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Abstract

In this paper we present a symbolic manipulation package that enumerates the
hypergroups of order 3. It separates them to isomorphic classes and calculates their
cardinality.
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1 Introduction

1934 was the year that Frederic Marty defined the hypergroup [1] and so the
time that the theory of hyper–compositional structures was born. Over the
years hyper–compositional structures used in algebra, geometry, convexity,
automata theory and even in some applied sciences. For the self-sufficiency
of this paper, some definitions are recalled. Thus a partial hypergroupoid is
a the pair (H, ·), where H is a nonempty set and ”·” is a hypercomposition

in H , i.e. a function from H × H to the powerset P (H) of H . If the map is
from H ×H to the family of the non empty subsets of H , then (H, ·) is called
hypergroupoid. The axioms which endow (H, ·) with the hypergroup structure
are:

i. a(bc) = (ab)c for every a, b, c ∈ H (associativity)

ii. aH = Ha = H for every a ∈ H (reproductivity)

In a hypergroup, the result of the hypercomposition is always a nonempty set.
Indeed, let ab = ∅, then H = aH = a(bH) = (ab)H = ∅ = ∅ which is absurd,
Mittas [5]. If only (i) is valid then (H, ·) is called semihypergroup, while it is
called quasi-hypergroup if only (ii) holds.
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Extend the hypercomposition ”·” from H to P (H), by setting for all A, B ∈
P (H)

A · B =
⋃

(a,b)∈A×B

a · b

A · b and a ·B will have the same meaning as A · {b} and {a} ·B respectively.
Also, when nothing opposes it, there is no distinction between the elements
and their corresponding singletons.

Hypergroups are much more flexible and varied than groups. For example if H

is of prime cardinality p, there is a large number of non isomorphic hypergroups
on H , while, up to isomorphic, only one group Zp. This becomes clear in this
paper, which enumerates the hypergroups of cardinality 3.

2 The method

A hypergroupoid is a set H 6= ∅ with a hypercomposition ”·” which is not
necessarily associative or reproductive. Regarding the notification of the ele-
ments of the hypergroupoids of order 3, it can be assumed that they share the
set H = {1, 2, 3}.

The hypercompositions in H are defined through the following table

· 1 2 3

1 a11 a12 a13

2 a21 a22 a23

3 a31 a32 a33

(1)

where aij ⊆ H, i, j = 1, 2, 3. The elements aij ’s are chosen among the seven
element set

Λ = P (H)\∅ = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

If H3 denotes the set of all hypergroupoids of third order then for its cardinality
holds: |H3| = 79 = 40353607. Migliorato [4] found, by computer, the total
number N3 = 23192 of hypergroups of order 3 while Nordo [6] computed
using a program written in PASCAL the number S3 = 3999 of non isomorphic
hypergroups of the same order.
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The mathematica package given in the Appendix is based on two functions,
namely ReproductivityTest[ ] and AssociativityTest[ ], which check
out the corresponding properties. Their argument is a set of hypergroupoids
in a list and their output is a True/False table. This package checks if hyper-
groupoids of any order form a hypergroup.

The reproductivity of the hypercompositions defined in (1) can be checked,
through the verification of validity of the equivalent (to this axiom) equalities:

3⋃

j=1

aij = H, for i = 1, 2, 3 and
3⋃

i=1

aij = H, for j = 1, 2, 3. (2)

The cases that pass successfully this first test (i.e. the reproductivity’s validity
test) are going through the associativity’s validity test, which is checking all
the 27 possible triples a(bc) = (ab)c.

