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Abstract Runge-Kutta (RK) pairs furnish approximations of the solution of an initial value problem
at discrete points in the interval of integration. Many techniques for enriching these methods with
continuous approximations have been proposed. Here we constuct 8−th and 9−th order interpolation
methods for a recently appeared RK pair of orders 9(8). It is the first time presented in the literature
such a high accuracy dense output methods for use at quadruple precision, i.e. 32− 33 decimal digits
of accuracy. Extended numerical results justify our effort.
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1 Introduction

We consider the numerical solution of the non-stiff initial value problem,

y′ = f(x, y), y(x0) = y0 ∈ <m, x ∈ [x0, xf ] (1)

where the function f : <× <m → <m is assumed to be as smooth as necessary. Traditionally, explicit
embedded Runge-Kutta methods produce an approximation to the solution of (1) only at the end
of each step. However, many applications require a continuous approximation to y(x). These include
differential equations with deviating arguments, problems with discontinuities or singularities, delay
differential equations and the need for the numerical solution at a dense set of output points for
graphical representation of the solution.

About 25 year ago a great interest for Runge-Kutta interpolation was emerged. Gladwell [11] and
Horn [15,16] were the first to introduce solutions on this subject. Gladwell proposed standard Hermite
interpolation over many steps while Horn after an interesting modification of the underlying Runge-
Kutta method, produced the so called scaled Runge-Kutta method. The latter methods provided
continuous extension to the solution, making use of the intriguing nature of Runge-Kutta methods. A
little later Shampine [19] and Enright et. al. [10] proposed a kind of one-step Hermite interpolation
using off-step points as extra stages of the basic method.

At the same time Dormand and Prince [7,8] presented formulas for their Runge-Kutta-(Nyström)
pairs. In the begining of the 90′s Tsitouras and Papageorgiou [22] proposed using two step interpolants
since their truncation error is kept low. Interesting add-ons in the subject were done by Calvo et. al.
[6], Owren and Zennaro [17] and Gladwell et al. [12], Sharp and Verner [20] among others.
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All the above mentioned papers had dealt with low order methods. The construction of higher
order ones is very complicated and many extra stages have to be inserted for achieving accuracy of the
same magnitude with the basic formula. Bogacki and Shampine [2] constructed interpolants of order 5
for the Prince-Dormand 8(7) pair [18], that do not involve any additional evaluations. They restricted
the step-size of the pair in order the interpolant can follow the accuracy of the underlying pair.

Verner [24,25] presented compact theory how to derive scaled extensions of orders up to nine.
However the numbers he gives in [24] for his 9(8) Runge-Kutta pair [23], were accurate to 10 − 12
digits only. Baker et. al. [1] gave 8−th order continuous extensions for the Prince-Dormand 8(7) pair
[18]. Although they give in their site1 coefficients in 32 − 38 digits, they satisfy the corresponding
Truncation errors only to 16 digits. So their suggestion is valid only for double precision computations.

There are some other interesting papers in this field but definitively nothing important has been
published the last decade. We fill that there is some interest [13] in designing high order scaled ex-
tensions of Runge-Kutta pairs for use in quadruple precision arithmetic. Thus we decided to produce
8−th and 9−th order interpolants for our 9(8) pair and give the result in assuredly 32 − 33 digits of
accuracy.

Such an accuracy is useful in astronomical applications like LISA program which is space mission
to be launched jointly by ESA2 and NASA3 around 2017 with the aim of detecting gravitational waves
in the frequency range 0.1 mHz to 0.1 Hz and thus opening a completely new field of astronomy.

LISA consists of 3 spacecraft independently flying in orbits around the sun, similar to the Earth
orbit but trailing behind the earth by about 20 degree (50 million km). The 3 spacecraft form a triangle
with 5 million km armlength. Laser interferometry with pm accuracy in the relevant frequency range
will monitor the distance between all three spacecraft, which employ drag-free technology to eliminate
disturbing external forces such as solar radiation, magnetic fields etc. Ideally the orbits would evolve
such that the triangle moves as a stiff formation around the sun, with an additional rotation around
its center, but with constant armlengths and angles.

