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AB S TRACT

The classical Blandford & Payne model for the magneto-centrifugal acceleration and

collimation of a disc-wind is revisited and refined. In the original model, the gas is cold and

the solution is everywhere subfast magnetosonic. In the present model the plasma has a finite

temperature and the self-consistent solution of the MHD equations starts with a subslow

magnetosonic speed which subsequently crosses all critical points, at the slow magneto-

sonic, AlfveÂn and fast magnetosonic separatrix surfaces. The superfast magnetosonic

solution thus satisfies MHD causality. Downstream of the fast magnetosonic critical point

the poloidal streamlines overfocus towards the axis and the solution is terminated. The

validity of the model to disc winds associated with young stellar objects is briefly discussed.

Key words: MHD ± plasmas ± solar wind ± stars: mass-loss ± ISM: jets and outflows ±

galaxies: jets.

1 INTRODUCTION

Astrophysical jets are systematically associated with the presence

of an underlying accretion disc, both observationally and

theoretically (see KoÈnigl & Pudritz 2000 for a recent review). In

the case of protostellar objects, accretion discs are resolved by

means of infrared and millimetre surveys and interferometric

mappings down to scales of a few tens of au. In the optical and the

near-infrared, Hubble Space Telescope (HST) high-resolution

images of discs in several jet sources have also been obtained

(Padgett et al. 1999). With an apparent relation found between

accretion and ejection in the form of a strong correlation between

outflow signatures and accretion diagnostics (see e.g. Cabrit et al.

1990; Cabrit & AndreÂ 1991; Hartigan, Edwards & Ghandour

1995), stellar jets seem to be powered by the gravitational energy

released in the accretion process.

These facts and considerations have led several authors to

develop models of disc winds. The pioneering work of Bardeen &

Berger (1978) on a hydrodynamic radially self-similar model of a

hot galactic wind was generalized in the seminal paper of

Blandford & Payne (1982, henceforth BP82) by including a rotat-

ing magnetic field. In particular, in BP82 it was shown that a cold

plasma can be launched magneto-centrifugally from a Keplerian

disc, similarly to a bead on a wire, provided that the magnetic field

lines are sufficiently inclined from the axis. Since then, steady and

axisymmetric MHD models, self-similar in the radial direction,

have been successfully analysed and generalized in the literature

(see e.g. Contopoulos & Lovelace 1994, henceforth CL94; Li

1995, 1996; Ferreira 1997; Ostriker 1997; Vlahakis & Tsinganos

1998, henceforth VT98; Lery, Henriksen & Fiege 1999).

A major problem is however still open on the validity of the

various classes of radially self-similar solutions analysed so far.

Because, as it is well known since the original work of Weber &

Davis (1967) on the rotating magnetized solar wind in the

equatorial region, acceptable outflowing solutions must cross

smoothly all singularities related to the characteristic speeds of the

MHD perturbations, i.e. the poloidal AlfveÂn velocity and the slow/

fast magnetosonic velocities. However, in radially self-similar

equations the critical points are not found where the poloidal

speed of the flow is equal to the characteristic velocities of these

magnetosonic waves. In the cold model of BP82 the `modified'

fast magnetosonic critical point (where t � 1 in the BP82

notation) is found downstream of the position where the poloidal

velocity of the wind is equal to the fast magnetosonic velocity.

Subsequently it has been shown that this is a general property of

the axisymmetric steady MHD equations: the singularities of the

equations coincide with the positions of the limiting character-

istics, or separatrices, within the hyperbolic domain of the

governing equations (Bogovalov 1994; Tsinganos et al. 1996).

In particular, Bogovalov (1994, 1996) pointed out the key role

played by the singularity occurring at the fast magnetosonic

separatrix surface (FMSS). Namely, the asymptotic region of the

jet is causally disconnected from the base of the flow, only for

solutions that cross the critical point at the FMSS. This means that

every terminal perturbation or shock does not affect the outflow

structure upstream of the position of this critical point. Tsinganos
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et al. (1996) have given several analytical examples where the true

singularities of the equations do not coincide with the positions

where the governing partial differential MHD equations change

character from elliptic to hyperbolic and vice versa. For the sake

of simplicity from now on we shall indicate by `fast/slow

magnetosonic singularity', or in short `modified fast/slow', the

critical points at the FMSS/SMSS.

It turns out that in none of the previous models of disc winds a

solution has been found to cross the FMSS. For example, Li

(1995, 1996) and Ferreira (1997), starting from the accretion disc,

succeeded to cross the slow magnetosonic and the AlfveÂn ones,

but downwind turning points were found where the solutions

terminate. Such solutions can be connected to infinity only

through a shock, as suggested by Gomez de Castro & Pudritz

(1993). However in this case, as the wind velocity is subfast

magnetosonic, a temporal evolution of the outflow is expected

(Ouyed & Pudritz 1997).

Cylindrically collimated solutions were found by Ostriker

(1997) for a cold plasma, integrating the MHD system upstream

from infinity and crossing the AlfveÂn singularity, but always in the

subfast magnetosonic regime. On the other hand, it has been

shown that in collimated winds oscillations of streamlines are a

common feature (Vlahakis & Tsinganos 1997). It thus seems that

cylindrically collimated solutions without oscillations correspond

to a rather particular choice of parameters that completely

suppresses such oscillations. A slight change in these parameters

induces the onset of oscillations which increase in amplitude until

the configuration is destroyed (Vlahakis 1998). Since the Ostriker

(1997) solutions are asymptotically subfast magnetosonic they are

likely to be sensitive to perturbations from the external medium,

unlike solutions that really satisfy all the criticality conditions.

Therefore, such solutions are likely to be structurally and

topologically unstable (Vlahakis 1998).

However, it has been shown by Contopoulos (1995) that, in the

restricted case of a purely toroidal magnetic field, a smooth

crossing of the FMSS is possible. On the other hand in such a case

an asymptotically cylindrically collimated configuration is not

found; in fact, a new transition to subfast magnetosonic velocities

must occur anyway for radially self-similar winds. The only way

out is then to match the superfast magnetosonic solution with a

shock which is in this case in the physically disconnected domain.

