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Abstract

Matrix scaling is the problem of assigning values to the elements of a matrix
that are proportional to a given input matrix. The assignment should fulfill a set
of row- and column-sum requirements. We propose a new method that differs
from divisor–type methods appeared until now in the literature. This method
combines the largest remainder apportionment and bi–proportional rounding.
Exhaustive application to the Greek parliamentary elections of 2007 justify our
effort.
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1. Introduction

The Greek parliamentary elections of 9/16/2007 took place according to the
electoral law which had been voted by a previous house back in 2004. This law
was obligatory for the next two elections. The Vouli (the unicameral Greek Par-
liament) consists of 300 seats, 260 of which are elected by a Largest Remainder
method and 40 bonus seats are assigned to the most voted party. These seats
are allotted to the parties at 56 electoral regions.

Traditionally in these elections the country is separated in n = 56 regions
that usually coincide with the limits of prefectures. Up to the elections 1996
a system of reinforcement proportion was applied. According to this, a first
distribution of seats began in the regions. Afterwards, a remainder of seats were
given in the apartments (groups of adjacent regions) at a second distribution.
At this second distribution all the votes received by the parties were considered
again. The allocation of seats was completed in the nation, where the remaining
seats were distributed.

After the recent law was published any political coalition receives nationwide
3% the votes participates in the distribution of seats as following:
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The total of votes vNi , i = 1, 2, . . . ,m that it assembled in the nation by the
i−party is multiplied with the number 260 and the product is divided with the
sum of valid votes received by all the parties participating in the distribution of
seats. The number

fN
i = 260 ·

vNi∑m
k=1

vNk
is the nation-wide fair share for each party. This is most probably a decimal
number. So at first, each party receives �fN

i � seats. i.e. the greatest inte-

ger, smaller than fN
i . Then the

∑i=m

i=1
(fN

i − �fN
i �) parties having the largest

remainders fN
i − �fN

i � are assigned an additional seat.
This is actually an apportionment method discovered independently by A.

Hamilton and T. Hare [2]. Finally the party that receives the greatest number
of valid votes gets forty additional seats.

Under the current law the results of the elections of 2007, are given in Table–
1. Details about these elections can be found in the following site of Ministry
of interior

http://ekloges-prev.singularlogic.eu/v2007/pages en/index.html

Table 1: Cumulative results of Greek elections in 2007.

parties %
fair

share
1st

distrib.
2nd

distrib.
bonus

total #
of seats

nation
list

NΔ 41.84 112.23 112 0 40 152 5

ΠAΣOK 38.10 102.20 102 0 0 102 5

KKE 8.15 21.86 21 1 0 22 1

ΣYN 5.04 13.52 13 1 0 14 1

ΛAOΣ 3.80 10.19 10 0 0 10 0

others 3.07 0 0 0 0 0 0

sums 100 260 258 2 40 300 12

In Table-1, we use the term others meaning various parties received below
3%. Their fair share is 0 because they do not receive any seat due to the
restriction of the law.

The 300 seats given to the parties are recorded in the seventh column of
Table-1. At first twelve of the seats are distributed in a nation-wide list accord-
ing to the largest remainder proportional system described above. We write
them in the last column of Table–1. The rest 288 seats are to be distributed in
the 56 electoral regions. These regions elect a number of Parliament Members
according to their nominal population [10]. Here we concentrate in optimal dis-
tribution of these 288 seats in the regions according to an established objective
function.

2. Posing the problem.

The nomenclature of the paper can be found in Table–2. Since we are not
interested about the distribution of the 12 seats of the last column of Table-1,
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Table 2: Notation

m number of parties received≥ 3% ei seats of i−party (nation-wide)

m∗ number of all parties eBi seats of i−party (2nd dist.)

n number of regions, n = 56 kij seats i−party at j− region

vij votes i−party at j−region tj =
∑m

i=1
vij , j = 1, 2, . . . , n

sj seats j−region,
∑

56

j=1
sj = 288 μj = tj/sj meter for j−region

vNi votes of i− party (nation-wide) fN
i fair share of i−party (nation-wide)

observe that e1 = 147 = 152 − 5 for the first party, e2 = 107 = 112 − 5 for
the second party, etc. Our objective is to allocate these 147, 107, 21, 13, 10 seats
to the 5 parties at the 56 regions. Everything but the values of kij is given in
that table or can be evaluated straightforwardly. Our aim is not commenting
the substance and the spirit of law but the way of distributing the seats to the
regions. So we are interested in calculating optimally the prices kij .