Orbital dynamics in the solar system cause disturbances to the triangular formation which are
expected to be of the order of 1% variation in the armlengths, 1.5 degrees in the angles (nominally 60
degrees), and relative velocities of 15 m/s during a mission duration of 10 years. All these imperfections
cause significant complications in the design of the laser interferometer and must hence be minimized.
Since the spacecraft must follow pure gravitational orbits, station keeping maneuvers are not possible,
and the only available degrees of freedom are the initial conditions of the orbits. Studying the LISA
orbits we need integrators that reliably deliver a very high accuracy in the smallest possible computation
time and thus are able to predict spacecraft orbits in the solar system to some meters precision over
10 years. Since the evaluation of the right-hand side of the corresponding differential equation is
rather expensive (it involves looking up the positions of all planets in ephemerides files), high accuracy
interpolation is attractive indeed [13].

2 Preliminaries

The general s−stage embedded Runge-Kutta pair of orders p(p − 1), for the approximate solution of
the problem ( 1) can be defined by the following Butcher scheme [4,5]

c A
b

b̂

where A ∈ <s×s, is strictly lower triangular, bT , b̂T , c ∈ <s with c = A · e, e = [1, 1, · · · , 1]T ∈ <s.
The vectors b̂, b define the coefficients of the (p− 1)−th and p−th order approximations respectively.

Starting with a given value y(x0) = y0, this method produces approximations at the mesh points
x0 < x1 < x2 < · · · < xf . Throughout this paper, we assume that local extrapolation is applied,

1 http://www.scm.tees.ac.uk/j.r.dormand/rkcoeff.dat
2 http://lisa.esa.int/
3 http://lisa.jpl.nasa.gov/
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hence the integration is advanced using the p−th order approximation. For estimating the error, two
approximations are evaluated at each step xn to xn+1 = xn + hn. These are:

ŷn+1 = yn + hn

s∑

j=1

b̂jfj and yn+1 = yn + hn

s∑

j=1

bjfj ,

where

fi = f(xn + cihn, yn + hn

i−1∑

j=1

aijfj), i = 1, 2, · · · , s. (2)

The local error estimate En = ‖yn − ŷn‖ of the (p− 1)−th order Runge-Kutta pair is used for the
automatic selection of the step size. Given a Tolerance TOL > En, the algorithm:

hn+1 = 0.9 · hn · (TOL

En
)

1
p ,

furnishes the next step length. In case TOL < En then we reject the current step and try again with
the left side of above formula being hn.

Let yn(x) be the solution of the local initial value problem,

y′n(x) = f(x, yn(x)), x ≥ xn, yn(xn) = yn.

Then En+1 is an estimate of the error in the local solution yn(x) at x = xn+1. The local truncation
error tn+1 associated with the higher order method is

tn+1 = yn+1 − yn(xn + hn) =
∞∑

q=1

hq
n

λq∑

i=1

TqiPqi = hp+1
n Φ(xn, yn) + O(hp+1

n ),

where Tqi = Qqi − ξqi/q! with Qqi algebraic functions of A, b, c and ξqi positive integers. Pqi are
differentials of f evaluated at (xn, yn) and Tqi = 0 for q = 1, 2, · · · , p and i = 1, 2, · · · , λq. λq is the
number of elementary differentials for each order and coincides with the number of rooted trees of
order q. It is known that

λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 4, λ5 = 9, λ6 = 20, λ7 = 48 · · · , etc [3].

The set T (q) = {Tq1, Tq2, · · · , Tq,λq} is formed by the q−th order truncation error coefficients. It is
usual practice a (q − 1)−th order method to have minimized

‖T (q)‖2 =

√√√√
λq∑

j=1

T 2
qj .

