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Neural Networks With Multidimensional Transfer Functions
C. Tsitouras

Abstract—We present a new type of neural network (NN) where
the data for the input layer are the value , the vectory

associated to an initial value problem (IVP) with y ( ) =
(y( )) and a steplength . Then the stages of a Runge–Kutta

(RK) method with trainable coefficients are used as hidden layers
for the integration of the IVP using as transfer function. We take
as output two estimationsy ŷ of IVP at the point + . Training
the RK method at some test problems and counting the cost of the
method under the coefficients used, we may achieve coefficients
that help the method to perform better at a wider class of problems.

Index Terms—Initial value problem (IVP), orbits, oscillators,
Runge–Kutta (RK), vector transfer function.

NOMENCLATURE

I. INTRODUCTION

E XPLICIT Runge–Kutta (RK) pairs are widely used for the
numerical solution of the initial value problem

where . These pairs are characterized by the
extended Butcher tableau [2], [7]
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with and is strictly lower trian-
gular. The procedure that advances the solution from
to computes at each step two approximations

to of orders and , respectively, given
by

and

with

for . From this embedded form (called
RK ) we can obtain an estimate

of the local truncation error of the order formula. So the
step-size control algorithm

TOL
(1)

is in common use, with TOL being the requested tolerance. The
above formula is used even if TOL is exceeded by , but
then is simply the recomputed current step. See [28] for
more details on the implementation of these type of step size
policies.

Less experienced readers are refered to [14, p. 173], while [2],
[7] are classical for the area of numerical analysis of ordinary
differential equations.

II. DERIVATION OF RK PAIRS

The derivation of better RK pairs is of continued interest the
last 30–40 years [6], [5], [17], [31], [20], [23], [24], [19]. The
main framework for the construction of RK pairs is matching
Taylor series expansions of after we have
expanded various ’s. The final series has the form
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In this expansion scalars are the th order conditions de-
pending explicitly on and . e.g.,

etc. ’s are elementary differentials of, e.g.,
, etc. See [2, pp. 170–171] for

a list of order conditions and the coresponding elementary dif-
ferentials. So in order to derive a third-order RK method we set

and we have to satisfy four equations
for the six coefficients (by default
, restricts ). Once a

third-order method is found, nothing can be said about the errors
it may produce when applied to some problem since the mag-
nitude of is unpredictable. Some better accuracy is
expected if we reduce the norm of the principal truncation error

where , are the conditions for
satisfying order . Values of for various orders are given in
Table I.

This technique is used widely for derivation of better RK of
higher orders too [5], [21], [17], [20], [26]. The order condi-
tions are solved using various simplifying assumptions consid-
ering different families of pairs. After we express all the coef-
ficients of the family with respect to some free parameters we
continue minimizing for these parameters. Although
minimization of for a -order RK method seems the
best choice for a general problem, a lot of speculation is raised
for problems where it is believed that ’s can be handled. Such
problems are Hamiltonians [3], orbits [25], periodic [29], [16],
[19], Schrödinger [1] and many others.

Unfortunately in most cases analytical consideration of test
problems produces complicated algebra and enforces us to pro-
ceed with oversimplifications. In other cases we deal with some
side properties such as symplectiness, [7, p. 312]. Tenths of
symplectic RK methods were appeared last years and no one
of them was even competitive to the conventional ones.

An interesting alternative could be the consideration of RK
type neural networks (NNs), where the various new families
pairs are tested on some model problems to give good predic-
tions for their coefficients.

III. RK N EURAL NETWORK

The literature combining numerical analysis and especially
numerical IVP and NNs is limited. Lagariset al. [13] presented
a neural-network approach of solving IVP, but they do not give
comparisons with the traditional multistep or RK methods. Mul-
tistep methods depending directly and linearly on a set of points
give extremely accurate results. In [13] ten points are used and
it seems theoretically difficult to compete multistep methods

TABLE I
NUMBER OF ORDER CONDITIONS FORVARIOUS ORDERS

with minimizations requiring repeated calls ofand evalua-
tions or even inversions of Jacobians. Recent literature has an-
swered for the most of the claimed there drawbacks of discrete
methods. For example RK can be combined with continuous
[27] or highly differentiable solution [18]. Perhaps their tech-
nique is promising in parallel computers or stiff systems where
nonlinear equations has to be solved anyway.

