ly B. Periodic Problems
Yy =—"7"—"—=3 . . - . ..
NS y23 When dealing with periodic or oscillatory problems it is con-
. 2y structive to consider the test equation
! e —
\V 1y2 +2 y23 y/ =V —10.)2/,2/(-1'0) =% € mnlv‘r S [‘T()vxe]?w e R.
wherez > 0,y(0) = [1 — ¢,0,0, /(T + /(L = ], with The theoretical solution of this problem is
e the eccentricity of the orbit. The left superscript denotes the y(z) = (coswx + v —1sinwz) - yo.

component ofy. It is known that the energy o )
In many applications we are interested on the argument

E— 1(3y2 ) — 1 1 of the solution which is the phase of the angle, i.e.,
2

Vig? #2492 2 argy = tanwz, [29], [19]. Monitoring this value through the
) ) ] ] integration we ensure that we remain in phase. So we consid-
remains constant since the problem is conservative. So we cgpsq as ge the maximum observed valué tafawz — argy|
sidered as ge the maximum observed valugtdf- 1/2| over  yer all the grid points.

all the grid points. We applied the NN described above with inputs= 1, z. =

We applied the NGN described above withinptits 0.5, = 9; and TOL= 10-°. Simulating NN with DP5(4) coefficients
27 and TOL= 10"". Simulating NN with DP5(4) coefficients o foundeffpp = 140.9. Then we proceed training the NN

we foundeffpp = 1059.5. Then we proceed training the NNjine obtaining finallyeff = 15.9 for the new method which

line obtaining finallyeff = 620.8 for the new method which means that it was almost 800% less expensive than DP5(4). The
means that it was almost 72% less expensive than DP5(4). Uﬂffimal efficiency was found for

optimal efficiency was found for

157 457 171 1104 ;1
_5 13 33 1, 1 2T 792 T 393 ™ T 215 T 1247 T T 207
C2= 55,03 = 755,04 = 7,0 = =, 07 = —. - . .
22 400 34 175 18 The coefficients of the new pair NEW5(4)b can be derived ap-
The coefficients of the new pair NEW5(4)a can be derived aplying the algorithm in [17], and are listed in Table Ill.
plying the algorithm in [17], and are listed in Table II. We test the result with simulation for a wide class of regions,
We test the result with simulation for a wide class of region§equencies, and tolerances. We include here three simulations.
eccentricities, and tolerances. We include here three simulaa) w = 1,2,...,10,z € [0,27],TOL = 10731074,

tions. ...,107%. We recorded the 70 values of eff and found
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TABLE I
COEFFICIENTS OFNEW5(4)A (ACCURATE AT 16 DIGITS)

0
i 5
22 22
133 71421 194579
400 800000 800000

33 592292276 _ 76869243 472517100
44 418440609 13068580 86906057

174 5826402054 1802051930 2198919976 9453649
175 3540418421 263259491 354178997 641339334

1 344811583 _ 209300311 1269016359 9310471 2741836
202675472 29580530 198536683 918210297 370671635
1 12085 0 356137626 766889822 _ 3676531250 22241
120582 708647483 60568101 68192253 534
b 12085 0 356137626 766889822 _ 3676531250 22241
120582 708647483 60568101 68192253 534
g 31681789 0 86354954 1469236840 _ 2761387937 1705684531 1
351068635 160893035 280170657 153579530 130667931 18

TABLE Il
COEFFICIENTS OFNEW5(4)B (ACCURATE AT 16 DIGITS)

0
157 157
792 792

457 17242153 82704204
1393 304650493 304650493

171 164974215 _ 1126675043 507877261
215 165204568 381969438 184925378

1104 5895014254 1061597689 6801715378 1238630440
1241 341488313 19324293 163955985 423868997

1 185064709 __ 3076588154 1084016133 49457902 __ 4296453
85647086 474989365 207648103 332207679 81166066

1 5577289 0 125285369 66135053 9418625 588307
54489024 263408437 167483031 376769549 11284416

b 5577289 0 125285369 66135053 _ 9418625 588307
54489024 263408437 167483031 376769549 11284416

B 31349362 0 47609631 99593296 _ 3289939 = _ 6995 1
306706991 99976703 255216031 176951650 118486508 20

that for the new pair we have in averagé =~ 411.7 expand to inhomogeneous problems where the analysis is very
while for DP5(4) we havesfipp ~ 1419.6, and this difficult, e.g., [30]
means that it is 245% more expensive. . y N T )

by w = 1,2,...,10,# € [0,107],TOL = 1073,107%, Yy =—wytce ;w” # 6%, c,w € R\ {0}
...,1079, We recorded again the _70 values of eff angr even to nonlinear ones.
found that in average for the new pair we haffe=x 2826,
while for DP5(4) we haveffpp ~ 10622 i.e., 275%
more expensive.

C)w = 2,4,...,20,x € [0,107],TOL = 1073,107%, A new type of artificial NN design was proposed in this paper
...,107°. We recorded again the 70 values of eff anépr the derivation of the coefficients of Runge-Kutta pairs for the
found that in average for the new pair we haffe~ 6526, numerical solution of initial value problems.
while for DP5(4) we haveffpp ~ 24461 i.e., again  The system described in this paper is more general than mul-
about 275% more expensive. tilayer NN considered in the classic articles on approximation

So we again derived a pair optimizing a simple integration #foblems [4] and [8]-[11]. We also show an example of a system

the test periodic problem. We did not get better results by usifff Which is not true that one hidden layer is sufficient to solve
amore analytical approach [19]. Besides the NN technique mi#@ problem.

V. CONCLUSION
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The main features of the new proposal are:
1) vector transfer functions;

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

[21]

(22]

2) dynamic changing of input data;

3) LLAF;
4) backpropagating in the direction of minimizing principal [

A first interesting result is that we can produce better IVP

(23]

) . 24]
truncation error of the numerical scheme.

(25]

solvers for various types of problems. This was achieved byyg)
training them in a test problem and optimizing their coefficients.

The author wishes to thank the anonymous referee fo[r
drawing Fig. 1.
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