The derivation of a dense formula may be achieved in two ways. One is that developed by Horn
[15,16]. This is an extension of the idea of an embedded pair where a third formula must be added to
the Runge-Kutta pair. The resulting method is designed to integrate from xn to xn + thn, t ∈ (0, 1)
yielding non-mesh approximations to the solution y(xn + thn) using the function evaluations of the
original Runge-Kutta pair as the core of the new system, and is called a Scaled-Runge-Kutta method.
The Scaled-Runge-Kutta method may be defined using the following tableau of coefficients,

c̃ Ã

b̃(t)

where Ã ∈ <s̃×s̃, b̃(t), c̃ ∈ <s̃ and s̃ ≥ s. Actually the left upper corner of Ã is the matrix of coefficients
for the underlying pair A, and the first s elements of c̃ is formed by original vector c. The quantities
b̃(t) are polynomials of t of a suitable degree. Thus the dense approximation is then described by

y(xn + thn) ' ỹn+t = yn + hn

s̃∑

j=1

b̃j(t)f̃j ,
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with f̃ evaluated as in (2).
The extra coefficients c̃, Ã, (i > s) needed for the scaled formula are independent of t in the case

of a piecewise dense output method, while they depend on t if we want an intermediate approximation
at a prescribed point. The derivation of the coefficients depends on the solution of the scaled equations
of condition. The scaled equations of q−th order have the form:

T̃qi = Q̃qi − tqξqi/q! = 0

with Q̃ algebraic functions of Ã, b̃ and c̃.
So for a fourth order continuous extension of a Runge-Kutta method we must satisfy the eight

order conditions4:

b̃ẽ = t, b̃c̃ = t2

2 , 1
2 b̃c̃ 2 = t3

6 , b̃Ãc̃ = t3

6 ,

1
6 b̃c̃3 = t4

24 , 1
2 b̃Ãc̃ 2 = t4

24 , b̃
(
c̃ ∗

(
Ãc̃

))
= t4

8 , b̃Ã 2c̃ = t4

24 .

In consequence

T̃1,1 = b̃ẽ− t, T̃2,1 = b̃c̃− t2/2 · · · , T̃4,1 =
1
6
b̃c̃3 − t4

24
· · · , T̃4,4 = b̃Ã 2c̃− t4

24
· · ·

For our convenience we will use tildes in the rest of the paper only for b, s, e, and T ’s.
A second way of supplying a Runge-Kutta method with a dense formula is by constructing an

interpolating polynomial of Hermite type. Shampine[19], Gladwell et al. [12] and Enright et al. [10],
have proposed continuous extensions for Runge-Kutta pairs using this type of interpolation. The con-
struction is based on values from an integration step. Therefore, assuming that the step [xn, xn+1] has
been completed successfully, the only available values are yn, y′n = f1, yn+1 and y′n+1 = f1 of the next
step. Assuming that another g−4 proper approximations of y(x) or y′(x) in the interval of interest are
available, then a Hermite interpolation of degree O(hg) (usually g = p + 1 or g = p) can be written as

U(xn+thn) = d1(t)yn+d2(t)yn+1+
k∑

j=3

dj(t)yn+tj +hn


dk+1(t)y′n + dk+2(t)y′n+1 +

g∑

j=k+3

dj(t)y′n+tj




where yn+t3 , yn+t4 , · · · , yn+tk
are O(hg) approximations of the corresponding values y(xn + t3hn),

y(xn + t4hn), · · · y(xn + tkhn) while y′n+tk+3
, y′n+tk+4

, · · · , y′n+tg
are O(hg−1) approximations of the

corresponding derivatives y′(xn + tk+3hn), y′(xn + tk+4hn), · · · y′(xn + tghn), and the polynomials
di(t), i = 1, 2, · · · , g are of degree g − 1.

The general algorithm for deriving this type of interpolation is given by the following formula:

U(xn + thn) =




1
t
t2

t3

...

...
tg−2

tg−1




T

·




1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 t1 t21 · · · · · · tg−1

1
...

...
1 tk t2k · · · · · · tg−1

k
0 1 0 0 0 0 0 0 0 0
0 1 2 · · · · · · · · · g − 2 g − 1
0 1 2tk+3 3t2k+3 · · · · · · (g − 2) tg−3

k+3 (g − 1) tg−2
k+3

...
...