Recently Wang and Lin [32] proposed the so called RK NNs.
Their approach is from system identification point of view and
they are interested in estimating the functionby an NN. They
used a classical RK method [12] of fourth order with constant
stepsize because it is easier to prove some theoretical results.
From practical consideration we might observe better results
when using newer higher order methods with variable stepsize
implementation. Perhaps some modification is needed for the
learning algorithms reported there, since the simplification of
dealing with scalar problems does not work for RK of orders
exceeding 3 [14, p. 173].

In this paper we neither indent to solve IVP nor to verify the
function . We are interested in deriving better RK pairs of a
prescribed order using stages. Thus we introduce a
feedforward NN consisted from hidden layers and each one
contains neurons.

INPUT:

and the function

First hidden layer:
Second hidden layer:
Third hidden layer:

th hidden layer:
OUTPUT:

The corresponding drawing of the above NN is shown in Fig. 1.
The NN we introduced is more general than a common mul-

tilayer NN since at each neuron acts a different component of
the multidimensional function . This NN can be trained for
a variety of inputs and furnish
the proper coefficients
achieving the desirable minimization of the value



224 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

Fig. 1. The neural system calculating R-K coefficients.

It is supposed that ’s belong to the same parametric type of
functions and most of the times are identically the same. If we
do not know the analytical solution of the IVP (to be avoided for
model problems) we may estimate the true values of the sample
points by an accurate integration with higher order
method at very stringent tolerance.

Let us illustrate now a paradigm for the derivation of the gra-
dient directions that can be used to derive learning algorithms.
For the third-order RK method we take . We can

easily derive a two parameter general family of coefficients de-
pending on the values . So we have [2, p. 174]
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and we need to evaluate only

with

and similarly

If we expand in power series of , we get

where

and

Evaluating the elementary differentialsat is supposed
to be an easy task for a model problem. They are also evaluated
once at the beginning of training only. Notice in the
scalar case, but this is not true for systems of equations since

and are matrices then.
The technique we used is obligatory since the analytic eval-

uation of is difficult, while the presented
algorithms are valid even for higher order methods. Then there
are a little more parameters (e.g., for a fifth-order method there
are only four parameters), and the calculations are straightfor-
ward following RK theory.

A very interesting realization of the above algorithm may test
the reliability of the error estimator combining many NNs in
line, where the output of the first is input for the second just
like we proceed with RK steps when integrating an IVP. In this
case a small modification is required since the input data must

be determined dynamically. The tolerance TOL and the region
where we want to test the RK pair determine the whole

line of NN. The output of each NN is and
in order to evaluate a new step based on (1). Then we

may proceed to the next NN in line with inputs
and of course the transfer function.

The number of inputs is dynamically determined each time
we backpropagate for another training and the value we get as
final output is the efficiency of the pair which is to be optimized.
It is worth to notice that there might be rejections of some NN
from this line if is not less than TOL. The cost of evaluating
these NN must be also considered in the final evaluation of the
efficiency eff. So here we simply choose

The cost of the pair for the integration we made is not simply
the true global error at grid points but it has to involve the
total number of -evaluations needed. A measure of the ef-
ficiency is presented in [22]

TOL
The smaller the eff the better the efficiency, so we indent to
minimize eff for some test IVPs hoping for a better performance
in a wider class of problems.

In the latter case the values of the form and
of the paradigm concerning third-order RK methods

are difficult to evaluate because the various elementary
differentials are changing every time. Denoting by the
corresponding elementary differential of the-th input we
calculate

Since that depend on the RK method remain
constant during the integration, we may admit some averaging
value of the form

with

This means that we follow the direction of minimizing the prin-
cipal truncation error coefficients of the RK formula hoping that
will lead us to a better choice.

In alternative we may evaluate

with the average step size.
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IV. NUMERICAL RESULTS FORPAIRS OF ORDERS5(4)

The initial idea of producing coefficients without satisfying
any order condition was a total failure. Actually our technique
has reason in existing families where most of the coefficients are
expressed with respect to a small number of them served as free
parameters. Here, we will try to produce more efficient RK5(4)
pairs.

Pairs of orders 5(4) are the most popular ones and can easily
found in the literature. Matlab [15], has included the standard
functionode45, which uses perhaps the most famous such pair
DP5(4) due to Dormand and Prince [5]. For this pair we have

but the last stage of each step may reused as the first
stage in the next step (FSAL). So only six evaluations of the
transfer function are wasted every step since the last layer of the
some NN in line is placed again as first layer for the next NN.
We name this property last layer as first (LLAF).