In the present study we extend the analysis of BP82, CL94 and

Contopoulos (1995) showing that an exact and simultaneous

smooth crossing of all three MHD critical surfaces is possible. In

Section 2 we define the equations of the hot wind in the frame-

work of a radially self-similar approach and outline the numerical

technique. In Section 3 we explore the solution topologies in the

region around and particularly downstream of the FMSS, where

the solution terminates, while in Section 4 are shown the features

of a few solutions crossing all three critical points with conditions

similar to those of BP82. Finally, in Section 5 we discuss the

possible astrophysical applications of these solutions to stellar

jets, and summarise the main implications of our results in

comparison with previous ones obtained by other authors.

2 MODEL DESCRIPT ION

In order to establish notation, in this section we give a brief

derivation of radially self-similar disc-wind models with poly-

tropic thermodynamics. The derivation is along the lines of a

systematic method which unifies all self-similar MHD outflows

and includes the BP82 model as the simplest case (VT98).

2.1 General definitions and self-similar assumption

In steady �t � 0� and axisymmetric �f � 0� MHD, the poloidal

components of the hydromagnetic field (B, V) are defined in terms

of the magnetic flux function A and mass to magnetic flux

function CA(A) in cylindrical (z, 4 , f) or spherical (r, u , f)

coordinates, as:

Bp � 7 � A
f̂

4
; Vp �

CA�A�
4pr

Bp: �1�

The azimuthal components are defined in terms of the total

specific angular momentum L(A) and of the corotation frequency

V(A), which are functions of A (Tsinganos 1982)

L�A� � 4 Vf 2
Bf

CA

� �

; V�A� � 1

4
Vf 2M2 Bf

CA

� �

; �2�

and of the poloidal AlfveÂn number M

M �
��������

4pr
p Vp

Bp

� CA
��������

4fr
p : �3�

TransAlfveÂnic flows require that, when M � 1; Vf and Bf are

finite, i.e.

L

V
� 42

a�A� ; 42
pa; �4�

where 4p is the AlfveÂn cylindrical radius (the AlfveÂn lever arm)

along the reference field line a � 1; with the dimensionless

variable a defined as some function of the magnetic flux function

A which can be reversed to give:

A � Bp4
2
p

2
A �a�: �5�

where Bp is a constant with the dimensions of a magnetic field.

As shown in VT98, all existing classes of radially self-similar

MHD solutions can be constructed by making the following two

key assumptions:

(i) the AlfveÂn number M is solely a function of u , such that the

AlfveÂn surface is conical

M ; M�u�; �6�

(ii) the cylindrical distance 4 to the polar axis of some fieldline

labeled by a, normalised to its cylindrical distance 4a at the

AlfveÂn point is also solely a function of u

G�u� ; 4

4a

: �7�

Following these two assumptions the set of MHD equations is

reduced to a system of three ordinary differential equations in u

for M(u), G(u ) and the u -dependence of the gas pressure (see

VT98 for details).

2.2 Polytropic thermodynamics

Depending on the assumptions on the free integrals A(a ), CA(a ),

L(a ) and V(a ), a few classes of radially self-similar solutions

exist (see VT98). For only two of these classes a polytropic

relationship between the gas pressure and the density is admitted:

P � Q�a�rg; where Q(a ) is the specific entropy (the first two

cases listed in table 3 of VT98). In such a case A / ax=2; CA /
a�x23=2�=2; V / a23=4; L / a1=4; and the system of the MHD

equations reduces to two first-order differential equations forM(u )
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and G(u ), supplemented by the Bernoulli integral which also

provides the variable c (u ), the angle between a particular poloidal

fieldline and the cylindrical direction 4Ã at the spherical angle u .

Note that the parameter x (with the same notation as in CL94,

while in VT98 x was denoted by F) governs the scaling of the

magnetic field, while the rotation law is assumed Keplerian. This

particular class corresponds to the radially self-similar solutions

analysed in CL94 which contains as a special case the classical

BP82 solution with x � 0:75:
The full expressions of dM2/du , dG2/du and c (u ) are given in

the Appendix, equations (A1)±(A3). The expressions for the

physical variables then become

r

rp
� ax23=2 1

M2
;

P

Pp
� ax222g�x23=2� r

rp

� �g

; �8�

Bp

Bp
� 2a�x=2�21 1

G2

sin u

cos�c� u� �sincẑ� cosc4̂�; �9�

Vp

Vp
� 2a21=4 M

2

G2

sin u

cos�c� u� �sincẑ� cosc4̂�; �10�

Bf

Bp
� 2la�x=2�21 12 G2

G�12M2� ; �11�

Vf

Vp
� la21=4 G2

2M2

G�12M2� : �12�

2.3 Parameters

At the AlfveÂn radius 4p along the reference field line a � 1; we
denote by Pp and rp the pressure and density, respectively. The

magnitude of the poloidal magnetic field at this AlfveÂn point is

2Bp sin up=cos�cp � up� while the corresponding poloidal Alf-

veÂn speed is 2Vpsin up=cos�cp � up�; with Bp � �����������

4prp
p

Vp:
The expressions of the free integrals defined in Section 2.1 can

now be written as

A � Bp4
2
p

x
ax=2; C2

A � 4prpa
x23=2; �13�

V � l
Vp

4p
a23=4; L � lVp4pa

1=4; �14�

E � V2
pea

21=2; V2
p � GM

4pk2
; Pp � m

B2
p

8p
; �15�

where E is the sum of the kinetic, enthalpy, gravitational and

Poynting energy flux densities per unit of mass flux density,

E�a� � V2

2
� g

g2 1

P

r
2

GM

r
2

V

CA

r sin uBf; �16�

while G and M are the gravitational constant and the mass of the

central body, respectively.

The solution of the system of equations (A1)±(A3) depends on

the six parameters x, g , k , l , e and m , introduced in equations

(13)±(15) (but see the discussion in Section 2.4.3 for the free

parameters of the model). Note that we have used for the

parameters a similar but not an identical notation with BP82, since

it occurred to us that it is better to choose a different

normalisation. However, in the following we shall outline for

convenience the correspondence between our parameters and

those in BP82.

