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AB S TRACT

This paper examines a new class of exact and self-consistent MHD solutions that describe

steady and axisymmetric hydromagnetic out¯ows from the atmosphere of a magnetized and

rotating central object with possibly an orbiting accretion disc. The plasma is driven against

gravity by a thermal pressure gradient, as well as by magnetic rotator and radiative forces. At

the AlfveÂnic and fast critical points the appropriate criticality conditions are applied. The

out¯ow starts almost radially, but after the AlfveÂn transition and before the fast critical surface

is encountered, the magnetic pinching force bends the poloidal streamlines into a cylindrical

jet-type shape. The terminal speed, AlfveÂn number and cross-sectional area of the jet, as well

as its ®nal pressure and density, obtain uniform values at large distances from the source. The

goal of the study is to give an analytical discussion of the two-dimensional interplay of the

thermal pressure gradient, gravitational, Lorentz and inertial forces in accelerating and

collimating an MHD ¯ow. A parametric study of the model is also given, as well as a brief

sketch of its applicability to a self-consistent modelling of collimated out¯ows from various

astrophysical objects. The analysed model succeeds in giving for the ®rst time an exact MHD

solution for jet-type out¯ows extending from the stellar surface to in®nity where the out¯ow

can be superfast, in agreement with the MHD causality principle.

Key words:MHD ± plasmas ± stars: atmospheres ± stars: mass-loss ± ISM: jets and out¯ows

± galaxies: jets.

1 INTRODUCTION

Collimated out¯ows are quite common in astrophysics and cosmic

jets are observed in the radio, infrared, optical, UVand X-ray parts

of the spectrum, from the ground and space, most recently via the

Hubble Space Telescope. Thus, classes of objects in association

with which jets are observed include young stellar objects (YSOs)

(Ray 1996), old mass-losing stars and planetary nebulae (Livio

1997), black hole X-ray transients (Mirabel & Rodriguez 1996),

supersoft X-ray sources (Kahabka & Trumper 1996), high-mass X-

ray binaries, cataclysmic variables (Shahbaz et al. 1997) and many

active galactic nuclei (AGN) and quasars (Biretta 1996; Ferrari et

al. 1996). However, despite their observed abundance, several key

questions on their acceleration and collimation, among others, have

not yet been resolved.

The theoretical magnetohydrodynamic (MHD) modelling of jets

is not a simple undertaking, basically because of the fact that the

set of MHD equations is highly non-linear with singular or

critical surfaces appearing in their domain of solutions; these

singularities ± through which a physical solution inevitably will

have to pass ± are not known a priori but they are instead

determined simultaneously with the complete solution. The

purpose of the present study is to construct systematically a self-

consistentMHDmodel for astrophysical jets from the stellar base to

in®nity where the interplay of the various forces acting on the

plasma, which are able to accelerate and collimate the out¯ow, is

analytically examined. This modelling is an improvement on the

very few existing models developed so far with the same goal. For

example, it is fully two-dimensional (cf. the models of Parker 1958

and Weber & Davis 1967 which are 1D), it does not contain

singularities along the symmetry axis and the out¯ow is not over-

focused but extends to large distances (e.g. the models of Blandford

& Payne 1982 and Ostriker 1997 do contain such singularities), the

equation of state is not constrained by the arti®cial polytropic

assumption (as e.g. in the polytropic analysis of Contopoulos &

Lovelace 1994; Heyvaerts &Norman 1989), the thermal pressure is

meridionally anisotropic (cf. the model with a meridionally iso-

tropic pressure in Sauty & Tsinganos 1994), the shape of the jet is

self-consistently determined and not a priori given (e.g. the models

in Cao & Spruit 1994, Kudoh & Shibata 1997 and Trussoni,

Tsinganos & Sauty 1997 have an a priori given ®eld line shape),

there is a steady asymptotic state (cf. Uchida & Shibata 1985;

Ouyed & Pudritz 1997a,b; Goodson, Winglee & Bohm 1997 where

a steady asymptotic state is not obtained), etc. Furthermore, a gap
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that the present model aspires to ®ll in the existing literature is the

availability of a self-consistent MHD model for jet-type out¯ows

wherein the jet speed is superfast at large distances from the base

such that all perturbations are convected downstream to in®nity and

they do not destroy the steady-state solution.

In the following Section 2 the basic steps for a systematic

construction of this class of models are outlined. In Section 3 we

discuss the critical surfaces that select a physically interesting

solution and in Section 4 the asymptotic behaviour of such solutions

is brie¯y sketched. A detailed parametric study of the model,

including the solution topologies, is given in Section 5 and ®nally

in Section 6 the connection of the dimensionless parameters

characterizing the present model to the observable physical quan-

tities of collimated out¯ows is brie¯y sketched.

