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Abstract

Modification of only four coefficients of the standard Runge–Kutta–Nyström
pairs is enough for producing a method of the same orders that integrates
exactly the harmonic oscillator as model problem. These new coefficients are
O(λ2) perturbations of the initial ones, with λ the frequency of the problem.
Theoretical investigation for the possibilities of order reduction is given. Nu-
merical results over standard pairs of orders 6(4) and 8(6) justify our efforts.
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1. Introduction

Explicit Runge–Kutta–Nyström pairs are widely used for the numerical
solution of the initial value problem

y ′′ = f(x, y), y(x0) = y0 ∈ Rm, y ′(x0) = y ′0 ∈ Rm, x ∈ [x0, xe]

where f : R × Rm 7→ Rm. We usually use the extended Butcher tableau [3]
of the method’s coefficients :

c A
b, b′

b̂, b̂′

to present the RKN pair. In such a tableau bT , b̂T , b′T , b̂′T , c ∈ Rs and A ∈
Rs×s is strictly lower triangular.

Such a method implementing the following formulae:

yn+1 = yn + hy′n + h2n

s∑
i=1

bifni
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and

ŷn+1 = yn + hy′n + h2n

s∑
i=1

b̂ifni

advances the solution from xn to xn+1 = xn + hn computing at each step
approximations yn+1, ŷn+1 to y(xn+1) of orders p and q respectively, with
q < p.

It also produces two approximations y′n+1, ŷ
′
n+1 to y′(xn+1) of orders p and

q, given by

y′n+1 = y′n + h
s∑
i=1

b′ifni

and

ŷ′n+1 = y′n + h
s∑
i=1

b̂′ifni.

Here

fni = f(xn + cihn, yn + hn

i−1∑
j=1

aijfnj) ∈ Rm

for i = 1, 2, .., s ≥ p. These embedded form methods (called RKNp(q)) are
implemented with variable step-sizes as we can obtain an estimate

un+1 = max(‖yn+1 − ŷn+1‖∞ ,
∥∥y′n+1 − ŷ′n+1

∥∥
∞)

of the local truncation error of the q order formula. If this error estimation
is less than a requested tolerance TOL it is common to apply the step-size
control algorithm

hn+1 = 0.9hn · (
TOL

hp−q−1un+1

)1/p, (1)

to compute the next step-size. If it is not, we use the same formula to
recompute the current step. See [18] for more details on the implementation
of these type of step size policies.

2. Oscillatory Problems

Many authors have dealt in the past with the numerical integration of
oscillatory problems [1, 2, 6, 7, 8, 9, 11, 13, 16]. Traditionally we consider as
test problem the harmonic oscillator:

y′′ = −λ2 y, y (0) = 1, y′ (0) = iλ, λ ∈ R (2)
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with exact solution ȳ = eiλx

When (2) is solved numerically by a Nyström method, the following re-
cursive relation is obtained

Yn+1 = R (zn)Yn, zn = −v2n, vn = λhn

where Yn = [yn, hn y
′
n]T and after discharging indexes n we have,

R (z) =
1 + zb (I − zA)−1 e 1 + zb (I − zA)−1 c

zb′ (I − zA)−1 e 1 + zb′ (I − zA)−1 c

where e = [1, 1, · · · , 1]T ∈ Rs.
The theoretical solution Ȳn = Ȳ (xn) = [ȳ (xn) , hn ȳ

′ (xn)]T satisfies the
recursive relation

Ȳn+1 = R̄ (vn) Ȳn

where, discharging indexes again

R̄ (v) =
cos v sin v

v

−v sin v cos v

Since det R̄ (v) ≡ 1 and trace[R̄ (v)] = 2 cos (v), we may also require

detR (v) ≡ 1

trace[R (v)] = 2 cos (v)
(3)

Equations (3) can be solved for two of the parameters of an existing pair with
respect to v. Thus we get a pair with phase error and amplification error of
infinite order.

Alternatively, we chose to match all the entries of matrices R and R̄. We
require,

1 + zb (I − zA)−1 e = cos v,

1 + zb (I − zA)−1 c = sin v
v
,

zb′ (I − zA)−1 e = −v sin v,

1 + zb′ (I − zA) = cos v

(4)

For the latter equations the following Theorem holds.

Theorem: A Runge–Kutta–Nyström method of even algebraic order p,
when modified by perturbing four coefficients in order to satisfy Equations
(4), retain its order if the altered coefficients are chosen from the following
sets
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i) aj1,j2, aj3,j4, aj5,j6, aj7,j8

ii) aj1,j2, aj3,j4, bj5, bj6

iii) aj1,j2, aj3,j4, cj5, cj6

iv) aj1,j2, bj3, bj4, cj5

v) aj1,j2, bj3, bj4, b′j5

vi) aj1,j2, bj3, cj4, cj5

vii) aj1,j2, cj3, cj4, b′j5

viii) aj1,j2, cj3, b′j4, b′j5

ix) bj1, bj2, cj3, b′j4

x) bj1, bj2, b′j3, b′j4

xi) bj1, cj2, cj3, b′j4

xii) bj1, cj2, b′j3, b′j4

for proper values of the indices.