The current law is focused in the distribution in small regions and the smaller
parties. The first distribution begins by allocating to i−party at j−region which
received there vij votes,

k̂Aij = �
vijsj∑m∗

k=1
vkj

�

seats. Observe that usage of m∗ indicates that all valid votes are counted for
the evaluation of kAij . In the regions with one, two or three seats the greatest
remainder apportionment is applied.

After this, the m−th party (the smaller one from those receiving over 3% of
votes) gets one additional seat in the regions it has the greatest remainder of
votes

vmj − k̂Amj · �
m∗∑
k=1

vkj/sj� for j = 1, 2, . . . , n,

in order to reach em seats. The second smaller party continues with the same
process and finally the first party collects whatever remains. This procedure
lacks any justification. For example, we could begin with the second party
then the third, the first, etc. Perhaps the legislator wanted to avoid confusion
if adding some mathematical insight. Actually, it is a transportation problem
that legislator neglected its complete solution after finding a first random feasible
solution.

The objective of an optimal distribution could be the minimization of dis-
tance of percentage of parties from the percentage of seats that they receive.
That is to say the quantities

|
vij
tj

−
kij
sj

| (1)
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have to be as small as possible. More generally in j− region it is desirable to
keep small the quantities (1) for all the parties. Thus it is preferable to minimize
the quantity:

m∑
i=1

(
vij
tj

−
kij
sj

)2. (2)

The power is used in the sense of least squares technique for avoiding the ab-
solute value which is not differentiable. Squaring will produce a different ap-
portionment than minimizing

∑m

i=1
|
vij
tj

−
kij

sj
|. Summing for all the regions we

conclude to the requirement of minimizing:

n∑
j=1

m∑
i=1

(
vij
tj

−
kij
sj

)2.

We may interchange
∑

in the formula above. Thus we see that if we begin
summing in parties we get the same result.

The regions elect different number of deputies. Thus the values (2) have
different significance in a small region than in a large one. E.g. 10% is almost
nothing in a one–seat region, but could affect four seats in a 40–seat region.
Thus we use s2j as weights and therefore we set

ε =

n∑
j=1

s2j

m∑
i=1

(
vij
tj

−
kij
sj

)2.

Other weights could be used but the least squares underlying sense dictates our
choice.

Since sj > 0, j = 1, 2, . . . n, we have

ε =

n∑
j=1

m∑
i=1

(sj
vij
tj

− kij)
2 =

n∑
j=1

m∑
i=1

(
vij
μj

− kij)
2.

Our purpose here is to find
min
kij

ε.

Concentrating now only to the parties receiving seats, we set

kAij = �
vij
μj

�, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

the seats gaining by each party at the first distribution. These numbers are set
as lower bounds for kij . For implementing our technique, the quantities

kBij = kij − kAij

are set to be 0 or 1 according to the ability of i−party to gain an additional
seat in the j−region using its vij −kAijμj unused votes there. kBij are the seats of
the second distribution and are the actual parameters that we have to calculate
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in the problem we are formulating. This restriction helps in the direction of
converting to a kind of transportation problem.
We denote

rij =
vij
μj

− �
vij
μj

�,

the unused remainder as fraction of electoral measure. Then we get

min
kij

ε = min
kB
ij

n∑
j=1

m∑
i=1

(rij − kBij)
2 =

n∑
j=1

m∑
i=1

(r2ij + (kBij)
2) + 2min

kB
ij

{

n∑
j=1

m∑
i=1

−rijk
B
ij}.

Observe that
n∑

j=1

m∑
i=1

r2ij = constant,

and since kBij ∈ {0, 1}, we have:

n∑
j=1

m∑
i=1

(kBij)
2 =

n∑
j=1

m∑
i=1

kBij = total seats of 2nd distribution = constant.