0 1 2tg 3t2g (g − 2) tg−3
g (g − 1) tg−2

g




−1

·




yn

yn+1

yn+t1

...
yn+tk

hny′n
hny′n+1

hny′n+tk+3

...
hny′n+tg




In the present paper we are interested in deriving eighth and ninth order interpolants for the 16−stages
Runge-Kutta pair of orders 9(8) given in [21]. That pair outperformed all others, when high accuracy
was required. So it is useful to embed such interpolants in this pair. The eighth order scaled extension
uses four extra stages raising 25% the computational cost per step. The ninth order interpolant uses
nine extra stages adding a 56% of evaluations per step.

4 ” ∗ ” is a component-wise multiplication of vectors, and if v = [v1, v2, · · ·]T and u = [u1, u2, · · ·]T then
v ∗ u = [v1u1, v2u2, v3u3, · · ·]T . Similarly v2 = v ∗ v, v3 = v ∗ v ∗ v, etc.
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3 Eighth order interpolant

Verner [24], claims that only five function evaluations are needed for derivation of eighth order inter-
polant for an 16−stages, 9(8) pair. One of them is actually the function f1 of the next step, so it is
not an extra one. Effectively only four extra stages are needed.

As we mention in the previous section there are two ways for constructing this interpolation.
Classical Hermite interpolation needs six extra stages per step. One of them is used for constructing
a seventh order (O(h8)) scaled extension. Then the four data available at grids and five additional
derivative evaluations of seventh order may form an eighth order interpolation. So it seems unattractive
to implement the interpolation with this technique.

In order to proceed with our implementation, we try every additional stage to attach the highest
possible stage order. Finally after only four additions we reach the required accuracy.

According to the previous notification we have s̃ = 21. The first real additional stage is the eigh-
teenth. Let’s note

a18 = [a18,1, 0, 0, 0, 0, 0, 0, a18,8, · · · , a18,17, 0, 0, 0, 0]

and ẽ = [1, 1, · · · , 1]T ∈ <21. After setting the useless coefficients a18,13 = a18,15 = 0, then the 10 free
parameters (a18,1, a18,8, · · ·, a18,17 and c18), may help to achieve seventh stage order. This means that
we try so f18 = y′(xn + c18hn) + O(h8). Thus we require:

a18ẽ = c18, a18c = c2
18
2 , a18c

2 = c3
18
3 , a18c

3 = c4
18
4 , a18c

4 = c5
18
5 ,

a18c
5 = c6

18
6 , a18c

6 = c7
18
7 , a18A

3c3 − c7
18

840 , a18A
2c4 − c7

18
210 , a18Ac5 − c7

18
42 .

All the equations are linear in a18i’s. We solve nine of them for a18i’s and the tenth equation reduces
to a polynomial in c18.

The nineteenth stage offers twelve free coefficients after setting a19,13 = 0. Namely a19,1, a19,8, · · ·,
a19,18 and c19. We satisfy all seventh order conditions and 58 equations of a total 115 conditions of
eighth order. The equations are:

a19ẽ = c19, a19c = c2
19
2 , a19c

2 = c3
19
3 , a19c

3 = c4
19
4 ,

a19c
4 = c5

19
5 , a19c

5 = c6
19
6 , a19c

6 = c7
19
7 , a19c

7 = c8
19
7

a19A
3c3 = c7

19
840 , a19A

2c4 = c7
19

210 , a19Ac5 = c7
19
42 , a19

(
c ∗ (

Ac5
))

= c8
19
48 .

(3)

Again the eleven equations are linear on a19,i’s and can be solved for them. The final equation is a
polynomial on c19.

The twentieth stage offers one coefficient more after setting the useless a20,13 = 0. Then we solve
the equations (3) with the obvious modification for a20 and we conclude solving the additional equation

a20

(
c ∗ (

A2c4
))

=
c8
20

240
,

which reduces to a polynomial on c20. The parameters of the 20−th stage satisfy seventh stage order
and 63 equations of eighth order.