Proof: Suppose that a p-th order method shares coefficients b, b′, A and
c. The truncations errors are

h2(be− 1

2
)T

(2)
1 +h3(bc− 1

6
)T

(3)
1 +h4

(
(bAe− 1

24
)T

(4)
1 +

1

2
(bc2 − 1

12
)T

(4)
2

)
+· · ·

for y(x) and

h(b′e−1)T
′(2)
1 +h2(b′c−1

2
)T
′(3)
1 +h3

(
(b′Ae− 1

6
)T
′(4)
1 +

1

2
(b′c2 − 1

3
)T
′(4)
2

)
+· · ·

for y′(x). The various T and T ′’s are elementary differentials, e.g. T
(2)
1 = f ,

T
(3)
1 = θf

θy
y′, etc. See [17] for details.

Thus for a p-th order method all the coefficients of the elementary differ-
entials of orders less or equal p are nullified.

Expanding equations (4) we get the equivalent expressions [14],

1− v2be+ v4bAe− v6bA2e± · · · = 1− 1

2
v2 +

1

24
v4 − 1

720
v6 ± · · · (5)
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1− v2bc+ v4bAc− v6bA2c± · · · = v − 1

6
v2 +

1

120
v4 − 1

5040
v6 ± · · · (6)

−v2b′e+ v4b′Ae− v6b′A2e± · · · = −v2 +
1

6
v4 − 1

120
v6 ± · · · (7)

1− v2b′c+ v4b′Ac− v6b′A2c± · · · = 1− 1

2
v2 +

1

24
v4 − 1

720
v6 ± · · · (8)

Let’s choose the 10th set and alter the coefficients bj1 , bj2 , b
′
j3

, b′j4 in order to
satisfy equations (5-8). Then bj1 , bj2 are used for solving (5-6) while b′j3 , b

′
j4

are used for solving (7-8). For the altered coefficients we observe that

b̃j1 = bj1 + vp−2b̃j1,p−2 + vpb̃j1,p +O(vp+2), (9)

b̃j2 = bj2 − vp−2b̃j2,p−2 + vpb̃j2,p +O(vp+2)

with b̃j2,p−2 = b̃j1,p−2.
Now, the truncation error coefficients for the modified method b̃, b̃′, A, c

become:

b̃e− 1/2, b̃c− 1

6
, or b̃′e− 1, b̃c− 1

2
, b̃Ae− 1

6
etc. (10)

Thus, since be = 1
2
, v = O(h) and the symmetrical coefficients of vp−2,

h2(b̃e− 1

2
) = h2(be− 1

2
) +O(hp+2) = O(hp+2)

and the order is attained while the perturbations summed into higher order
truncation error coefficients.

We proceed and verify that the order is attained for the other expressions
of (10). These five truncation error coefficients are generally enough to check
if there is order reduction.

If in the contrary choose a little different set, presumedly bj1 , aj2,j3 , b
′
j4

,
b′j5 then we have to solve (5-6) for bj1 and aj2,j3 . But now only (9) holds and
the symmetric cancelations withdrawn

h2(b̃e− 1

2
) = O(hp)

loosing an order of accuracy. �

Remarks:

r1: There are cases where choosing from the sets suggested by Theorem we
can’t satisfy equations (4). e.g. selecting a21, a31, a51 and a61 of set
(i).
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r2: There is a possibility where the underlying method has coefficients that
cancel the order reduction. e.g. a pair of orders 6(4) from the families
studied in [4, 12] with free coefficients c2 = 0.1261321989868105, c3 =
0.3 and c4 = 0.7 can be altered for a32, a54, b

′
1 and b′2 without loosing

accuracy.

r3: For a fourth order method with three stages there might be cases where
selecting to perturb a coefficient from matrix A is equivalent to choose
a coefficient from vector c. This is due to the almost obligatory as-
sumption Ae = c2

2
that leaves only one free coefficient from matrix

A.

r4: For methods of odd order it seems that we can’t choose from sets (vii)
and (viii) of the Theorem. On the other hand it seems that there are
three more sets we can choose from. Namely (i) aj1,j2 , aj3,j4 , aj5,j6 , bj7
(ii) aj1,j2 , aj3,j4 , aj5,j6 , cj7 and (iii) aj1,j2 , aj3,j4 , bj5 , cj6 .