Let us first discuss the physical meaning of the above

parameters. First, the exponent x is equal to 3/4 in BP82, while

in Ferreira (1997) it is related to the ejection index j � 2�x2 3=4�:
This index j is related to the accretion rate and to the mass flux in

the wind if also the structure of the disc is assumed radially self-

similar (see e.g. Ferreira 1997). Second, we remind that g is the

usual polytropic index. Next, the constant k is the Keplerian speed

at radius 4p on the disc, in units of Vp, i.e. it is proportional to the

ratio of the Keplerian speed to the poloidal flow speed at the

AlfveÂn radial distance, Vp,A, and is related to the corresponding

constant kBP in BP82. Since k is also proportional to the mass to

magnetic flux ratio, it is often called `the mass loss parameter' (Li

1995, Ferreira 1997),

k �
�������������

GM

4pV
2
p

s

� 2

����������������

GM

4pV
2
p;A

s

sin up

cos�cp � up�
� kBPG

23=2
0 : �17�

The constant l is the specific angular momentum of the flow in

units of Vp4p and is related to the corresponding constant lBP in

BP82,

l � L

Vp4p
� lBPk

������

G0

p

: �18�

The Bernoulli constant e is the sum of the enthalpy, kinetic,

gravitational and Poynting energy flux densities per unit of mass

flux density divided by V2
p (along a � 1� and is related to the

corresponding constant eBP in BP82,

e � E

V2
p

� eBP
k2

G0

: �19�

Finally, the constant m is proportional to the gas entropy,

m � mBP�2G3g24
0 sin2g22c0k

2g�: �20�

In the above expressions, the label 0 indicates the respective

values of G and c at the base of the outflow. The correspondence

between the parameter j 0
0 in BP82 and our c0 is

j 00 � cotc0: �21�
Note that in BP82 g does not appear since the outflow is cold

and m , although it is defined, is never used. Also, a similar scaling

exists for the parameters used in Li (1995) and Ferreira (1997),

although with slightly different notations and a further relation

between x and k (cf. equation (28) in Ferreira 1997) due to the

connection with a self-similar accretion disc thread by a large

scale magnetic field.

2.4 Numerical integration

The numerical solution of equations (A1)±(A3) requires the

fulfillment of the regularity conditions at the positions of the three

singularities (AlfveÂn and slow/fast modified magnetosonic critical

points). This implies that the six parameters of the solution are not

all independent. In the following we first shortly summarise the

main properties of the critical conditions before we discuss the

numerical procedure to obtain the solutions.

2.4.1 Critical points

It is evident that equations (A2) and (A3) become indeterminate at

the AlfveÂn surface where G � M � 1: The regularity condition at

this critical point can be easily found together with the value of the

derivative of M2 (see Appendix). Furthermore, the denominator of

equation (A2) vanishes when the meridional component of the
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velocity Vu satisfies the quartic (Vlahakis 1998):

V4
u 2 V2

u�C2
s � V2

A� � C2
sV

2
A;u � 0; �22�

where Cs is the sound speed, and VA and VA,u the total and

meridional components of the AlfveÂn velocity, respectively.

These singularities are typical `X-type' critical points, and the

above equation is the well known dispersion relation for the

magnetosonic waves. However it is crucial to see that these

singularities appear not when the flow speed, but instead where its

meridional component coincides with the meridional component

of the slow/fast magnetosonic velocity.

Bogovalov (1994, 1996) and Tsinganos et al. (1996) have

emphasised that the singularities in MHD steady flows do not

always coincide with the positions where the flow and the

magnetosonic velocities coincide, but with the limiting character-

istics, i.e. the FMSS and the SMSS. In our case the separatrix is

found where Vu is equal to either one of the triplet of the

characteristic speeds (Vs,u , VA,u , Vf,u). This is so because in

addition to the azimuthal direction fÃ due to the assumed

axisymmetry, we have a second symmetry direction, which is

the radial direction rÃ because of the assumed radial self-similarity.

Therefore a compressible slow/fast MHD wave that preserves

those two symmetries can only propagate along uÃ which is

perpendicular to both fÃ and rÃ; the speed of propagation of such a

wave satisfies exactly the quartic equation (22) (for details see

Tsinganos et al. 1996).

It is obvious that a physically acceptable solution with low

velocity and high density at the base, but high speed and low

density asymptotically must smoothly cross at least the SMSS and

the AlfveÂn singularity. Such solutions have been widely analysed

in previous papers and are consistent with the observational data

on collimated stellar jets. However it is unescapable that also the

fast magnetosonic singularity should be regularly crossed in order

to have a steady structure causally disconnected from the

asymptotic region, where the jet interacts with the environment

(Bogovalov 1994).

2.4.2 Numerical technique for the search of solutions

An inherent difficulty of the problem is due to the fact that the

positions of the previous critical points are not known a-priori, but

need to be calculated simultaneously and self-consistently with

the sought for solution. At these critical points we do know some

relations between various functions, for example, at the AlfveÂn

surface the regularity condition, equation (A4), should be

satisfied. However, this knowledge alone is not practically

enabling us to directly find a solution.

The way we will follow to construct a solution through all

critical points is to use the shooting method with successive

iterations. By starting the integration from an angle u � ui we

reach a singular point where, e.g. the denominator in dM2/du

vanishes, but not the numerator. We then go back and change

some parameter and integrate again until it converges, i.e. the

denominator and the numerator vanish simultaneously. A similar

procedure is followed to cross the other singularity. A rather key

point is the choice of the starting position of integration. Most of

the previous studies solved the equations by starting from the

equator (BP82, CL94), or from infinity (Ostriker 1997). It

occurred to us that it is more convenient to integrate the equations

starting from the AlfveÂn critical point, i.e. from the conical surface

u � up; and move upstream (towards the base) and downstream

(towards the external asymptotic region).

For the numerical integration, besides the parameters, we need

also to choose the value of the colatitude up and the value there of

the slope of the square of the AlfveÂn number �pp � dM2=dujup �
together with the angle of expansion of the poloidal streamlines

(cp). Some of these quantities must be tuned to fulfill the

singularity conditions at the three critical points. It turned out

convenient for the assumed numerical technique to tune the values

of l and pp for getting the critical solution.

Hence, we first prescribe the parameters g , x, l and k , as well

as pp, up and cp while e is deduced from the Bernoulli equation,

equation (A3), and m from the regularity condition at the AlfveÂn

point, equation (A4). The integration can now start upstream from

u � up and the SMSS is encountered, but we cannot pass through

it as, e.g. the denominator of dM2/du vanishes there, but not the

numerator. We integrate again with different values of pp until we

find the opposite behaviour around the slow magnetosonic

singularity (the numerator vanishes but not the denominator).