Finally we conclude that we are interested in solving the binary linear program:

ε∗ = min
kB
ij

n∑
j=1

m∑
i=1

−rijk
B
ij = max

kB
ij

n∑
j=1

m∑
i=1

rijk
B
ij .

Thus we realize that what is asked is maximization of sum of remainders (as
fractions of electoral measures) that are used for the allocation of seats at the
2nd distribution. We name the new method greatest remainder bi-proportional
apportionment. Using the names of Hamilton or Hare instead of greatest re-
mainders is also possible. As it is important to justify the optimization func-
tion, notice that there are several other ways to measure the disproportionality
between votes and allotted seats (see e.g. Proposition 3.7 to 3.11 in [2, pp. 104-
105]). Choosing different ways to measure can provide different allotments, all
of them staying within the quota, so the names given above can also be applied
to these methods.

This optimization function is reasonable enough and has an interesting prop-
erty. Maximization of a certain measure of ”unused voting power”.

Determination of ε∗ is a problem of linear programming because it is ac-
companied by restrictions for the prices kBij . Concretely, we have the following
m+ n restrictions:

n∑
i=1

kBij = ei −
n∑

j=1

kAij = eBi for i = 1, 2, . . . ,m (3)

and
m∑
j=1

kBij = sj −

m∑
j=1

kAij = sBj for j = 1, 2, . . . , n. (4)
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Table 3: Cost table for a 4–region, 3–party example.

regions

party︸ ︷︷ ︸ A B C D eBi︸︷︷︸
a 0.42 0.60 0.71 0.27 2

b 0.85 0.38 0.18 0.62 2

c 0.73 0.02 0.11 0.11 1

2 1 1 1 ← sBj

The first m−constrains (3) follow from the total number of seats each party has
to receive at the second distribution. The next n− constrains (4) follow by the
number each region offers at the 2nd distribution.

3. The method

Objective function ε∗ with constrains (3–4) form a special problem of linear
programming. Transportation problem, wherem− sources (the parties) transfer
seats to the n− destinations (the constituencies) with cost matrix the values rij .

Transportation problem [4, p. 207] has an interesting structure. All the
coefficients in the constrains are 1 and every variable appears in exactly two
equations. Two very important properties hold:

• The problem has a solution. As long as the supply equals demand there
is a feasible solution.

• There is an integer solution. If supplies and demands are integers then
every feasible solution (including the optimal) shares integer values [4,
p. 212].

Thus we avoid the solution using the more difficult methods of integer pro-
gramming. Simple use of linear programming techniques are capable of provid-
ing the solution.

Table 4: The modified tableau arrived from data given in Table–3.

regions

party︸ ︷︷ ︸ A B C D row sums︸ ︷︷ ︸
a - - 0 0.42 - - - 1

b - 0 - 0.85 - - - 1

c 0 - - 0.73 - - - 1

a - - 0 - 0.60 0.71 0.27 2

b - 0 - - 0.38 0.18 0.62 2

c 0 - - - 0.02 0.11 0.11 1

1 1 1 2 1 1 1 <col sums
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The problem is a variation of a capacitated transportation problem [4, p. 225–
227]. Since kBij can be only 0 or 1, then we may call it as binary transportation
problem. Anyway a solution based in a modification of transportation problem
method can be used here. It is based on a certain splitting of rows and columns
of the corresponding tableau.

An illustrative example is shown in cost-tableau given in Table–3. In this
tableau the numbers in the main grid represent the remainders rij . In the right
foremost column we recorded the seats of each party for the second distribution.
The final row shows the seats offered by each region. Classical transportation
problem methods do not apply directly to this data. We can not ensure that
some party will not receive two seats in region–A.

Thus we manipulate the tableau in the cases of the regions having more
than one seat. In the working example we fix region–A. Thus the new modified
tableau is given in Table–4. We added m = 3 slack columns and another three
rows. Whatever is registered in the slack columns does not count. The seats
in region–A are assigned in the three new rows. Empty places in tableau mean
that no value can be given there since no kBij corresponds there.