2 CONSTRUCTION OF THE MODEL

In this section we describe in some detail how our model can be

systematically obtained from the closed set of the governing full

MHD equations.

2.1 Governing equations

The dynamics of astrophysical out¯ows may be described to zeroth

order by the well-known set of the steady (¶=¶t � 0) ideal

hydromagnetic equations:

r V´=� �V �
= ´ B� � ´ B

4p
ÿ =Pÿ r=V � Frad ; �1�

=´B � 0 ; =´ rV� � � 0 ; = ´ V ´ B� � � 0 ; �2�

where B, V, ÿ=V � ÿ= ÿGM=r
ÿ �

denote the magnetic, velocity

and external gravity ®elds, respectively,Frad the volumetric force of

radiation, and r and P the gas density and pressure.

The energetics of the out¯ow on the other hand is governed by the

®rst law of thermodynamics:

q � rV´ =
1

Gÿ 1

P

r

� �

� P=
1

r

� �

; �3�

where q is the volumetric rate of net energy input/output (Low &

Tsinganos 1986), while G � cp=cv, with cp and cv the speci®c heats

for an ideal gas.

With axisymmetry in spherical coordinates �r; v;f�, the azi-

muthal angle f is ignorable (¶=¶f � 0) and we may introduce the

poloidal magnetic ¯ux functionA�r; v�, such that three free integrals

of A exist. They are the total speci®c angular momentum carried by

the ¯ow and magnetic ®eld, L�A�, the corotation angular velocity of

each streamline at the base of the ¯ow, Q�A�, and the ratio of the

mass and magnetic ¯uxes, WA�A� (Tsinganos 1982). Then, the

system of equations (1)±(2) reduces to a set of two partial and non-

linear differential equations, i.e., the r- and v-components of the

momentum equation on the poloidal plane. Note that by using the

projection of the momentum equation along a stream-®eld line

A � const on the poloidal plane �r; v�, equation (3) becomes

rV´=
1

2
V
2
�

G

Gÿ 1

P

r
�V ÿ

Qr sin v

WA

Bf

� �

ÿ V´Frad � q : �4�

For a given set of the integrals L�A�,Q�A� andW�A�, equations (1)±

(3) can be solved to give r�r; v�, P�r; v� and A�r; v�, if the heating

function q�r; v� and the radiation forceFrad are known. Similarly, one

may close this system of equations (1)±(3), if an extra functional

relation of q with the unknowns r, P and A exists. As an example,

consider the following special functional relation of q with these

unknowns r, P and A (Tsinganos, Trussoni & Sauty 1992),

q �
gÿ G

Gÿ 1

P

r
V´=r ; �5�

where g# G. Then, equation (3) can be integrated at once to give

the familiar polytropic relation between P and r,

P � Q A� �rg ; �6�

for some functionQ�A� corresponding to the enthalpy along a poloidal

surface A � const. In this special casewe can integrate the projection

of the momentum equation along a stream-®eld line A � const on the

poloidal plane, equation (4), by further assuming that V´Frad � 0, to

get the well-known Bernoulli integral, which subsequently can be

combined with the component of the momentum equation across the

poloidal ®eld lines (the trans®eld equation) to yield r and A. After

®nding a solution, one may go back to equation (3) and fully

determine the function q�r; v�. It is evident that even in this special

polytropic case with gÞ G the heating function q [not its functional

form but the function q�r; v� itself] can be found only a posteriori.

Note that for g � G and only then the ¯ow is isentropic.

Evidently, it is not possible to integrate equation (3) for any

functional form of the heating function q, such as it was possible

with the special form of the heating function given in equation (5).

To proceed further then and ®nd other more general solutions

(effectively having a variable value for g), one may choose some

other functional form for the heating function q and from energy

conservation, equation (3), derive a functional form for the pres-

sure. Equivalently, one may choose a functional form for the

pressure P and determine the volumetric rate of thermal energy a

posteriori from equation (3), after ®nding the expressions of r, P

and A that satisfy the two remaining components of the momentum

equation. Hence, in such a treatment the heating sources that

produce some speci®c solution are not known a priori; instead,

they can be determined only a posteriori. However, it is worth

keeping in mind that as explained before, this situation is analogous

to the more familiar constant g polytropic case, with gÞ G. In this

paper we shall follow this approach, which is further illustrated in

the following section.