Iteratively, by fine tuning the value of pp, a solution is finally

found which pass through the SMSS.

Then we integrate downstream of the AlfveÂn surface and the

FMSS is encountered, but in general it is not crossed. Changing

the value of the parameter l we integrate upstream again tuning to

a new value of pp until the SMSS is crossed. Then we integrate

downstream towards the fast magnetosonic singularity, and repeat

all the procedure until we find the right values of pp and l that

allow the crossing of the two singularities. At this point the

complete solution is obtained by integrating, with the correct

values for all the parameters, upstream to the base and

downstream towards the asymptotic region.

2.4.3 Selection of the parameters and boundary conditions

In this study, the critical solution depends on the two `model'

parameters (g , x) and the three independent `fieldline' parameters

(k , up, cp). The remaining ones (e , m , pp, l) are deduced from

the Bernoulli equation and the crossing of the AlfveÂn, slow

magnetosonic and fast magnetosonic singularities, respectively.

This is consistent with the analysis of Bogovalov (1997) where it

is argued that since the number of equations must be equal to the

number of independent boundary conditions, a unique solution can

be found if this number of independent boundary conditions

equals to the number of outgoing waves generated at the reflection

of a plane wave from that boundary. In t-dependent polytropic

MHD there are seven equations and seven unknowns: the density,

the pressure, the three components of the velocity and the two

components of the magnetic field. There are also seven waves: the

entropy wave and the outwards/inwards propagating slow, AlfveÂn

and fast MHD waves. So, we need seven parameters with both

counts, as expected. Now, if the boundary of the outflow is in the

subslow region the number of outgoing waves from this boundary

is four, i.e. the entropy, slow, AlfveÂn and fast MHD outgoing

waves. Subtracting the number of the boundary conditions we are

left with three independent parameters, precisely k, up and cp.

Note that the polytropic index g and x should not be included in

this count since they are model parameters and do not depend on a

particular streamline.

The integration is terminated in the upstream region when M !
M0 , 1 and G ! G0 , 1; u ! u0 < f=2 and c � c0: In all the

calculations presented here we were able to follow the solution up
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to the equator, i.e. u0 � f=2: This base should be in principle the

disc surface, where our solutions should consistently fit particular

boundary conditions. Such an approach has been followed by

Ferreira (1997) who looked for inflow/outflow MHD solutions

with a consistent matching on the disc surface (see also Li 1995,

1996). This implies some further constraints on the parameters.

For instance, if the disc is also self-similar with a large scale

magnetic field, a relation between k and x is expected, i.e. the

mass loading in the outflow and the magnetic flux distribution on

the disc. In addition, if the outflow carries away all the angular

momentum from the disc x must be related to l .

As described above, the procedure to obtain a critical solution is

extremely lengthy and rather time consuming. We must in fact

approach as close as possible the singularities �Du < 1023�; and
this requires the determination of the parameters up to several

digits. As we are mainly concerned to analyze the general

behaviour of superfast magnetosonic solutions, in the present

study we do not investigate the details of the boundaries of the

outflow. Therefore we assume that between the base of the wind

and the disc surface there is a thin `transition' region that allows

the connection of the wind with the disc.

For similar reasons the present analysis has been performed

only for a limited set of values of the parameters. We have fixed

the `fieldline' parameters up � 598; cp � 408 and k � 2; while
two values have been assumed for the `model' parameter x: 0.75

(model I) and 0.7525 (model II). In this two cases we will assume

that the polytropic index g , 5=3; i.e. some amount of heating

occurs in the plasma. To make a comparison with a purely

magnetocentrifugally driven outflow, we shortly discuss also the

very general properties of an adiabatic solution �g � 5=3�
assuming up � 608; cp � 458; k � 3:873 and x � 0:75 (i.e.

values of up and cp very close to those used for the nonadiabatic

models I and II on purpose have been selected).

In the following two sections we outline the main properties of

the topologies around the FMSS and discuss the structure of the

critical solutions.

3 SOLUTION TOPOLOGIES

We present here the topology of two solutions around the fast

magnetosonic point, assuming g � 1:24 and 1.23 for fixed x �
0:75: The two slightly different values of the polytropic index

define the transition between two families of topologies. This

drastic change in the topological behaviour of the solutions in the

neighbourhood of the X-type point illustrates the difficulty of

exact crossing the fast magnetosonic point. The parameters for the

various cases are listed in Table 1, while in Fig. 1 we plot the two

sets of topologies for the superfast magnetosonic number Mm,f(u ).

Note that this plot is obtained from a projection of the solutions

from the 3D space of M(u ), G(u ) and u to the plane Mm;f 2 u:
This 3D structure of the topology explains why some of the lines

obtained by projection are crossing each other (see for another

such example Tsinganos & Sauty 1992). This feature of course

does not appear in more classical topologies of one-dimensional

solutions, e.g. Weber & Davis (1967).

In the first case �g � 1:24� three solutions are plotted in Fig. 1a

for different values of l and m . The critical solution (solid line in

Fig. 1a), moving downstream in the direction of decreasing u

crosses the FMSS at um;f < 68; has a maximum at u < 0:48 and
then at u < 0:158 crosses back the Mm;f � 1 line but with an

infinite slope moving towards increasing u . Then, this solution

continues marching towards increasing u and remains always

subfast magnetosonic, withMm,f reaching a maximum at u < um;f :
By slightly decreasing l the solution crosses the Mm;f � 1 line

with infinite slope at u . um;f (dashed line in Fig. 1a). Conversely,

for a slightly larger value of l the solution (dot-dashed line in

Fig. 1a) reaches a maximum at u < um;f remaining subfast

magnetosonic (i.e. it behaves like a `breeze' solution) and

becomes superfast magnetosonic with diverging slope at u <

0:048: Then, this solution remains always in the region u , um;f ;
with a spiraling behaviour, i.e. by crossing many times up and

down the Mm;f � 1 transition with infinite slope. Note that the

solution shown in fig. 10 of Ferreira (1997) probably belongs to

this family of non-critical solutions.

For g � 1:23 (Fig. 1b) the topology of the non-critical solutions

remains the same. The critical solution however shows a different

behaviour remaining always in the region u , um;f by spiraling

around the Mm;f � 1 transition (solid line in Fig. 1b).