In [17], we may find an algorithm where all the coefficients
of a 5(4) pair may expressed explicitly based on the parameters

and . Reproducing a learning algorithm here we
have to evaluate the 20 truncation error values

and differentiate them with the
free parameters.

A. Kepler Orbital Problem

The problem has the form

where with
the eccentricity of the orbit. The left superscript denotes the

component of . It is known that the energy

remains constant since the problem is conservative. So we con-
sidered as ge the maximum observed value of over
all the grid points.

We applied the NN described above with inputs
and TOL . Simulating NN with DP5(4) coefficients

we found . Then we proceed training the NN
line obtaining finally for the new method which
means that it was almost 72% less expensive than DP5(4). The
optimal efficiency was found for

The coefficients of the new pair NEW5(4)a can be derived ap-
plying the algorithm in [17], and are listed in Table II.

We test the result with simulation for a wide class of regions,
eccentricities, and tolerances. We include here three simula-
tions.

a)
. We recorded the 63 values

of eff and found that in average while
for the new pair we have , reducing the cost
33%.

b)
. We recorded again the 63

values of eff and found that in average
while for the new pair we have , reducing
the cost 35%.

c)
. We recorded again the 70

values of eff and found that in average
while for the new pair we have , reducing
the cost 34%.

So the pair we derived optimizing a simple integration has
some hidden property that helps it to perform much better than
conventional pairs for every test in the family of two body (Ke-
pler) problems. We can not obtain this hidden property with a
simple minimization of . In [20] a new optimal RK pair
of orders 6(5) was found with minimized truncation error, but
when tested on Kepler problem it was 30% less efficient than
older methods for some eccentricities, while there were eccen-
tricities where it was almost 50% more efficient. Here the ob-
served deviation from the mean value of efficiency is very small.

Gaining in average 10–15% for methods of the same order
is the usual improvement of RK pairs through the years passed
[6], [5], [17]. Gaining here more than 30% is worth mention.

B. Periodic Problems

When dealing with periodic or oscillatory problems it is con-
structive to consider the test equation

The theoretical solution of this problem is

In many applications we are interested on the argument
of the solution which is the phase of the angle , i.e.,

, [29], [19]. Monitoring this value through the
integration we ensure that we remain in phase. So we consid-
ered as ge the maximum observed value of
over all the grid points.

We applied the NN described above with inputs
and TOL . Simulating NN with DP5(4) coefficients

we found . Then we proceed training the NN
line obtaining finally for the new method which
means that it was almost 800% less expensive than DP5(4). The
optimal efficiency was found for

The coefficients of the new pair NEW5(4)b can be derived ap-
plying the algorithm in [17], and are listed in Table III.

We test the result with simulation for a wide class of regions,
frequencies, and tolerances. We include here three simulations.

a)
. We recorded the 70 values of eff and found
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TABLE II
COEFFICIENTS OFNEW5(4)A (ACCURATE AT 16 DIGITS)

TABLE III
COEFFICIENTS OFNEW5(4)B (ACCURATE AT 16 DIGITS)

that for the new pair we have in average
while for DP5(4) we have , and this
means that it is 245% more expensive.

b) TOL
. We recorded again the 70 values of eff and

found that in average for the new pair we have ,
while for DP5(4) we have i.e., 275%
more expensive.

c) TOL
. We recorded again the 70 values of eff and

found that in average for the new pair we have ,
while for DP5(4) we have i.e., again
about 275% more expensive.

So we again derived a pair optimizing a simple integration of
the test periodic problem. We did not get better results by using
a more analytical approach [19]. Besides the NN technique may

expand to inhomogeneous problems where the analysis is very
difficult, e.g., [30]

or even to nonlinear ones.

V. CONCLUSION

A new type of artificial NN design was proposed in this paper
for the derivation of the coefficients of Runge-Kutta pairs for the
numerical solution of initial value problems.

The system described in this paper is more general than mul-
tilayer NN considered in the classic articles on approximation
problems [4] and [8]–[11]. We also show an example of a system
for which is not true that one hidden layer is sufficient to solve
the problem.
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The main features of the new proposal are:

1) vector transfer functions;
2) dynamic changing of input data;
3) LLAF;
4) backpropagating in the direction of minimizing principal

truncation error of the numerical scheme.

A first interesting result is that we can produce better IVP
solvers for various types of problems. This was achieved by
training them in a test problem and optimizing their coefficients.
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