However, even by adopting this approach, the integration of the

system of mixed elliptic/hyperbolic partial differential equations

(1)±(2) remains a non-trivial undertaking. Besides their non-

linearity, the dif®culty is largely owing to the fact that a physically

interesting solution is constrained to cross some critical surfaces

which are not known a priori but they are determined simulta-

neously with the solution. For this reason, only a very few such self-

consistent solutions are available, albeit no one is superfast at

in®nity. Further assumptions on the shape of the critical surfaces

are needed, as discussed in the following.

2.2 Assumptions

In order to construct analytically a new class of exact solutions, we

shall proceed by making the following two key assumptions:

(i) that the AlfveÂn number M is solely a function of the

dimensionless radial distance R � r=r,, i.e. M � M�R�

and

(ii) that the poloidal velocity and magnetic ®elds have a dipolar

angular dependence,

A �
r
2
,B,

2
A a� � ; a �

R
2

G2 R� �
sin2 v ; �7�

for some function G�R�.
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A few words on the physical basis of the above two assumptions

are needed at this point. We expect that assumptions (i)±(ii) are

physically reasonable for describing the out¯ow properties at least

close to the rotation and magnetic axis of the system. Far from the

distortion caused by the presence of an accretion disc, the angular

distribution of the stellar magnetic ®eld may be approximately

dipolar (cf. ®g. 1 in Ghosh& Lamb 1979) in the vicinity of the polar

axis. Also, regarding the assumption of spherical critical surfaces,

we note that all available numerical models derive an approxi-

mately spherical shape for the AlfveÂn surface near the rotation and

magnetic axis of the system (Sakurai 1985; Bogovalov&Tsinganos

1999; Ustyugova et al. 1999). Hence, although the analysed model

may in principle extend to all polar angles as it satis®es the

governing MHD equations, its physical applicability could be

constrained around the polar regions only.

We are interested in trans-AlfveÂnic ¯ows and denote by a sub-

script , the respective value of all quantities at the AlfveÂn surface.

By choosing the function G�R� such that G R � 1� � � 1 at the

AlfveÂn transition R � 1, it is evident that G�R� measures the

cylindrical distance Ã to the polar axis of each ®eld line labelled

by a, normalized to its cylindrical distanceÃa at the AlfveÂn point,

G R� � � Ã=Ãa. For a smooth crossing of the AlfveÂn sphere R � 1

[r � r,; v � va�a�], the free integrals L and Q are related by

L

Q
� Ã

2
a�A� � r

2
, sin

2 va�a� � r
2
,a : �8�

Therefore, the second assumption is equivalent to the statement that

at the AlfveÂn surface the cylindrical distance Ãa of each magnetic

¯ux surface a � const is simply proportional to
���

a
p

.

Instead of using the three remaining free functions ofa, (A ;WA ,

Q), we found it more convenient to work instead with the three

dimensionless functions of a, (g1 , g2 , g3),

g1 a� � �

�

A
02da ; �9�

g2 a� � �
r
2
,

B2
,

�

Q2W2
Ada ; �10�

g3 a� � �
W2

A

4pr,
: �11�

These functions g1�a�; g2�a�; g3�a� are vectors in a 3D a-space

with some basis vectors u1�a�, u2�a�, u3�a� (Vlahakis & Tsinganos

1998, hereafter VT98). Note that the forms of g1 ; g2 ; g3 or

equivalently the forms of A, WA, Q, L � r
2
,aQ and P should be

such that the two remaining components of themomentum equation

are separable in the coordinates a and R.

2.3 The method

The main steps of the general method for getting exact solutions

under the previous two assumptions are given brie¯y in the following.

First, by using a instead of v as the independent variable, we

transform from the pair of independent variables (R ; v) to the pair of

independent variables (R ;a). The resulting form of the a-compo-

nent of the momentum equation can be integrated at once to yield

for the gas pressure

P�R;a� �
B
2
,

8p
f0 � f4g1 � f1g

0

1 � f2ag
0

1 � f5g2 � f3ag
0

2

� �

�
B
2
,

8p
YP

²
; �12�

where f0 R� � is a free function emerging from the integration, fi R� �,

i � 1; 2; . . . ; are functions of the spherical radius R given in

Appendix A, and P and Y are the (1 ´ 7) matrices

Y � 1 g1 g
0

1 ag
0

1 g2 ag
0

2 g3

h i

; �13�

P � f0 f4 f1 f2 f5 f3 0
� �

: �14�

Secondly, by substituting equation (12) in the r-component of the

momentum equation we obtain in terms of the (1 ´ 7) matrix X,

X � f
0

0 f
0

4 ÿf6 ÿf7 f
0

5 ÿf8 ÿf9

h i

; �15�

the following equation:

YX
²
� 0 : �16�

A key step in the method is to ®nd a possible set of vectors u1�a�,

u2�a�, u3�a� such that all components of the matrix Y belong to the

same a-space. To that goal we choose u1�a� � 1 and

u2�a� � g1�a�. If this is the case, then our third step is to construct

a 3 ´ 7 matrix K such that

Y � u1 u2 u3
� �

K : �17�

Then, from equation (16),

u1 u2 u3
� �

KX
²
� 0 ;

and as ui are linearly independent it follows that

KX
²
� 0 : �18�

Finally, it follows from equations (12), (14) and (17) that

P �
B
2
,

8p
P0 � g1P1 � u3P2

ÿ �

;

where the three components of the pressure P0, P1 and P2 are

�P0 P1 P2�
²
� KP

²
: �19�

2.4 The model

Let us now apply this method to the construction of our speci®c

model. We may recall that in a previous paper (VT98), it was found

that only nine distinct general families of such vectors exist. One of

them is

u1�a� � 1 ; u2�a� � a ; u3�a� � ae
; �20�

with the following free functions:

g1�a� � a ; �21�
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Figure 1.An illustration of the construction of the streamlines a � const on

the poloidal plane in meridionally self-similar out¯ows.



g2�a� � ya� mae
=e ; �22�

g3�a� � 1� da� md0a
e
: �23�

For this particular choice of u1�a�, u2�a�, u3�a� we ®nd the

following form of the matrix K,

K �

1 0 1 0 0 0 1

0 1 0 1 y y d

0 0 0 0
m

e
m md0

2

6

4

3

7

5
: �24�

Then, from equations (14) and (19) we get

P0

P1

P2

2

4

3

5 �

f0 � f1
f4 � f2 � y f3 � f5

ÿ �

m
f5

e
� f3

� �

2

6

6

4

3

7

7

5

: �25�

Finally, from equation (18) and using the de®nitions of equations

(15) and (24) we obtain the three ordinary differential equations,

equations (B4), for the functions of R in the model for eÞ 0; 1 and

mÞ 0 (only then do we have a 3D a-space with 1 ;a ;ae linearly

independent).

Altogether, let us summarize the characteristics of our model.

The physical quantities of the out¯ow have the following exact

expressions:

r �
r,

M2
1� da� md0a

e
ÿ �

; �26�

P �
r,V

2
,

2
P0 � P1a� P2a

e
ÿ �

; �27�

V � V,

M
2 cos v

G2
Ãr ÿ

M
2
F sin v

2G2
Ãv

�

� :
�������������������

ya� mae
p G

2
ÿM

2

G 1ÿM2
ÿ �

Ãf

!

�������������������������������

1� da� md0a
e

p

;

.

�28�

B � B,

cos v

G2
Ãr ÿ

F sin v

2G2
Ãvÿ

�

�������������������

ya� mae
p 1ÿ G

2

G 1ÿM2
ÿ �

Ãf

!

; �29�

where the ®ve unknown functions G
2
�R�, F�R�, M

2
�R�, P1�R� and

P0�R� entering in the above expressions are obtained from the

integration of the ®ve ®rst-order ordinary differential equations

given in Appendix B, while the pressure component P2�R� is given

explicitly in terms of the other variables (Appendix B).

Note that the parameters e and y determine the enclosed poloidal

current by a given magnetic surface in the out¯ow. The parameters

e ; d ; d0 determine the latitudinal distribution of the density. The

parameter m controls the differential rotation. Further discussion of

the physical meaning of these parameters will be given later

(Sections 2.5, 5).

2.5 Some properties of the meridionally self-similar model

Our model is meridionally self-similar, i.e. if we know the shape

of one ®eld line a � a1 we may derive the shape of any

other streamline a � a2 by moving in the meridional direction

along each cycle R � const on the poloidal plane as illustrated in

Fig. 1.

Note that the ¯ux function A is simply proportional to a which

means that for cylindrical solutions at Rq 1, the magnetic ®eld on

the poloidal plane is uniform and its strength is independent of a,

|Bp|¥ � B,=G
2
¥.