We observe that the splitting of rows and columns from the first table (Table
3) to the second table (Table 4) is unique. Then, as long as the solution of
the transportation problem is unique we conclude the same for the presented
method. But, if for example party–a is entitled to get 5 seats then our discussion
is meaningless.

4. Application: Greek elections of 2007

Applying the above method we may improve the results of the Greek parlia-
mentary elections of 2007. In [11] we gave briefly some results on the elections of
2004 but not the actual method presented here. The results were manipulated
using MATLAB [5], and are summarized in Tables 5 and 6. In these tables
first column presents the abbreviation for the constituencies. In the next five
columns we recorded the fair share for the parties at each region taking into
account only the first m parties, i.e. the numbers

fij =
vij∑m

k=1
vkj

· sj, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Thus the row sum of these five columns is an integer number equal to sj , j =
1, 2, . . . , n. The column sums are decimals and may differ than the corresponding
ei, i = 1, 2, . . . ,m.

The next five columns show the distribution under the current low. In the
columns 12 − 16, the distribution under the proposed method appears. The
stars appeared to the right of some numbers in columns representing current
method show the seats lost. Thus the 2* in the row for region ΛEΣ (region of
Lesvos island) means that KKE would have lost its seat in favor of NΔ. It is
obvious that no party looses any seat in total.

The basic difference is that for current law we calculate ε = 54.36 while the
proposed method gives ε = 35.56. Thus a near 50% improvement in the value
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Table 5: The results of the Greek elections in the first 28 regions in alphabetical order. N
stands for NΔ, Π for ΠAΣOK, K for KKE, Σ for ΣYN and Λ for ΛAOΣ

region quotas current new Bazi
N Π K Σ Λ N Π K Σ Λ N Π K Σ Λ N Π K Σ Λ

A’AΘ 7.16 5.35 1.88 1.65 0.96 7 5 2 2 1 7 5 2 2 1 8 4 2 2 1

A’ΘE 6.32 5.85 1.74 1.03 1.05 7 5 2 1 1 7 5 2 1 1 7 4 2 1 2

A’ΠE 2.65 2.04 0.56 0.42 0.33 2 1* 1 1 1 3* 2* 1 0 0 3 1 1 1 0

AIT 3.54 3.55 0.51 0.23 0.16 4 3 1 0 0 4 3 1 0 0 4 3 1 0 0

APΓ 1.50 1.15 0.15 0.11 0.10 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0

APK 1.43 1.19 0.16 0.12 0.10 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0

APT 1.44 1.18 0.20 0.12 0.05 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0

ATT 4.89 4.52 1.15 0.72 0.72 5 4 1 1 1 5 4 1 1 1 5 4 1 1 1

AXA 3.41 4.25 0.66 0.45 0.23 3 4 1 1 0 4* 4 1 0 0 4 3 1 1 0

B’AΘ 15.53 14.99 5.33 3.94 2.22 17* 14 5 4 2 16 15* 5 4 2 16 12 6 5 3

B’ΘE 3.26 2.46 0.59 0.30 0.39 3 2 0 1 1 3 2 1* 0 1 3 2 1 0 1

B’ΠE 2.62 3.17 1.22 0.54 0.46 2 3 1 1 1 3* 3 1 1 0 3 2 1 1 1

BOI 1.69 1.66 0.33 0.18 0.14 3* 1 0 0 0 2 1 1* 0 0 2 2 0 0 0

ΓPE 0.46 0.41 0.08 0.03 0.03 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

ΔPA 1.50 1.15 0.14 0.10 0.12 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0