The twenty-first stage offers one additional coefficient (here again a21,13 = 0) which is used to solve
the extra equation

a21

(
c ∗ (

A3c3
))

=
c8
21

960
.

After solving this the 21−st stage is of eighth stage order. Thus f21 = y′(xn + c21hn) + O(h9). De-
manding this accuracy for f21 we get an extra free stage for implementing a ninth order Hermite-type
interpolation. Observe that Verner’s corresponding stage does not achieve eighth stage order [24].

The values of c that satisfy the equations needed are:

c18 = 299812227498768379
404366309217245371 , c19 = 1097291963064184168

1282743498329518525 ,

c20 = 128408850005288355
200075732634920597 , c21 = 1141960682686836856

2245632444134769313 .
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The form of the scaled extension is:

y (xn + thn) ' ỹn+t = yn + hn ·
21∑

i=1

b̃i(t) · fi,

with b̃i(t) =
8∑

j=0

b̃ij · tj and

b̃2(t) = b̃3(t) = b̃4(t) = b̃5(t) = b̃6(t) = b̃7(t) = 0.

For determining the coefficients of the fifteen non zero polynomials b̃ we have to solve the following
fourteen equations of condition:

b̃ẽ = t, b̃c = t2

2 , b̃c 2 = t3

3 , b̃c 3 = t4

4 , b̃c 4 = t5

5 ,

b̃c 5 = t6

6 , b̃c6 = t7

7 , b̃c7 = t8

8 , b̃A3c3 = t7

840 , b̃A2c4 = t7

210 ,

b̃Ac 5 = t7

42 , b̃A4c 3 = t8

6720 , b̃
(
c ∗ (

A2c 4
))

= t8

240 , b̃
(
c ∗ (

Ac 5
))

= t8

48 .

These equations are linear in b̃ and can be solved simultaneously leaving one polynomial as free
parameter. This polynomial (say b̃15) has 9 coefficients. Two of them are needed for satisfying C0

continuity. For this property we ask:

b̃i(0) = 0, i = 1, 2, · · · , 21, and b̃i(1) = bi, i = 1, 2, · · · , 16, b̃i(1) = 0, i = 17, · · · , 21.

Polynomial b̃15(t) contributes with only one parameter in the left set of the above equations since all
polynomials bi, i = 1, 2, · · · share no constant coefficient.

Then we proceed determining another two coefficients of the free polynomial for C1 continuity:

db̃1 (t)
dt

|t=0 = 1,
db̃i (t)

dt
|t=0 = 0, i = 2, 3, · · · , 21

db̃17 (t)
dt

|t=1 = 1,
db̃i (t)

dt
|t=1 = 0, i 6= 17

Finally five coefficients remain for minimizing the truncation error coefficients of ninth order. Since
these terms depend on t, we integrate the Euclidean norm of them in the interval [0, 1]

t=1∫

t=0

‖T̃ (9)‖2dt =

t=1∫

t=0

(√
T̃ 2

9,1 (t) + T̃ 2
9,2 (t) + · · · T̃ 2

9,286 (t)
)

dt (4)

The coefficients of extended matrix A can be found in Appendix Tables 3 and 4, while the coefficients
of the polynomials b̃ are listed in Tables 5, 6, 7, 8, 9, 10, 11 and 12.

In Figure 1, we plot the value ‖T̃ (9)‖2 as a function of t and we observe that is kept under the
corresponding value of the underlying 8−th order method, ‖T (9)‖2 ≈ 1.25 · 10−5.