2.1 Classes of isomorphism

A hypergroupoid of order 3, is isomorphic with another 5 hypergroupoids. This
derives from interchanges among the elements of the set H . More precisely

(i) keep 1 interchange 2,3

(ii) keep 3 interchange 1,2

(iii) change 1 by 2 change 2 by 3 change 3 by 1

(iv) change 1 by 3 change 2 by 1 change 3 by 2

(v) keep 2 interchange 1,3

So for the above matrix of hypercomposition (1) there derive the following five
isomorphic hypercompositions:

(i) 1 2 3 (ii) 1 2 3 (iii) 1 2 3 (iv) 1 2 3 (v) 1 2 3

1 ã11 ã13 ã12 ã22 ã21 ã23 ã33 ã31 ã32 ã22 ã23 ã21 ã33 ã32 ã31

2 ã31 ã33 ã32 ã12 ã11 ã13 ã13 ã11 ã12 ã32 ã33 ã31 ã23 ã22 ã21

3 ã21 ã23 ã22 ã32 ã31 ã33 ã23 ã21 ã22 ã12 ã13 ã11 ã13 ã12 ã11

where ãij are the subsets that derive from the transposition of the correspond-
ing aij ’s of the original matrix and the proper replacement of their elements.
Analogously the same holds for higher orders and there exist n! isomorphisms
for order n.
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3 Examples and results

Let’s assume that it must be verified whether or not the following two hyper-
groupoids are hypergroups.

· 1 2 3

1 {1} {2} {1, 2, 3}

2 {2} {1, 2, 3} {1, 2, 3}

3 {1, 2, 3} {1, 2, 3} {1, 3}

· 1 2 3

1 {1, 3} {3} {2}

2 {2} {1, 2, 3} {2}

3 {2} {1} {1, 2, 3}

we write:

In[1]:=<<HyperGroupTest.m

In[2]:=h1={{{1},{2},{1,2,3}},{{2},{1,2,3},{1,2,3}},

{{1,2,3},{1,2,3},{1,3}}};

h2={{{1,3},{3},{2}},{{2},{1,2,3},{2}},{{2},{1},{1,2,3}}};

In[3]:=HyperGroupTest[{h1,h2}]

Out[3]= {True,False}

From the last line (Out[3]) it derives that only the first hypercomposition de-
fines a hypergroup in H . It is obvious though, that the second hypercomposi-
tion satisfies the reproductivity axiom and so the corresponding hypergroupoid
is a quasi-hypergroup. We can verify this by using the ReproductivityTest
function of the package in the appendix.

In[4]:=ReproductivityTest[h2]

Out[4]= True

The package in the appendix can handle hypergroupoids of arbitrary order.
For H = {1, 2, 3, 4} we check the following hypercomposition:
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· 1 2 3 4

1 {1, 3, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

2 {1, 2, 4} {1, 2, 3, 4} {1, 2, 4} {1, 3, 4}

3 {1, 2, 4} {1, 2, 3} {3, 4} {1, 2, 4}

4 {2, 3, 4} {2, 3, 4} {1, 2, 3, 4} {1, 2, 3}

and we get

In[4]:=h3={{{1,3,4},{1,3,4},{2,3,4},{1,2,3,4}},

{{1,2,4},{1,2,3,4},{1,2,4},{1,3,4}},

{{1,2,4},{1,2,3},{3,4},{1,2,4}},

{{2,3,4},{2,3,4},{1,2,3,4},{1,2,3}}}

In[5]:=HyperGroupTest[{h3}]

Out[5]= {True}

In order to evaluate N3 all the 40-million hypergroupoids must be checked.
First Λ is formed and then all the 73 = 343 triads (in variable a3) and
76 = 3432 hexads (in variable a6) with elements from this set. Their com-
bination in one and two rows respectively forms hypercomposition matrices
of the form (1). Thus the memory requirements of a 79 length list containing
the description of hypercompositions can be overcome. This can be done writ-
ing the lines below where variable HyperGroups3 collects the Hypergroups we
find.