ΔΩΔ 2.12 2.37 0.21 0.15 0.14 3 2 0 0 0 3 2 0 0 0 3 2 0 0 0

EBP 1.97 1.63 0.18 0.09 0.14 3* 1 0 0 0 2 1 0 0 1* 3 1 0 0 0

EYB 2.50 2.59 0.44 0.26 0.21 3 2 1 0 0 3 2 1 0 0 3 2 1 0 0

EYP 0.45 0.47 0.03 0.02 0.02 0 1 0 0 0 1* 0 0 0 0 1 0 0 0 0

ZAK 0.39 0.43 0.11 0.04 0.02 0 1 0 0 0 1* 0 0 0 0 1 0 0 0 0

HΛE 2.57 2.84 0.29 0.18 0.12 4* 2 0 0 0 3 3* 0 0 0 3 3 0 0 0

HMA 1.76 1.61 0.31 0.13 0.19 3* 1 0 0 0 2 1 1* 0 0 2 2 0 0 0

HPA 2.73 4.45 0.36 0.35 0.11 3 4 0 1 0 3 4 0 1 0 3 4 0 1 0

ΘEΣ 0.47 0.43 0.04 0.03 0.02 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

IΩA 2.23 1.99 0.41 0.24 0.12 2 2 1 0 0 3* 2 0 0 0 3 2 0 0 0

KAB 1.85 1.61 0.26 0.14 0.13 3* 1 0 0 0 2 1 0 1* 0 2 2 0 0 0

KAP 2.44 1.92 0.38 0.15 0.11 4* 1 0 0 0 3 2* 0 0 0 3 2 0 0 0

KAΣ 1.11 0.66 0.08 0.08 0.07 1 1 0 0 0 2* 0 0 0 0 1 1 0 0 0

8



Table 6: Table–5 continued with another 28 regions.

region quotas current new Bazi
N Π K Σ Λ N Π K Σ Λ N Π K Σ Λ N Π K Σ Λ

KEP 1.23 1.12 0.46 0.12 0.06 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0
KEΦ 0.41 0.38 0.14 0.04 0.03 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
KIΛ 1.44 1.13 0.22 0.07 0.13 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0
KOZ 2.40 2.05 0.29 0.15 0.11 3 2 0 0 0 3 2 0 0 0 3 2 0 0 0
KOP 1.79 1.71 0.18 0.17 0.15 3* 1 0 0 0 2 1 0 1* 0 2 2 0 0 0
KYK 1.41 1.17 0.17 0.16 0.09 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0
ΛAK 1.70 0.97 0.15 0.09 0.10 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0
ΛAP 3.56 3.01 0.82 0.32 0.29 3 3 1 0 1 4* 3 1 0 0 4 3 1 0 0
ΛAΣ 0.75 1.07 0.07 0.09 0.02 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
ΛEΣ 1.21 1.16 0.43 0.12 0.08 1 1 1 0 0 2* 1 0 0 0 1 1 1 0 0
ΛEY 0.44 0.38 0.11 0.05 0.02 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
MAΓ 2.23 1.88 0.48 0.22 0.19 2 2 1 0 0 3* 1 1 0 0 2 2 1 0 0
MEΣ 2.67 1.64 0.32 0.24 0.14 4* 1 0 0 0 3 1 0 1* 0 3 2 0 0 0
ΞAN 1.23 1.50 0.11 0.08 0.08 1 2 0 0 0 2* 1 0 0 0 2 1 0 0 0
ΠEΛ 1.93 1.61 0.19 0.09 0.17 3* 1 0 0 0 2 1 0 0 1* 2 2 0 0 0
ΠIE 1.98 1.54 0.22 0.11 0.15 3* 1 0 0 0 2 1 0 0 1* 3 1 0 0 0
ΠPE 0.94 0.79 0.16 0.08 0.04 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
PEΘ 0.94 0.89 0.07 0.07 0.02 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
POΔ 1.40 1.40 0.09 0.06 0.05 1 2 0 0 0 2* 1 0 0 0 2 1 0 0 0
ΣAM 0.39 0.34 0.19 0.05 0.03 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
ΣEP 3.78 2.37 0.36 0.21 0.28 4 2 0 0 1 4 2 0 0 1 4 2 0 0 1
TPI 2.32 2.00 0.43 0.14 0.10 2 2 1 0 0 3* 2 0 0 0 3 2 0 0 0
ΦΘI 2.52 1.87 0.27 0.16 0.17 4* 1 0 0 0 3 2* 0 0 0 3 2 0 0 0
ΦΛO 0.98 0.80 0.11 0.06 0.05 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
ΦΩK 0.49 0.36 0.07 0.04 0.04 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
XAΛ 1.43 1.18 0.17 0.12 0.11 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0
XAN 1.59 1.84 0.26 0.21 0.11 3* 1 0 0 0 2 2* 0 0 0 2 2 0 0 0
XIO 0.90 0.85 0.12 0.09 0.03 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
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of ε is achieved by interchanging 28 seats (total number of stars in the columns
12− 16).