3. The new modified pairs

First we consider the standard in the literature five stages pair RKN6(4)6FM,
of orders 6(4) given in [4]. For this pair s = 6 but the First Stage of each
step is the same As the Last stage of the previous step (FSAL). After solving
(4) with respect to the coefficients a41, c4, b

′
1 and b′2 we get the following

expressions.

ã41 = −

7(80v10 − 18447v8 + 928840v6 − 7895250v4

+392040000v2 + 784080000 cos(v)− 784080000)

726000v4 (16v2 − 2475)

c̃4 = −7 (80v9 − 7887v7 + 268620v5 + 2450250v3 + 39204000v − 39204000 sin(v))

36300v3 (16v2 − 2475)

b̃′1 = −

45696(8v4 − 2025v2 + 123750)v cos(v) + 50575v7 − 1761938v5

+714(16v6 − 10115v4 + 1308000v2 − 19800000) sin(v)
−340239600v3 + 8482320000v

171360v3 (16v2 − 2475)
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b̃′2 =

5(−8352v(16v2 − 2475) cos(v)− 696(16v4 − 3075v2 + 99000) sin(v)
+v(725v6 + 14560v4 − 3253968v2 + 48232800))

4176v3(16v2 − 2475)

It was proved in the tests bellow that choosing variable nodes does not
affect numerical integration.

Next we consider the widely known eighth stages pair RKN8(6)9FM of
orders 8(6) given in [5]. For this pair s = 9 but FSAL device is used also.
After solving (4) with respect to the coefficients b1, b3, b

′
1 and b′3 we get

lengthy expressions.
Traditionally, Taylor expansion for small values of v is used instead. But

higher order pairs take long steps and v � 0. Thus we present an L∞
rational approximation in the interval [0, 2] with polynomials of degree 10.
This technique minimizes the overhead of the computation.

This evaluation was done with Maple. After solving equations-(4) and
stored a coefficient, say b1, in variable b1 we may proceed typing:

b1 := (-986767/1323+5400/v^2+4691849*v^2/158760-319*v^4/560

+21654739*v^6/3407611200-1728497*v^8/34076112000

-45353*v^10/525745728000-cos(v)+600*cos(v)/v^2-6000*sin(v)/v^3

+30*sin(v)/v-v*sin(v)/40)/(-600+v^2):

Digits := 40:

with(numapprox):

sol := fnormal(minimax(b1, v=-2..2, [10,11], 1, ’err’), 16, 10^(-15))

Thus we avoid odd powers of v that appear with very small coefficients
anyway. Then equating with 1 the coefficient of v0 in the denominator and
rationalizing, we get the following expressions.

b̃1 =
1217v10

2079620646580
+ 11855v8

2261768522667
+ 23570v6

200841030927
− 26995v4

154026538486
+ 925561v2

22751070275
+ 223

7938

− 12v10

386770807809059
+ 710v8

43498281621349
− 2664v6

1261916628107
− 121082v4

19408214259
+ 2790782v2

1927154205
+ 1

b̃3 =
− 3331v10

4674896130199
+ 20913v8

8116925922179
− 71872v6

1075558492505
+ 1869757v4

233794887226
+ 5960727v2

4602738985
+ 1175

8064
63v10

3722810505670
+ 41844v8

18411745608205
+ 228613v6

658414161700
+ 2750667v4

50115862199
+ 28078817v2

3159244729
+ 1
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b̃′1 =
64226v10

19202155671093
+ 68273v8

1113213675447
+ 51019v6

2946631237705
+ 607639v4

295630594047
+ 5352649v2

19953503370
+ 223

7938
1927v10

33001272660911
+ 28213v8

6032275339068
+ 275547v6

447078002948
+ 1786672v4

24419813093
+ 200835295v2

21032175657
+ 1

b̃′3 =
− 15776v10

3944678694119
− 25517v8

958459236473
+ 657562v6

2063404581135
+ 1033436v4

32818992581
+ 13599389v2

4952695777
+ 5875

36288
3560v10

16185312784333
+ 41556v8

2332506697979
+ 1014416v6

515357512531
+ 11469927v4

58972175785
+ 13318803v2

785294017
+ 1

When v = 0 we get the conventional pair RKN8(6)9FM. The denominator
of the rational form is always far from zero for v ∈ [0, 2]. The differences from
the actual values are always under the limits of double precision arithmetic.

Even with rational forms the overhead may be significant for small prob-
lems. A way around this is to tabulate and exclusively use the coefficients for
fixed values of v, e.g. for v = 0, 0.05, 0.1, · · · , 1.95, 2. Then we may admit
an 2.5% increase in the cost or translate it to loss of less than 0.1 digits in
accuracy. This is acceptable since as we’ll see in the numerical tests our gain
is much greater.

4. Numerical tests

We tested the new pairs on three standard problems from the literature
[10, 19].