The topological structure of our solutions implies that down-

stream of the FMSS a focal critical point must be present, so that

no solution can asymptotically reach u � 0 with superfast

magnetosonic speeds. This ought to be expected from the

construction of this model where we should have

limu!0Vu=V f;u � 0; if we have a cylindrically collimated outflow.

In other words, the surface Mm;f � 1 needs to be crossed again

with a downstream superfast/subfast magnetosonic transition (see

also Contopoulos 1995). At the same time, we should keep in

mind that these radially self-similar solutions are not valid to

model outflows around the rotational axis, because of their

singular behaviour there.

Note that not all solutions with Mm;f . 1 are physically

acceptable because they become subfast magnetosonic, crossing

the singularity with diverging slope and therefore they are

multivalued for the same u . Hence, these solutions could

correspond to the terminated solutions in Parker's terminology

for the solar wind with one (Parker 1958), or, multiple critical

points (Habbal & Tsinganos 1983). Nevertheless, the present

critical solutions are causally disconnected from the inner region

of the flow, so that they could be stopped by suitable boundary

conditions, e.g. through a shock with the external medium at some

angle umin , um;f without affecting the structure of the outflow

upstream of the FMSS.

It is worth mentioning that, from the technical point of view, the

main difficulty in obtaining a critical solution is the fact that all

solutions (critical ones as well as non critical ones) always reach

Mm;f � 1 with infinite slope at some angle u . They become

`terminated' at this point, even if they belong to the family of the

dot-dashed solution family of Fig. 1. And, both families of non-

critical solutions almost coincide far from the vicinity of the

critical X-point. This is the reason why the crossing of the critical

point is so difficult.

Table 1. Parameters of the topological solutions assuming x �
0:75; up � 598; cp � 408 and k � 2:

g pp l2 m Solution

1.24 212.5522 72.7220 6.7825 Critical (solid)
72.0000 6.9069 Terminated (dashed)
73.0000 6.7347 Spiral (dot-dashed)

1.23 212.6468 75.8919 6.6983 Critical (solid)
75.0000 6.8506 Terminated (dashed)
77.0000 6.5092 Spiral (dot-dashed)
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4 RESULTS

The values of the parameters in the previous section were chosen

such as to illustrate the topology of the solution around the fast

critical point. However, they do not correspond to some interesting

critical solution from the astrophysical point of view. For example,

the fast magnetosonic transition occurs for a rather slow velocity

and not far from the AlfveÂn critical surface. We found that much

more interesting results are obtained for a flow closer to

isothermal conditions. We then discuss in the following the

properties of solutions obtained with g � 1:05 and for two sets of

the remaining parameters (models I and II in Table 2).

In both cases up � 598; cp � 408 and k � 2; as in the previous

topological analysis, with x � 0:75 and 0.7525. The remaining

parameters are deduced from the requirement to fulfill the

criticality conditions and are listed in Table 2. We remark that

this different choice on the scaling of the magnetic field x is

important to connect the solution to an accretion disc in the spirit

of what has been done by Li (1996) and Ferreira (1997). In such a

case, a value of x larger than some minimum above the value of

BP82, x � 0:75; is necessary to allow ejection (Ferreira &

Pelletier 1995). However, it does not mean that our solution

fulfills all requirements to connect to such a disc, as we discuss

later. The main goal here is to show that the solution is not

affected qualitatively by the change in x as far as the crossing of

critical points is concerned.

In Fig. 2 we plot the various Mach numbers along each field

Table 2. Parameters of the solutions assuming g � 1:05; up �
598; cp � 408 and k � 2:

Model x pp l2 m e

I 0.75 214.07 136.9232 2.9902 156.617

II 0.7525 214.02 136.2261 3.1715 158.233
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Figure 2. Plot of the various Mach numbers versus the vertical height z in

units of the equatorial cylindrical radius 40 � 4�z � 0� of a particular

fieldline. A polytropic radially self-similar model is used with the

parameters of model I (Table 2). The critical transitions at the three

singularities are marked with vertical lines.
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line a vs. the vertical height z in units of the equatorial cylindrical

radius 4�z � 0� of a particular fieldline and for model I. The

various critical transitions are indicated, and on the disc surface

we find G0 < 0:16 and M0 < 0:02: The SMSS almost coincides

with the point where the flow becomes superslow magnetosonic

�Ms;m < Ms � 1�; at z < 0:5: The AlfveÂn critical point �M � 1� is
crossed at z < 3:5 while the wind becomes superfast magneto-

sonic �Mf � 1� at z < 20: Much farther away is the FMSS, at

z < 104: Downstream of this position the various AlfveÂn numbers

decrease, as expected from the previous topological analysis.

The turning of the solutions is evident in Fig. 3, where the

poloidal streamlines together with the characteristics are plotted.

They cross all critical surfaces, and for u , um;f the fieldlines

converge towards the symmetry axis such that the conical region

with u , um;f is causally disconnected from the rest of the

domain. The two families of the characteristics in the hyperbolic

domain bounded by the cusp and slow surfaces are better seen in

Fig. 4 obtained for the adiabatic case, with a different set of

parameters. One family of characteristics (black) is tangent to the

SMSS at Mm;s � 1 while the other (grey) crosses it. Similarly, in

the hyperbolic domain bounded by the cone where Mf � 1 one of

the family of the characteristics (black) is tangent to the FMSS

indicated byMm;f � 1 while the other (grey) crosses it. We remind

that the cusp surface �Mc � 1� does not coincide with any

singularity or typical velocity in the flow.

The components of the outflow speed along a line a � const in

units of the initial z-component of the flow speed at the disc, are

plotted in Fig. 5. The units are chosen in order to make a direct

comparison of this solution with other solutions in the literature

(e.g. BP82). Close to the disc level, the escape speed is high,

Vesc;0 < 440; the initial rotational speed is lower, Vf;0 � 110 and

of the order of the Keplerian speed, VKep , 3Vf;0: The azimuthal

speed Vf after some increase in the region of corotation,

approximately up to the AlfveÂn critical point at z , 4; decays to
zero transferring its corresponding kinetic energy to poloidal

motion. Thus, the z- and 4-components of the poloidal motion

grow from their subslow and subescape values at the disc level

where V z � 1 to the high values obtained at the modified fast

critical point where V z , 103: The poloidal speed exceeds the

local escape speed around the AlfveÂn transition. A comparison of

models I and II makes it clear that the different values of x do not

strongly affect the global behaviour of the solutions, even though

the boundary conditions of the disc are rather different.