4 Ninth order interpolant

The ninth order scaled Runge-Kutta method needs five extra stages according to Verner[24]. But a
great loss in the accuracy of the coefficients is experienced during this procedure. Classical Hermite
interpolation would need six derivative evaluations more in order to reach the desired ten data in-
formation in the interval [xn, xn+1]. But our gain from the 8−th order interpolation is that f21 is of
eighth order. So using the always available

yn, y′n = f1, yn+1 y′n+1 = f1 of the next step
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‖T̃ (9) ‖2

Fig. 1 ‖T̃ (9)‖2 for 8-th order interpolant as function of t. The dashed line corresponds to the underlying
method of 8−th order

and the eighth stage order approximations:

f21 = f(xn + c21hn, yn + hn

j=20∑

j=1

a21jfj) = y′(xn + c21hn) + O(h9),

fi = f(xn + cihn, yn + hn

j=21∑

j=1

b̃j(ci)fj) = y′(xn + cihn) + O(h9), 26 ≥ i ≥ 22,

we may form the interpolant5

y (xn + thn) ' ˜̃yn+t = d1yn + hnd2y
′
n + hnd3f21 + hnd4f22 + hnd5f23

+hnd6f24 + hnd7f25 + hnd8f26 + d9yn+1 + hnd10y
′
n+1.

(5)

The polynomial coefficients of this interpolant are given by,




d1 (t)
d2 (t)
d3 (t)
d4 (t)
d5 (t)
d6 (t)
d7 (t)
d8 (t)
d9 (t)
d10 (t)




T

=
[
1 t t2 · · · t9 ] ·




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 2c21 3c2

21 4c3
21 5c4

21 6c5
21 7c6

21 8c7
21 9c8

21

0 1 2c22 3c2
22 4c3

22 5c4
22 6c5

22 7c6
22 8c7

22 9c8
22

0 1 2c23 3c2
23 4c3

23 5c4
23 6c5

23 7c6
23 8c7

23 9c8
23

0 1 2c24 3c2
24 4c3

24 5c4
24 6c5

24 7c6
24 8c7

24 9c8
24

0 1 2c25 3c2
25 4c3

25 5c4
25 6c5

25 7c6
25 8c7

25 9c8
25

0 1 2c26 3c2
26 4c3

26 5c4
26 6c5

26 7c6
26 8c7

26 9c8
26

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9




−1

.

5 For the ninth order interpolant we use double tildes to distinguish it from eighth order scaled extension.



8

Since

˜̃yn+t = d1yn + hnd2f1 + hnd3f23 + hnd4f24 + hnd5f25 + hnd6f26

+hnd7f27 + hnd8f28 + d9(yn + hn

16∑

j=1

bjfj) + hnd10f17,

the formula (5) can be transformed to a scaled Runge-Kutta like scheme:

y (xn + thn) ' ˜̃yn+t = yn + hn ·
26∑

i=1

˜̃
bi(t) · fi,

with ˜̃s = 26,
˜̃
bi(t) =

9∑
j=0

˜̃
bij · tj and

˜̃
b2(t) = ˜̃

b3(t) = ˜̃
b4(t) = ˜̃

b5(t) = ˜̃
b6(t) = ˜̃

b7(t) = ˜̃
b18(t) = ˜̃

b19(t) = ˜̃
b20(t) = 0.

Also observe that:

˜̃
b1 = d2 + b1d9,

˜̃
bi = d9bi, i = 8, · · · , 16,

˜̃
b17 = d10,

˜̃
bi = di−18, i = 21, · · · , 26.

and

aij = b̃j(ci), i > 21,

aij = 0, j > 21

This latter form give us the ability to analyze the 10−th order truncation error coefficients of the new

interpolant. A choice of c′s that minimizes
t=1∫
t=0

‖ ˜̃T
(10)

‖2dt is:

c22 =
1
23

, c23 =
4
21

, c24 =
7
24

, c25 =
9
14

, c26 =
8
11

.

In Figure 2, we plot the value ‖ ˜̃T
(10)

‖2 as a function of t and we observe that is kept under the
corresponding value of the underlying method, ‖T (10)‖2 ≈ 3.61 · 10−7.

5 Numerical Results

We run the Runge-Kutta pair for the 25 DETEST [14,9] problems and for tolerances 10−12, 10−14,
· · · , 10−22. Quadruple precision arithmetic was used by an INTEL Visual Fortran Compiler 9.0, on a
Pentium IV computer running Windows XP Professional at 3.4GHz.