The density at the AlfveÂn surface is

ra �
W2

A

4p
� r, 1� da� md0a

e
ÿ �

;

i.e. it is similar to a Taylor expansion in the cylindrical distanceÃa

from the rotation andmagnetic axisa � 0. For example, for e � 0:5

we have

ra

r,
� 1� md0

Ãa

r,
� d

Ãa

r,

� �2

:

We have also introduced the expansion factor

F ;

¶ lna�R; v�

¶ lnR
� 2ÿ R

G
20

G2
;

which measures the opening of the ®eld lines on the poloidal plane,

as illustrated in Fig. 2. Thus, if F > 2 the ®eld lines turn towards the

axis, if F � 2 they expand cylindrically, if F � 0 they are purely

radial, while if F < 0 the ®eld lines turn toward the equator (in this

case, there is a closed region near the equator). If we eliminate F in

(B6) (using B5) we have the second derivative of G (which

corresponds to the term ¶2A=¶r2 of the trans®eld equation). So,

using F as an intermediate function we have only ®rst-order

differential equations.

2.6 Radiative acceleration

For the radiative acceleration we have assumed two components.

The ®rst component results from continuum absorption and is set

proportional to the radiative ¯ux. It decreases with distance as rÿ2,

similar to gravity. If L« is the Eddington luminosity, we may use the

ratio G« � L=L« such that this part of the radiative acceleration is

G«rGM=r
2.

We have also assumed a second component of the radiative

acceleration resulting from line contribution. By adopting the

optically thin atmosphere aproximation (Lamers 1986; Chen &

Marlborough 1994; Kakouris & Moussas 1997), this part of the

acceleration is simply a function of r as in general the total number

of weak lines is a function of r. Then, the corresponding expression

of the radiative acceleration is rQ�R�V2
, =r,.
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Figure 2. A geometrical illustration of the expansion factor F�R�, which

determines the shape of the poloidal streamlines in a meridionally self-

similar out¯ow. Usually, 1 < F < 2 with F � 1 in conical and F � 2 in

cylindrical expansion.



The combination of gravitational and radiative acceleration is

thus

ÿr=V � Frad �
V
2
,

r,
r Q R� � ÿ

n2

2R2

� �

Ãr ;

where

n2 �
V
2
esc

V2
,

1ÿ G«

ÿ �

�
2GM

r,V
2
,

1ÿ G«

ÿ �

:

Furthermore, we use for Q the approximation of a power law,

Q R� � � m0=R
x with m0, and x constants.

In the following we shall discuss the results of the integration.

Finally, we shall calculate all the other remaining physical quan-

tities. A parametric study will be made only for e > 0, because for

e < 0 we have r! ¥ as a! 0.

For e � 0 or 1 (or equivalently for m � 0), we get a degenerate

case that needs an extra condition between the functions of R. This

case has been studied in Sauty & Tsinganos (1994) [where the

components of the pressure P0 ;P1 are set proportional to each

other] and Trussoni et al. (1997) [where the functionG�R� is given a

priori]. Here, in the case m � 0 we have chosen this extra condition

to be f
0

5=eÿ f8 ÿ d0f9 � 0 (cf. the last equation of the system B4).

3 CRIT ICAL SURFACES

In the domain of the solutions, there exist several critical surfaces.

In the following we brie¯y discuss the physical context of these

critical surfaces.

3.1 AlfveÂn critical surface

We recall that one of our goals is to investigate transAlfveÂnic

solutions wherein L � Ã
2
aQ. By multiplying equation (B6) with

1ÿM
2
and evaluating the resulting expression at the AlfveÂn point

we get

F,p, ÿ
F
2
, ÿ 4

2
ÿ 2P1, � 0 ; �30�

with F,, P1, and p, � dM2
=dR

ÿ �

,
the respective values of these

quantities at the AlfveÂn transition R � 1. Equation (30) is the so-

called AlfveÂn regularity condition in the present model. Note that if

we also multiply (B8) with 1ÿM
2 and evaluate the resulting

expression at the AlfveÂn point we get an identical expression,

while (B7) after using L'Hospital's rule gives an identity.

3.2 Slow/fast critical surfaces

In order to locate the critical surfaces where the radial component of

the ¯ow speed equals the corresponding slow/fast MHD wave

speeds (Tsinganos et al. 1996), we need to calculate ®rst the

sound speed Cs at these points; to this goal we may proceed as

follows.