In[6]:=lambda = Drop[Subsets[{1, 2, 3}], 1];

In[7]:=a6=Tuples[lambda, 6];

In[8]:=a3 = Tuples[lambda, 3];

In[9]:=HyperGroups3 = {};

In[10]:=Do[

temp={Partition[Join[a3[[j1]], a6[[j2]]], 3]};

If[HyperGroupTest[temp][[1]],HyperGroups3 = Join[HyperGroups3, temp]]

, {j1, 1, 343}, {j2, 1, 343^2}];

In[11]:=Print[Length[HyperGroups3]]

Out[11]=23192

Interchanging in the above lines the function HyperGroupTest with the func-
tion ReproductivityTest found in the Appendix we counted 10323979 quasi-
hypergroups of order 3. For order 2 we counted 35 quasi-hypergroups. Notice
that for order 2 there are 14 hypergroups in 8 isomorphic classes.

A function that gives the |H|! hypercompositions which form isomorphic hy-
pergroupoids is given by accounting the observations in subsection (2.1) for
every order.

IsomorphTest[a_List] :=

Module[{p, a1, len},

len = Length[a]; p = Permutations[Range[1, len]];

Return[Table[a1 = a;

a1 = ReplaceAll[a1, a1[[All, Table[j2, {j2, 1, len}]]] ->
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a1[[All, p[[j1]]]]];

a1 = ReplaceAll[a1, a1[[Table[j2, {j2, 1, len}]]] ->

a1[[p[[j1]]]]];

a1 = ReplaceAll[a1, Flatten[Table[{p[[j1, j2]] -> j2}, {j2, 1, len}]]];

a1 = Table[Table[a1[[k1, k2]] = Sort[a1[[k1, k2]]], {k2, 1, len}],

{k1, 1, len}],

{j1, 1, len!}]]

]

In order to count the number of the different non isomorphic classes of hy-
pergroups of order 3, a 6 digit array, called cardinalities is used by the
program. Each time the routine encounters a non isomorphic class, it drops it
from HyperGroups3.

In[12]:=cardinalities = {0, 0, 0, 0, 0, 0};

In[13]:=While[Length[HyperGroups3] > 0,

temp = Union[IsomorphTest[HyperGroups3[[1]]]];

len = Length[Union[temp]];

cardinalities[[len]] = cardinalities[[len]] + 1;

HyperGroups3 = Complement[HyperGroups3, temp]

];

In[14]:=Total[cardinalities];

Out[14]=3999

In[15]:=Print[cardinalities];

Out[15]={6, 10, 244, 0, 0, 3739}

So we found that S3 = 3999, and it is confirmed by the cardinalities of the
isomorphic classes that 6 · 1 + 10 · 2 + 244 · 3 + 3739 · 6 = N3.

4 Conclusion

Generally speaking, few things are known about the construction of finite hy-
pergroups. For example it is known that if (H, ·) is a group or a hypergroup,
then the (H, ⋄) with a ⋄ b = a · b

⋃
{a, b} is a hypergroup [2]. Thus using Cay-

ley’s theorem a family of finite hypergroups can be constructed based on finite
groups. From the above analysis it derives that there are 79 = 40353607 hy-
pergroupoids of order 3, 23192 of these are hypergroups. The group of order 3
is among them, as well as the corresponding hypergroup constructed as above.
The set of 23192 hypergroups is partitioned in 3999 equivalence classes. The
3739 of the above classes consists of 6 members, the 244 consists of 3 mem-
bers, the 10 have 2 members and the last 6 are one member classes. The total
hypergroup, that is the hypergroup in which the result of the hypercompo-
sition consists always of all the elements of the hypergroup, is in the set C1

of the six, one member, classes. In the same set belongs the B-hypergroup,
i.e. the hypergroup in which the result of the hypercomposition consists only
of the two elements which participate to the hypercomposition [3]. Relative
to the B-hypergroup are two other non isomorphic hypergroups in which the
hypercomposition is defined as follows (see [2])
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ab = {
{a, b} if a 6= b

H if a = b
and ab = {

{a, b} if a 6= b

H \{a} if a = b

These hypergroups, when they have order 3, belong also to C1. Generally it
holds:

Proposition: Let H be an arbitrary set with more than 2 elements. Then the

hypercompositions

ab = {
H if a 6= b

a if a = b
, ab = {

{a, b} if a 6= b

H\{a} if a = b
and ab = {

{a, b} if a 6= b

H if a = b

define in H three non isomorphic hypergroups.