Downstream of the AlfveÂn transition the azimuthal component

of the magnetic field grows to very high values in comparison to

the poloidal component (Fig. 6). At the modified fast critical point

practically all the magnetic flux is in the azimuthal direction. For

example, Bf=Bp < 1 at the disc, while Bf=Bp < 60 after the

modified fast transition for both, models I and II. From Fig. 6 it

may be also seen that the flow velocity is largely in the z-direction

with very small components along fÃ and 4Ã . In Fig. 6, the main

difference between the two models is in the region upstream of the

Figure 3. Poloidal fieldlines (solid), characteristics (dotted and dot-

dashed) and cones of the singular surfaces (dot-dot-dashed) are shown for

the radially self-similar polytropic solution of model I. In the shadowed

regions the governing partial differential equations are of elliptic type and

no characteristics exist. The parameters are as in Fig. 2.
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SMSS: for x � 0:75 the angle between the poloidal fieldline and

the disc surface is c0 < 678; while for x � 0:7525 this angle is

c0 < 568: Although these values are not very different, only the

second case matches the outflow launching condition for a cold

plasma given in BP82. This means that magnetocentrifugal

driving is more efficient in model II at the base. However, we

note that at the SSMS where the plasma pressure has dropped

significantly both solutions can be magneto-centrifugally accel-

erated. The end result shown in Fig. 5 is that the terminal speed is

lower when x is larger, i.e. when the ejection index is higher. This

result is consistent with Ferreira's (1997) analysis.

The behaviour of the various components of the conserved total

energy E versus z, plotted in Fig. 7, provides information on the

different driving mechanisms that govern the dynamics of the

outflow. Upstream of the SMSS and close to the base, most of

the energy flux is electromagnetic plus some amount of enthalpy.

The kinetic energy of the plasma is negligible. As the slow

magnetosonic surface is approached, the kinetic energy sharply

increases with a corresponding decrease of the thermal energy.

Downstream of the AlfveÂn surface thePoynting flux rapidly

decreases; the poloidal kinetic energy keeps increasing, becoming

largely the main component of the energy flux at the position of

the FMSS. This behaviour is basically the same for both models I

and II. In order words, there is some contribution to the

acceleration of thermal origin up to the modified slow critical

point after which the pressure drops to a rather constant value

while the magnetic pressure maintains considerably higher values

up to the AlfveÂn transition.

We conclude this section by pointing out that the two solutions

we have analysed here correspond to efficient magnetic rotators in

the terminology of Bogovalov & Tsinganos (1999), since the ratio

of the corotational velocity to the poloidal AlfveÂn velocity at the

AlfveÂn critical surface (the parameter a in their notation) has a

value greater than unity (<2.13).

5 DISCUSS ION

Before discussing the main physical implications of our results,

also in connection with those obtained by other authors, we show

that the present solutions are suitable to describe the physical

properties of astrophysical outflows.

5.1 Astrophysical applications

The modelling of a particular astrophysical outflow requires first

the calculation of all physical quantities from the non-dimensional

parameters characterising the particular model. We will address

here this question of calculating some observable quantities of

disc-winds associated with protostellar objects from the para-

meters of our model.

We deduce first the ratios of some characteristic speeds at the

disc level, keeping in mind that from the numerical results we

have obtained M0 , 0:01 and G0 , 0:1: We will refer in the

following mainly to the solutions with x � 0:75:
First, the ratio of the poloidal AlfveÂn and Keplerian speeds at

the disc level is
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� �

0
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The poloidal magnetic field which is essential in the launching of

the outflow is anchored in the disc and its energy density is less

than the rotational kinetic energy density of the disc. Thus, the

field is rather weak to break the rotation of the plasma at the disc

and it is carried passively around by azimuthal rotation.

Second, the ratio of the sound and initial speeds at the disc level

is

Cs

V0

� �

0

� 70:7 � �gm�1=2 G0

0:1

� �2
1024

M
�g�1�
0

< 94; �24�

where V0 � V z�z � 0�: The initial ejection speed is negligible in

comparison to the thermal speed at the disc, a situation similar to a

thermally driven wind.

Next, the ratio of the sound and Keplerian speeds at the disc

level is

Cs

VKep

� �

0

� 0:22 � �gm�1=2 G0

0:1

� �1=2
1

kM
�g21�
0

< 0:314: �25�

We notice that the Keplerian speed is about three times higher

than the thermal speed at the disc. Thus, thermal effects cannot

inhibit the rotation of the disc.

Finally, the ratio of the Keplerian and initial speeds at the disc

level is:

VKep

V0

� �

0

� 316 � k
G0

0:1

� �3=2
1022

M0

� �2

< 300; �26�

i.e. the initial speed is negligible in comparison to the Keplerian

speed.

In our case the flow speed at the fast critical point is about 103

the initial speed V0. In agreement with the observations we can

reasonably assume the terminal speed of the outflow to be

,400 km s21, such that its velocity at the base is V0 � 0:4 km s21:
In principle, radially self-similar models do not have an

intrinsic scale length; however from the previous estimate of the

initial speed one allows to calculate the footpoint of the reference

fieldline a � 1 on the disc. In units of 10 solar radii this

cylindrical distance 40 is

40

10R(

� 0:19 � M0

0:01

� �4
0:1

G0

� �3
1

k2
M

M(

V0

km s21

� �22

: �27�

Hence, for a one solar mass star we get 40 < 12:5R(:
It is also interesting to calculate the mass-loss rate _Mw in units

of 1028
M( yr21

_Mw

1028 M( yr21
� 0:0386 � M0

0:01

� �2
Bz;0

10G

� �2

� 40

10R(

� �2
V0

km s21

� �21

f �aout;ain�; �28�

where

f �aout;ain� �
a
x23=4
out 2 a

x23=4
in

x2 3=4
if x ± 0:75; �29�

and

f �aout;ain� � ln
aout

ain

if x � 0:75: �30�

By assuming 4in � 40; 4out < 1040 and Bz;0 � 8G we have
_Mw=�1028M( yr21� < 1; with a temperature at the base of the

flow of:

T0;in � 3 � 105m
G0

0:1

� �4
1028

M
2�g�1�
0

V0

km s21

� �2

< 8 � 104 K; �31�

T0;out � T0;in
4in

4out

< 8 � 103 K:

We remind that T0 is not the temperature of the disc as we have

assumed a transition layer between the disc surface and the base of

the flow (see Section 2). This region could be reasonably related

to a corona heated by dissipative processes in the plasma (e.g.

magnetic reconnection, ohmic heating, etc.; see e.g. KoÈnigl &

Pudritz 2000).