The numbers found in the appendix are as high as 5000 for most of b̃’s while the final value of all
these polynomials is always smaller than 1/2 for every t ∈ [0, 1]. This may not affect the results for
tolerances greater than 10−22 − 10−23, but it is generally known that additions or subtractions of big
numbers must be avoided. Especially here where small final values are produced adding big ones. All
these polynomials have roots no far from unit circle. The biggest modulus is about 1.2. So we may
write b̃’s as a product with factors evaluated using additions of small numbers. For example

b̃21 ≈ 633.37878381t2(t− 0.18112285)(t− 0.50852519)(t2 − 1.50210002t + 0.58245960)(t− 1)2.

For our tests we used this form which reduces the roundoff errors.
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‖˜̃T
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Fig. 2 ‖˜̃T
(10)

‖2 for 9-th order interpolant as function of t. The dashed line corresponds to the underlying
method of 9−th order

For both interpolants we computed the max-norm of the global error at 10 interpolation points
xn + i

10 · hn, i = 1, 2, · · · , 10 within its step [xn, xn+1] generated by the Runge-Kutta pair. An almost
exact approximation of the solution was computed internally by the same pair for a stringent tolerance
each time. We recorded the ratio of the maximum global error that occurred at these interpolation
points divided by the maximum global error that occurred at the grid points [xn, n ≥ 1]. This ratio
shows how the global error produced by the interpolant relates to that of the associated formula. All
the ratios are at least 1 since the interpolation points include the grid points.

From Table 1, we observe that the ratios for the 8−th order formula are in average as high as 11.2.
For the 9−th order formula it is only 1.16 as shown in Table 2. An asymptotical estimation is given
when taking in account only the results for tolerance 10−22, where the ratios then are in average only
1.003 for the ninth order interpolant and 17.4 for the eighth order one. The latter figure falls to only
9.8 if we ignore problem B3. This means that in average, one decimal digit is gained by increasing the
order of the interpolant. Thus the five extra stages justify this cost.

In case we use more conservative safety factor at step-size control algorithm i.e.

hn+1 = 0.8 · hn · (TOL/EST )1/9,

we get better accuracy at a cost of more function evaluations. The overall efficiency does not affected
more than ±1%. The corresponding average in ratios for the 9−th order interpolant raises to 1.23 and
the eighth order interpolant looses relatively accuracy too, and the average increases to 16.0. This is
not in contradiction with the observations of Bogachi and Shampine [2] who shortened the step length
for their lower order interpolant to follow the accuracy of the method. For this case the accuracies
of the interpolants in relation to the underlying method are worse but the absolute accuracy of the
interpolation was better than before.

Finally we tried another type of 8−th order scaled extension requiring a natural choice

f21 = ỹ ′n+c21
= f(xn + c21hn, yn + hn

20∑

j=1

b̃j(c21)fj).

For this we must satisfy,
a21j = b̃j(c21), j = 1, 2, · · · 20.
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This was achieved by spending only one of the free parameters of the polynomial b̃15 to get b̃21(c21) =
0 = a21,21. The four remaining parameters of b̃15 are used for minimization of the norm (4). The
scaled Runge-Kutta method constructed this way gave similar results with the method proposed here
(correlation factor 0.997) but it was in average slightly (say 5%) worse.

Table 1 Error ratios for O(h9) interpolant over DETEST.