It is worth mentioned that the number of the classes of hypergroups that can be
constructed by the known Propositions and Theorems is very small comparing
to the existing 3999 classes of hypergroups with three elements. Also one can
notice that the ratio of hypergroups to hypergroupoids is exceptionally small
since we meet on hypergroup in every 1740 hypergroupoids.

Appendix

The Mathematica package that implements the two basic properties (associa-
tivity and reproductivity) for testing if a hypergroupoid is indeed a Hyper-
group follows.

BeginPackage["HyperGroupTest‘"]; Clear["HyperGroupTest‘*"];

HyperGroupTest::usage = "HyperGroupTest[LookUpTable] tests if

hypergroupoid operation given LookUpTable forms a HyperGroup"

Begin["‘Private‘"]; Clear["HyperGroupTest‘Private‘*"];

HyperGroupTest[LookUpTable_List] :=

Table[If[ReproductivityTest[LookUpTable[[j]]],

If[AssociativityTest[LookUpTable[[j]]], True,

False],

False], {j,1,Length[LookUpTable]}];

AssociativityTest[LookUpTable1_List] :=

Module[{i,j,k,len,test},

i = 1; j = 1; k = 1; test = True;len = Length[LookUpTable1];

While[test && i<=len,

test = Union[Flatten[Union[Extract[LookUpTable1,

Distribute[{LookUpTable1[[i, j]], {k}}, List]]]]] ==

Union[Flatten[Union[Extract[LookUpTable1,

Distribute[{{i}, LookUpTable1[[j, k]]}, List]]]]];

k = k + 1; If[k > len,

k = 1; j = j + 1;

If[j > len, i = i + 1; j = 1];
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];

];

Return[test]

];

ReproductivityTest[LookUpTable1_List] :=

Union[Apply[Union, LookUpTable1 , 1]] == {Range[1, Length[LookUpTable1]]} &&

Union[Apply[Union,Transpose[LookUpTable1], 1]] == {Range[1, Length[LookUpTable1]]};

End[];

EndPackage[];

In the package above the function AssociativityTest[ ] is implemented
by using While. In the most of the tested hypercompositions the property
of associativity failed after the first 2 or 3 checks. Consequently it was not
necessary to go through all 27 cases for hypergroups of order 3. Contrarily the
function ReproductivityTest[ ] tested all rows and columns simultaneously
according to property (2), since this does not increase computational time.

The program above can be used in order to construct hypergroups of any
order. A random hypergroup of sixth order can be derived writing:

In[16]:=Do[temp =

RandomChoice[

Complement[Subsets[{1, 2, 3, 4, 5, 6}, {3, 6}], {{}}], {6, 6}];

If[HyperGroupTest[{temp}][[1]], Print[temp]], {j1, 1, 30000000}]

And get the following hypergroup:

1 2 3 4 5 6

1

2

3

4

5

6

{2, 3, 4} {1, 2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {1, 3, 4, 6} {1, 4, 5, 6} {1, 2, 3, 4, 6}

{2, 3, 5, 6} {1, 3, 4, 5} {1, 3, 4} {1, 2, 3, 5, 6} {1, 2, 5} {1, 3, 4, 6}

{1, 3, 4, 6} {2, 3, 5, 6} {2, 3, 5, 6} {1, 2, 3, 4} {1, 2, 3, 4, 5, 6} {1, 3, 5, 6}

{1, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1, 2, 3} {2, 3, 4, 5} {1, 2, 3, 4} {1, 2, 3, 4, 5, 6}

{1, 2, 5, 6} {1, 3, 4, 6} {2, 3, 4, 5} {1, 2, 3, 4, 5, 6} {2, 3, 4, 5, 6} {1, 2, 3, 5}

{1, 2, 4, 5, 6} {2, 3, 4} {1, 2, 3, 4, 5, 6} {1, 2, 4} {1, 2, 4, 5, 6} {2, 3, 4, 5}
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