Consider that at some ®xed distance R of a given streamline

labelled by a we make a small change in the density r and the

pressure P. We may de®ne the square of the sound speed as the ratio

of such an in®nitesimal change of P and r,

C
2
s �

¶P

¶r

� �

a;R

� ÿ
V

2
,

2

M
4

1� da� md0a
e

´
¶P0 R;M

2
ÿ �

¶M2
�
¶P1 R;M

2
ÿ �

¶M2
a�

¶P2 R;M
2

ÿ �

¶M2
ae

" #

; �31�

using (26)±(27). However, from the differential equation (B9) we

can calculate the derivative ¶P0 R;M
2

ÿ �

=¶M2, while from (B8) after

substituting dF=dR from equation (B6) we can calculate the other

derivative ¶P1 R;M
2

ÿ �

=¶M2
. Finally, from equation (B10) by taking

the derivative of P2�G;M
2
� for constant G�R� we similarly get the

derivative ¶P2 R;M
2

ÿ �

=¶M2. Substituting these derivatives in equa-

tion (31) we obtain the expression of the sound speed at the points

where 2M2
ÿ 1

ÿ �

G
4
ÿM

4
� 0.

An inspection of equation (B7) for the AlfveÂn number M�R�

reveals that besides the AlfveÂn transition where M � G � R � 1,

there may be other distances Rx Þ 1 where the denominator of this

equation becomes zero, D; 2M2
ÿ 1

ÿ �

G
4
ÿM

4
� �

R�Rx
� 0. In

such a case, the numerator of equation (B7) should be also set

equal to zero and we have conditions typical of a critical point

(using L'Hospital's rule we ®nd two solutions for the slope ofM2 at

this point, i.e., this singularity corresponds to an x-type critical

point). To clarify the physical identity of such a critical point, we

may manipulate the denominator D and write it in the form

D � 2eG2 1� da� md0a
e

V2
,V

4
A;rma

e

´ V
2
r ÿ V

2
A;r

ÿ �

V
4
r ÿ V

2
r C

2
s � V

2
A

ÿ �

� C
2
sV

2
A;r

� �

; �32�

where VA, VA;r are the total and radial AlfveÂn speeds, respectively.

Evidently, a critical point at Rx corresponds to the fast/slow critical

points modi®ed by the meridional self-similarity (Tsinganos et al.

1996). In other words, the sphere R � Rx is the corresponding

spherical separatrix in the hyperbolic domain of the system of the

MHD differential equations (Bogovalov 1996). The sound speed is

well de®ned at the critical points where D � 0, but it is an open

question whether this de®nition can be extended everywhere.

4 ASYMPTOTIC ANALYSIS

According to the asymptotical behaviour of the poloidal streamlines

we may distinguish two different types of solutions.

4.1 Cylindrical asymptotics achieved through oscillations

(Type I solutions)

In this case, the poloidal streamlines undergo oscillations of decay-

ing amplitude and ®nally they become cylindrical. A similar

oscillatory behaviour is found in all physical quantities, a situation

that has already been analysed in detail (Vlahakis & Tsinganos

1997, henceforth VT97). According to this analysis, as Rq 1 we

have

M
2
� M

2
¥ 1� l0«
ÿ �

; G
2
� G

2
¥ 1ÿ «� � ; �33�

«�r�<
D

rs
sin kr � f0

ÿ �

; s � 2�
l0M

2
¥

M2
¥ ÿ 1

; �34�

k
2
�

2y 1ÿ e� � M
2
¥ ÿ G

4
¥

ÿ �

r2,M
2
¥ 1ÿM2

¥

ÿ �2
; �35�

l0 � e� 1� �M
2
¥ ÿ eÿ 1� �G

4
¥

� � 1ÿM
2
¥

2M2
¥ ÿ 1

ÿ �

G4
¥ ÿM4

¥

: �36�

Note that for s > 1 the gravitational term is dominant, but the

analysis is still correct because the oscillatory perturbation is

independent of the `background' term 1=r (VT97).
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4.2 Converging to the axis asymptotics (Type II solutions)

An analysis of the system of the differential equations (B6)±(B9)

for G�R! ¥�! 0, M�R! ¥�! ¥ and F�R! ¥�! F¥ shows

that in this case the value of the expansion factor F¥ at Rq 1

approaches a constant value, the positive root of the equation

e� 3� � e�
3

2

� �

F
2
¥ ÿ 2 e� 2� � e�

5

2

� �

F¥ ÿ 4 e� 2� � � 0 :

As we shall see later, solutions are obtained mainly for e > 0, in

which case this root is greater than 2, F¥ > 2, i.e., the cross-sectional

area of the ¯ow tube drops to zero at large radii, G
2
~ R

2ÿF¥ . The

poloidal velocity goes to in®nity as Vr ~ R
e�2� � F¥ÿ2� � to conserve

mass,while the toroidal velocity grows likeVf�R! ¥� ~ R
F¥ÿ2 from

angular-momentum conservation.