10−12 10−14 10−16 10−18 10−20 10−22

A1 4.46 3.87 6.66 5.26 6.11 6.48
A2 39.7 42.5 43.9 44.5 45.0 45.4
A3 1.03 1.01 1.06 1.01 1.61 3.36
A4 9.70 11.4 16.2 15.8 18.5 23.3
A5 4.16 3.89 2.30 3.82 3.51 5.29
B1 1.01 1.02 1.02 1.27 1.68 3.27
B2 6.31 5.75 6.15 4.99 6.04 6.04
B3 16.0 24.8 52.5 61.0 192 190
B4 1.01 1.01 1.01 1.01 1.04 1.09
B5 2.83 7.11 15.3 15.6 16.0 16.1
C1 3.27 3.42 3.71 3.92 4.05 4.14
C2 2.56 3.66 5.13 3.81 3.12 3.18
C3 7.17 4.75 6.50 6.45 6.67 6.80
C4 7.17 5.41 6.57 6.45 6.67 6.80
C5 3.14 4.93 6.46 3.71 2.68 2.38
D1 1.03 1.01 1.01 1.01 1.01 1.01
D2 1.00 1.00 1.00 1.00 1.00 1.00
D3 1.00 1.00 1.00 1.00 1.00 1.00
D4 1.00 1.00 1.00 1.00 1.00 1.00
D5 1.00 1.00 1.00 1.00 1.00 1.00
E1 1.17 1.95 2.37 2.70 2.89 3.02
E2 17.9 11.2 18.0 31.4 44.2 47.4
E3 11.6 3.03 2.24 3.04 2.74 2.48
E4 19.8 33.7 19.8 24.9 57.7 49.5
E5 2.74 2.81 2.87 2.89 2.90 2.91

6 Appendix

The coefficients for the 21−stage scaled scheme of eighth order. The numbers for the first 17 stages
and b̂ can be found in [21]. Missing coefficients are zero.
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Table 8 The coefficients forming b̃13 and b̃14.

j b̃13j b̃14j

2 −25.440507894872984550500436028067427 −53.044523766668953990865348337508229
3 231.56721238732705115521555888748081 472.06731168152030494976872425589296
4 −848.88135982430316686960349357413705 −1690.9474431179622415653053379847580
5 1619.4601461226664780921682769195806 3162.7606215432605215020698402851890
6 −1701.9954814871161810970517626589562 −3273.1311367235474224182518161777664
7 936.37628107675280541866295974978827 1780.7160806537701180827154030095558
8 −211.03212391286593233692541965030535 −398.29399587384786752327503119748342

Table 9 The coefficients forming b̃15 and b̃16.

j b̃15j b̃16j

2 0.069532904885953224280647815866529446 −16.273632561649042928632428258068406
3 −0.40836619698511108536380100612280752 144.74446484804145579419767803825056
4 0.64705882352941176470588235294117647 −520.09470500289185114515502593304132
5 0.13333333333333333333333333333333333 976.29689823342511601988001923608264
6 −1.2439024390243902439024390243902439 −1013.5010685886085561530538390289585
7 1.12 552.66779813432517968595841956802430
8 −0.31818181818181818181818181818181818 −123.80749699812617224093675910616022

Table 10 The coefficients forming b̃17 and b̃18.

j b̃17j b̃18j

2 20.625755176470875784534420237574253 −18.817476339237677341178965829020625
3 −186.72916690449931142805675512305950 53.566894625827769435485862257588867
4 684.34772688713531787857778116836424 250.05378570526817398980893871953673
5 −1313.8347634052464295313536128170233 −1346.8731688430031688644084422339689
6 1399.2597557186831307119727893837642 2334.7953069475911713312956770826992
7 −785.51482530649694191111861080006356 −1784.1158652809583151589572986554593
8 181.84551783395335849544398795044363 511.39052318451204660795422865862401

Table 11 The coefficients forming b̃19 and b̃20.

j b̃19j b̃20j

2 97.969961339224266808139818666364240 53.970113384226006859242965978811408
3 −844.22675982692345551884024227615845 −344.55913008769394871758868793496691
4 2908.4744283151958608474176819245470 709.14543312174029933838356908142433
5 −5186.9509883693411284355665884018688 −331.18678744759622490444568444043506
6 5068.1629115433598517009851177503704 −656.83707406929786479256385513892002
7 −2576.0565401402080847395788986107157 869.62774812753690937741613107541400
8 532.62698713869268933744311094746128 −300.16030302891517716044443862132775

Table 12 The coefficients forming b̃21

j b̃21j j b̃21j

2 33.979349119946499359470740895293897 6 4493.1774654670702271573117063893514
3 −410.01102024350413607666399067994239 7 −2654.9642977809243792026409466797540
4 1801.4692144716236069560447277474610 8 633.37878381307778804303305201453814
5 −3897.0294948472896062365552896869481