Another interesting improvement is that fair share is not violated by the new
method while the other divisor-based bi-proportional methods do not share this
property [12]. This means that no party receives seats out of the interval

[�fij�, �fij�+ 1].

The current method violates this property 13 times. The violations are recorded
by a star in columns 7 − 11. Thus we see that ΠAΣOK receives only one seat
in A’ of Piraeus (A’ΠE) with a fair share of 2.04 while NΔ gets 17 seats in B’
of Athens with fair share of only 15.53. Actually all the stars in the 7th column
indicate the fair share violation in favor of the first party.

Divisor-based methods are in common use for addressing the problem we
discussed here. In such a method the problem is solved by computing appropri-
ate row- and column-divisors, and by rounding the quotients. The only known
divisor-based method that provably solves the problem is the tie-and-transfer
algorithm by Balinski and Demange [1].

The software BAZI [9] is the state of the art in this area. It is freely available
from [3] and we applied it to our data. BAZI does not combine Hamilton/Hare
method with bi-proportional apportionment. Thus we recorded in Tables–5 and
6 the combination of Webster/Sainte-Laguë method with bi-proportional appor-
tionment. We got ε = 49.60, a surprisingly large value. This was done since the
method used with BAZI violates fair share many times. In the first three rows
of Table-5, ΠAΣOK receives 4 seats in A’ of Athens (A’AΘ), 4 seats in A’ of
Salonika (A’ΘE) and only 1 seat in A’ of Piraeus (A’PE). Its corresponding fair
shares were 5.35, 5.85 and 2.04 respectively. This erratic behavior is extremely
amplified by the definition of ε. Combination of the other divisor methods im-
plemented in BAZI (e.g. Jefferson/D’Hondt or Huntington/Hill) gave no better
results and the same problem with fair share was observed.

The method we presented here may apply very well for proportional allot-
ment without bonus. But in the Greek elections the first party gets as bonus
many seats. Thus, proportionality is lost. As the magnitude of the bonus is low
then we experience no problems. Even with a bonus as high as 0.7 · n we may
avoid them. But in case of a large bonus then we may have eB

1
> n. Then the

first party has to get two seats in some regions. In such a case our analysis does
not hold. A way around this drawback is to give a seat ad hoc to the first party
in all the regions so eB

1
becomes eB

1
−n and sBj becomes sBj − 1, j = 1, 2, . . . , n.

It is also true that some paradoxes can not be avoided. For example in re-
gions of HPA (Heraklion) and KAB (Kavala) the fourth party receives a seat
while the third party receives nothing. However all parties receive seat within
fair share which is the basic restriction of our proposed methods. These para-
doxes are present in the current method too. BAZI software also admits such
paradoxes, see regions of B’ΘE or HPA. Anyway, even the last party has to
gain some seats and this may happen only after the acceptance of some peculiar
outcomes.
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A problem similar to the one described for Greece is experienced under the
recent Italian electoral law [7]. In Italy the system may end up by awarding
a party more (or less) seats within the regions than those the same party is
entitled to at the national level. In addition eB

1
>> n for the Italian case. Thus

our method does apply in this case only for the part of minimization of ε but
we can not restrict the values kBij to be in 0, 1. A Mixed Integer Linear Problem
procedure in the logic of Largest Remainders of maximum absolute difference
(1) is proposed in [8] for tackling the problem.

5. Discusion

A new method of bi–proportional apportionment was presented in this pa-
per. It seems to outperform divisor–type methods under a certain least–squares
type criterion. Using a ”linear transportation problem”–type method we may
easily derive the results wanted. Application of the new method to the Greek
parliamentary elections of 2007 gave very pleasant results.
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