5 PARAMETRIC STUDY OF SOLUTIONS

The two crucial parameters that affect the qualitative behaviour of

the model are y and e. First, for e, from the expression of the density

r in equation (26), it is required that e > 0 in order that the density at

the axis, r�a � 0;R� and the pressure are ®nite. In the case e � 1 the

electric current Iz�a;R� enclosed by a poloidal magnetic ¯ux tube

a � const and the corresponding con®ning azimuthal magnetic

®eld Bf�a;R� are proportional to a; this case has already been

studied by Sauty & Tsinganos (1994) and it was found that

cylindrical asymptotes are obtained through oscillations. If e > 1,

Iz�a;R� and Bf�a;R� increase faster with a, which results in a

stronger magnetic pinching force, which eventually reduces the

cross-sectional area of the ¯ow tube to zero. Therefore, we expect

that when 0 < e < 1 we obtain asymptotic cylindrical solutions,

while for larger values solutions where asymptotically G¥ ! 0, as

can be seen in Fig. 11. For the larger values of e > 1 the pinching

is so strong that oscillations do not exist. This may also be seen

from equation (35) where k
2
< 0 for e > 1 (for y�M2

¥ ÿ G
4
¥� > 0).

Note that if e > 1, it is needed to have y > 0 such that the square

roots in equations (B2), (B3) are positively de®ned near the axis

a< 0.

Overall then, we shall divide our parametric study accordingly

into the intervals 0 < e < 1, for cylindrical asymptotes with
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Figure 3. Poloidal streamlines near (left) and far (right) from the central object for case (a) with parameters: e � 0:5, y � 10, dn2 � 3:5, d0n
2
� 0:1, m0 � 0,

F, � 1 and p, < 2:2655. The AlfveÂn (fast) surface is indicated by dashed (dot±dashed) lines.

Figure 4. In the left panel are plotted the components of the magnetic (solid), pressure gradient (small dashes), gravitational (dot±dashed) and total acceleration

(long dashes) perpendicular to the poloidal streamlines on line a � alim for the parameters of the previous ®gure. In the the right panel the corresponding

components parallel to the poloidal lines are plotted also for case (a) and the same parameters: e � 0:5, y � 10, dn2 � 3:5, d0n
2
� 0:1, m0 � 0, F, � 1 and

p, < 2:2655.



oscillations [cases (a)±(b)] and e > 1, for ®eld lines converging to

the axis without oscillations [case (c)].

Secondly, the parameter y is related to the asymptotic value of

the pressure component P1 (and through force balance in the

cylindrical direction to Bf and Iz). For cylindrical solutions at

Rq 1, we get from the asymptotic analysis

P1;¥ � ÿy
M

2
ÿ 1

ÿ �

G
4
ÿM

2
ÿ �

�M
2 1ÿ G

2
ÿ �2

G2M2 1ÿM2
ÿ �2

" #

¥

:

For example when y > 0, in which case from the integration we

®nd G¥ < 1pM¥, we obtain P1;¥ > 0 and the pressure gradient

assists the magnetic pressure in collimating the out¯ow. In that

respect solutions with y > 0 correspond to an underpressured jet

(Trussoni et al. 1997). On the other hand when y < 0, in which case

from the integrationG4
¥ > M

2
¥ > 1, we ®nd P1;¥ > 0, P2;¥ < 0. In all

solutions with cylindrical asymptotes (i.e. for e < 1), one ®nds that for

y > 0 the total pressure force in the ÃÃ directionÿ ÃÃ= P� B
2
=�8p�

� �

is towards the axis while for y < 0 it is in the opposite direction.

In all these cases we have y�M2
¥ ÿ G

4
¥� > 0, or

y rV2
r =2

ÿ �

a�0;Rq1ÿ rV2
r =2

ÿ �

a�0;R�1

� �

> 0. In other words the sign

of y determines if the poloidal kinetic energy on the axis is larger at

the AlfveÂn point or at in®nity. Thus, according to the range of values

of y and e we distinguish the following cases.

5.1 Case (a): 0 < e < 1, y > 0

In this case cylindrical asymptotes are achieved through small-

amplitude oscillations of decaying amplitude (Type I solutions). In
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Figure 5. Dimensionless velocities for case (a) with parameters: e � 0:5,

y � 10, dn2 � 3:5, d0n
2
� 0:1, m0 � 0, F, � 1 and p, < 2:2655.