As the flow corotates roughly up to the AlfveÂn point (Fig. 5) the

specific angular momentum carried by the wind is _Jw � _MwV42
a

while the angular momentum that has to be extracted locally at the

foot point 40 of the fieldline in order that the disc accretes at a

rate _Ma is _Ja � �1=2�V42
0

_Ma (Spruit 1996). If the angular

momentum carried by the wind is a fraction f of JÇa while 12 f is

the fraction carried away by viscous stresses, then the ratio of the

mass fluxes in the wind and in the accretion flow is

_Mw

_Ma

� f

2

42
0

42
a

& 0:015;

taking into account that 4a � 5:840 for model I. It follows that

the rate of the outflowing mass is at most of the order of 1 per cent

of the rate of the accreted mass; and this is achieved when the

wind carries all the angular momentum of the accreted mass.

When the outflow carries a smaller fraction of the angular

momentum of the disc, the mass-loss rate in the wind is an even

smaller fraction of the mass-loss rate in the wind. In other words,

the mass-loss rate in the wind is a negligible fraction of the

accreted mass, despite that the jet may carry most of the angular

momentum of the accreted mass. Similar results are obtained for

the case x � 0:7525: Therefore, from the above arguments we

may conclude that from our solutions we deduce for the physical

parameters values in reasonable agreement with those observed in

this class of objects.

Our solution terminates at z=40 < 2 � 104; i.e. at <400AU

from the central star. At this position we could argue that there

exists a shock matching the solution with the outermost region of

the outflow (Gomez de Castro & Pudritz 1993). It is well known

that bright knots are observed on scales of thousands AU along

most protostellar jets. These configurations are shocks that are

interpreted as originated either by fluid instabilities on the jet

surface or by temporal variations in the velocity of the outflow

(Burrows et al. 1996; Ray 1996, 1998; Micono et al. 1998; KoÈnigl

& Pudritz 2000). It could be reasonable to associate the terminal

shock of our solutions with the inner knots, found at distances

down to <100AU from the star. However we cannot ignore that

these knots are non-steady configurations and move outwards with

velocities ,100±200 km s21 (Ray 1996). We could assume that

the shock is well upstream of the optical knots: polarimetric radio

data on the T Tauri object are consistent with the presence of a

shock at <20±40AU from the star (Ray et al. 1997). Alternatively

the terminal shock could indeed be located approximately at the

positions of the inner knots, but there the flow loses both self-

similarity and steadiness. However as we are in the superfast

magnetosonic regime, the upwind configuration is not affected.

Only a much more detailed parametric study will be able to test

these two possibilities.
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5.2 Physical properties of the critical solutions

The solutions of this model, in particular Fig. 7, illustrate nicely

the physical process of transferring electromagnetic Poynting

energy flux and enthalpy to directed kinetic energy flux of the

flow in order to accelerate a disc wind and then form a jet along

the symmetry axis of the system. Thus, the analysis of the

previous section is interesting in the sense that it reveals the

driving mechanisms of the outflow. The poloidal kinetic energy is

negligible at the disc level. It then increases rather sharply up to

the region of the SMSS and AlfveÂn surfaces. This increase is at the

expense of both, the enthalpy and the electromagnetic Poynting

energy flux (see Fig. 7). The poloidal velocity is directed basically

in the radial direction (Figs 5 and 6), i.e. here part of the random

thermal energy together with a part of the electromagnetic energy

are mostly transformed to directed wind expansion. Downstream

of the AlfveÂn surface it is mainly the Poynting energy flux that is

effectively transformed into kinetic energy directed along the

rotational axis, till the FMSS is encountered. After the FMSS, the

flow has already reached the maximum speed available from

the total energy E, which is also approximately equal to the initial

electromagnetic Poynting energy flux. Then, the acceleration

asymptotically stops. Despite the fact that most of the acceleration

to high speeds is apparently of magnetic origin, the role of the

polytropic index and thus of the initial thermal acceleration may

not be negligible, in particular in the region before the SMSS. For

example, in the case of Fig. 4 where the flow is exactly adiabatic

and g � 5=3; the critical solution achieves only a very small axial

component of the velocity which is twice the axial velocity on the

equatorial plane. In the quasi-isothermal case of models I and II

where g � 1:05; the maximum velocity is 1000, higher than the

equatorial one (Fig. 5). As a matter of fact, this last case is closer

to the one analysed in Li (1995) and Ferreira (1997) where the gas

is isothermal up to the first critical surface and then it is taken to

be cold afterwards, wherein the pressure has sufficiently dropped.

However, another possibility is that the low terminal speed

obtained in the adiabatic case of Fig. 4 could be due to the lower

value of the rotation parameter l2 which is ,2.8 in the adiabatic

case of Fig. 4, as opposed to values ,137 and 136 in models I and

II and similarly for the case examined in Ferreira (1997).

When the gas has reached a high speed along the z-axis, its

inertia causes it to lag behind the rotation of the field line and the

field is wound up, as shown in Fig. 6, resulting in a highly twisted

magnetic field. Consequently, the strong curvature force of this

predominantly azimuthal magnetic field towards the z-axis, causes

the poloidal field to collimate. Initially the field is flaring away

from the rotation axis but the curvature force bends the poloidal

field lines toward the rotation axis. The azimuthal velocity peaks

around the AlfveÂn point which is at a height z � 3:5 and a

cylindrical distance 4 � 5:8 times the starting distance 40 in

model I. Beyond the AlfveÂn point the rotation drops in accordance

to angular momentum conservation and thus the centrifugal force

becomes negligible. Then, the strong inwards curvature force of

the twisted field, wins, over the weak outwards centrifugal force

and gas pressure gradient with the result that the lines are bent and

eventually collapse towards the rotation axis.