1. Bessel equation

equation:

y′′ =

(
−100 +

1

4x2

)
y, x ∈ [1, 100]

initial values:

y (1) = J0 (10x) , y′ (1) = −0.5576953439142885

exact solution:
y(x) =

√
xJ0 (10x)

2. Inhomogeneous equation

equation:
y′′ = −100y + 99 sinx, x ∈ [0, 100]
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initial values:
y(0) = 1, y′(0) = 11

exact solution:

y(x) = cos 10x+ sin 10x+ sinx

3. Duffing equation

equation:

y′′ = −y − y3 +
1

500
cos(1.01x), x ∈ [0, 100]

initial values:

y(0) = 0.2004267280699011, y′(0) = 0

approximate exact solution:

y(x) ≈
0.2001794775368452 cos(1.01t)− 2.469461432611 · 10−4 cos(3.03t)
−3.040149839 · 10−7 cos(5.05t)− 3.743495 · 10−10 cos(7.07t)

−4.609 · 10−13 cos(9.09t)− 6 · 10−16 cos(11.11t))
(11)

For the first two problems λ = 10 was used while λ = 1.01 was chosen
for the Duffing Equation.

In Tables 1-3 we recorded for each tolerance TOL = 10−3, 10−4, · · · , 10−9

the function evaluations (stages) used and the end-point global error observed
for the conventional pair RKN6(4)6FM and its fitted modification RKN6(4)f.

It is clear that the fitted modification is much more efficient. Even for
the case of the strongly non-linear problem the gain of almost one digit is
remarkable. For the latter problem we presented above an approximation of
enhanced accuracy (11) for recording the errors at stringent tolerances.

As expected by the Theorem in section 2, the variable nodes do not affect
the efficiency of RKN6(4)f. All tested problems involve the independent
variable x, thus we have a strong indication for this.

In the derivation of the new fitted RKN pairs only the higher order for-
mula of each pair is modified. However, the lower order formula of each pair
can be also modified so that it integrates exactly the harmonic oscillator. We
tried modifying again RKN6(4)f, satisfying proper modification of equations
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Table 1: Results of 6(4) pairs for the Bessel equation

RKN6(4)f RKN6(4)6FM RKN6(4)6ff
TOL stages error stages error stages error

10−3 3166 10−6.60 3166 10−2.45 781 10−2.02

10−4 6316 10−8.49 6316 10−3.86 1141 10−3.15

10−5 8641 10−8.85 8671 10−4.60 1261 10−4.92

10−6 12086 10−9.90 12086 10−5.55 2036 10−5.65

10−7 16476 10−10.83 16556 10−6.51 2456 10−7.10

10−8 23111 10−11.75 23066 10−7.51 3471 10−8.01

10−9 32821 10−12.52 32831 10−8.59 5256 10−8.72

(4) for b̂1, b̂2, b̂
′
1 and b̂′2. This choice does not affect coefficients used by the

higher order formula and thus we avoid the possibility of order reduction.
The new pair is named RKN6(4)ff. The results over the test problems are

listed in the right columns of Tables 1-3. It seems that this error estimation
is too optimistic and the step size control has to be adapted in order to retain
tolerance proportionality. The efficiency curves are not tuned to agree with
those of standard pairs. As the problem is closest to the model (2) then
step–size control algorithm (1) becomes inappropriate. Further analysis is
needed and some other parameters have to be included in (1) along with
algebraic order p.

In Tables 4-6 we recorded for each tolerance TOL = 10−5, 10−7, · · · , 10−10

the function evaluations and the end-point global error observed for the con-
ventional pair RKN8(6)9FM and its fitted modification RKN8(6)f.

Again it is clear that the fitted modification is much more efficient. Even
for the case of the strongly non-linear problem the gain of almost one digit
is remarkable. In the past much effort was put for constructing higher order
pairs for less profit [15]. The pair need sometimes to be applied for quadruple
precision in order to get the correct number of accuracy digits. The perfor-
mance for Bessel and Inhomogeneous was restrained for high tolerances due
to roundoff errors.
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Table 2: Results of 6(4) pairs for the Inhomogeneous problem

RKN6(4)f RKN6(4)6FM RKN6(4)6ff
TOL stages error stages error stages error

10−3 5701 10−6.54 5631 10−2.78 1776 10−3.01

10−4 7956 10−7.40 7966 10−3.77 2746 10−4.80

10−5 11121 10−8.55 11141 10−4.53 4021 10−5.51

10−6 15441 10−9.57 15451 10−5.51 5811 10−7.34

10−7 21216 10−10.30 21246 10−6.48 8511 10−8.67

10−8 30531 10−11.19 30446 10−7.56 12316 10−9.84

10−9 43131 10−12.20 43061 10−8.64 18046 10−10.36
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