It is interesting that this feature of the collapse of the outflow

towards the rotation axis which appears in cold models (BP82)

and models that do not cross the FMSS (Li 1995; Ferreira 1997),

is also preserved in the present hot model where also all critical

points are crossed. This result seems to indicate the rather

dominant role of the magnetic hoop stress in radially self-similar

models, contrary to what happens in meridionally self-similar

models wherein the structure becomes asymptotically cylindrical

(Trussoni, Tsinganos & Sauty 1997; Sauty, Tsinganos & Trussoni

1999; Vlahakis & Tsinganos 1999).

It is worth clarifying for a moment the term `disc-wind' that we

used in this study. By that term we simply intend to indicate that

we describe an outflow from a disc-like structure accreting onto a

central gravitational object. Thus, the flow starts at some angle u0

above or at the equatorial plane of the disc, as opposed to a

`stellar' wind flow that starts radially above or at a spherical or

quasi-spherical source. Needless to say that a consistent solution

of the accreting part of the flow would be required for a consistent

solution of the inflow±outflow structure in the case of a disc-wind.

However, such a complete undertaking is beyond the scope of the

present paper which only intends to emphasise the possibility to

construct complete steady self-similar solutions for the wind

crossing all critical points.

To make such a connection between the disc and the outflow, in

the spirit of BP82, Li (1995) and Ferreira (1997), the first step

would be to see how our parameters may fall into the range of

parameters considered by those models. For that purpose, in

equations (17)±(20) we have made a correspondance between our

parameters and those used by BP82. Thus, in the `standard'

solution of BP82 the parameters are: kBP � 0:03; lBP � 30 and

j 00 � 1:58 corresponding to a launching angle of the jet at the disc

c0 < 328 , 608: In our case, we find kBP < 0:13; lBP < 14:57;
for both, models I and II. We also have j 00BP � cotc0 � 0:425
�c0 � 678� for model I and j 00BP � cotc0 � 0:675 �c0 � 568� for
model II, in the BP82 notation. We note that the values of kBP, lBP

are close in BP82 and the present model. However, the value of

the launching angle c0 is .608 in our model I because of the

additional thermal driving of the outflow at the disc level, contrary

to the cold model of BP82 where c0 < 328 , 608: In summary,

our models I and II occupy in the space of kBP and lBP, roughly

the same domain as in BP82 (cf. fig. 2 in BP82). The only

difference is in the value of the launching angle c0 which can be

larger in the present hot model, as expected. These values are

within the range of the allowed parameters in the (kBP, lBP) space

also in the analysis of Li (1995, cf. fig. 3) provided that the

magnetic diffusivity is of order one. Note also that model II with

x � 0:7525 corresponds to an ejection index in the notation of

Ferreira (1997) j � 2x2 3=2 � 0:005:

5.3 Summary

In this paper we have extended the classical work of Blandford &

Payne (1982), mainly by showing via examples for the first time

that a solution passing through all MHD critical points can indeed

be constructed.

As is well known, the FMSS plays the role of the MHD signal

horizon such that in an outflow crossing this MHD horizon all

perturbations which the outflow may encounter are convected

downstream by the superfast outflow and so the steady-state

solution is maintained. In other words, the outflow interior to the

FMSS is causally disconnected and protected against any

conditions it may encounter in the interstellar or intergalactic

medium towards which the jet propagates after it is launched by

magnetocentrifugal forces from the surface of an accretion disc.

Unlike other analytical models which produce asymptotically

cylindrically collimated outflows (Sauty & Tsinganos 1994;

Trussoni et al. 1997; VT98; Sauty et al. 1999; Vlahakis &

Tsinganos 1999), this class of radially self-similar models cannot
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continue to infinity but it has to be stopped downstream of the

FMSS and matched via a MHD shock to a subfast outflow that

mixes with the interstellar medium (Gomez de Castro & Pudritz

1993). This shock can connect the present solutions to some

breeze, subAlfveÂn or subslow magnetosonic branch perhaps also

preserving the self-similarity.

Thus, the main difference here with previous results presented

in the literature is that the asymptotic part of the present solutions

is causally disconnected from the source and hence any

perturbation downstream of the superfast transition cannot affect

the whole structure of the steady outflow.

This task of matching the present solutions with a down-

stream shock however remains a challenge for future studies,

together with a (time-consuming) more extended parametric

analysis and also a correct matching of the ideal MHD outflow

solutions with an inflow in a non-ideal accretion disc (Ferreira

1997).
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APPENDIX

The two first-order differential equations for G(u ), M(u )

governing the present class of solutions are

dG2

du
� 2G2 cosc

sin u cos�c� u� ; �A1�

dM2

du
� 2 2

sin�c� u�
cos�c� u� 2

k2 sin u

G
2 m�x2 2�M422g

�

� M4

G4
�12M2� cosc sin u

sin�c� u� 2
M4

G4
�x2 2� sin2 u

cos2�c� u�

2 l2
M4

G2
�x2 2� 12 G2

12M2

� �2

�l2
M2

G2

G4
2M2

12M2

2l2
cosc

sin u sin�c� u�
�2M2

2 1�G4
2M4

G2�12M2�

�

� gm�12M2�M22g
2 2l2

M2

G2

12 G2

12M2

� �2
(

�2
M4 sin2 u

G4
12

1

M2 cos2�c� u�

� ��21

: �A2�

In the above two equations c (u ) is given by the Bernoulli

integral

c � p2 u7 arctan
G4

M4 sin2 u
2e2

gm

�g2 1�M2�g21�

��

� 2k2 sin u

G
2 l2

�G2
2M2�2

G2�12M2�2 � 2
12 G2

12M2

� ��

2 1

�1=2

:�A3�

with the upper sign corresponding to the outflow case

�V r . 0�.
On the AlfveÂn conical surface for u ! up we have

12 G2

12M2

� �

p

� 2 coscp

pp sin up cos�cp � up�
;

where pp is the slope of the square of the AlfveÂn number. Then

from equation (A2) we get the following third degree polynomial
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for pp:

�x2 2��4l2 � p2p sin
2 up� tan2�cp � up)

� p3p sin
2 up � 4l2pp � 8l2

�x2 2�
tan up

� �

tan�cp � up)

� �x2 2� mp2p � p2p sin
2 up � 4l2

1

tan2 up

� �

� k2p2p sin up 2 l2pp pp 2
4

tan up

� �

� 0: �A4�
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