Figure 6. The solid line gives the relation between the expansion factor F, and the slope p, ofM
2
�R� at the AlfveÂn point for a solution through all critical points, for

case (a) with parameters: e � 0:5, y � 10, dn2 � 3:5, d0n
2
� 0:1, m0 � 0. The topologies ofM2

�R� at the neighbouring points (1), (2), (3) and (4) are also shown.



the left panel of Fig. 3 the shape of the ®eld/streamlines on the

poloidal plane is shown in the inner region between the stellar base,

the AlfveÂn (dashed, R � 1) and fast (dot±dashed, R � 2) critical

surfaces. The poloidal lines are almost radial up to the AlfveÂn

surface while after the fast critical surface they have attained a

cylindrical shape. However, the ®nal cylindrical shape of the

poloidal ®eld/streamlines is reached further out, i.e. at about

R � 20, as it is shown in the larger scale of Fig. 3 (right panel),

where their asymptotically cylindrical shape can be better seen. The

bending of the poloidal ®eld/streamlines towards the magnetic/

rotational axis is caused by the magnetic pinching force as it can be

seen in the left panel of Fig. 4 where the various components of the

forces acting on the plasma perpendicular to the poloidal ®eld lines

are plotted. In the inner region of the out¯ow, the total inertial force

perpendicular to the lines (centripetal force) is almost exclusively

provided by the inwards magnetic force, with the outwards pressure

gradient balancing the inward component of gravity. Asymptoti-

cally however, the magnetic pinching force and gravity are negli-

gible and the pressure gradient of the underpressured jet balances

the centrifugal force. The acceleration of the plasma along the

poloidal lines can be seen in the right panel of Fig. 4. Evidently, in

the inner region gravity is balanced by the pressure gradient force

and the plasma is accelerated only by the remaining magnetic force

while in the outer region where gravity and the magnetic force are

negligible, it is accelerated by the dominant pressure gradient force.

As it may also be seen in Fig. 5 most of the acceleration occurs on

the far region at R* 10 by the thermal pressure gradient force.

The solution discussed in this representative example crosses the

fast critical point modi®ed by self-similarity and a note is in order

here to explain how such a solution may be obtained. First, we

integrate equations (B6)±(B9) downstream of the AlfveÂn critical

point at which R � G � M � 1, F � F,, P1 � P1, and P0 � P0,, a

free parameter that determines the pressure at in®nity. At R � 1, the

AlfveÂn regularity condition relates F,, p, and P1,, equation (30).

Also there is a relation between F,,p, such that the solution passes

through the fast critical point; this is the solid line in Fig. 6. Assume

for example that we choose F, � 1 and we vary p,, Fig. 6. There is

only one value of p, < 2:26 that satis®es the AlfveÂn regularity

condition and the solution crosses the fast critical point. For other

values of p, above and below p, < 2:26 we have three different

types of unphysical solutions shown in Fig. 6:

(i) from point (1) of Fig. 6 corresponding to p, higher than 2:26

we get solutions in which the denominator of the differential

equation for M2 becomes zero and the curve M2
�R� turns back to

smaller distances;

(ii) from point (2) of Fig. 6 corresponding to p, lower than 2:26

until point (3) we get solutions in which the numerator of the

differential equation for M
2
becomes zero and then the solutions

become again subAlfveÂnic;

(iii) ®nally, from point (4) of Fig. 6 we get solutions in which

there is a distance R wherein M ! ¥ and the solutions terminate

there.

A ®ne tuning between points (1) and (2) gives the unique solution

that goes to in®nity with superAlfveÂnic and superfast radial velo-

city, satisfying also the causality principle for the propagation of

MHD perturbations. After ®nding such a critical value for p, we

also integrate equations (B6)±(B9) upstream of the AlfveÂn point.

5.2 Case (b): 0 < e < 1, y < 0

In this case we may have two possibilities. In one, the solution

crosses the fast critical point and the situation is similar to the

previous case (a). However, at the same time asymptotically

cylindrical solutions exist which do not cross the modi®ed fast

critical point, being simply superAlfveÂnic. An example of this type

of behaviour is shown in Figs 7±10. As in case (a), cylindrical

asymptotes are achieved through oscillations of decaying amplitude

(Type I solutions). In the left panel of Fig. 7 the shape of the ®eld/

streamlines on the poloidal plane is shown in the inner region

between the stellar base and the AlfveÂn (dashed, R � 1) critical

surface. The poloidal lines are almost radial up to this AlfveÂn

surface while outside R � 1 they attain a cylindrical shape. How-

ever, the ®nal cylindrical shape of the poloidal ®eld/streamlines is

reached further out, i.e. at about R � 20, as it is shown in the larger

scale of the right panel of Fig. 7 where their asymptotically

cylindrical shape obtained through the decaying amplitude oscilla-

tions can be better seen.

As in case (a), the focusing of the poloidal ®eld/streamlines

towards the magnetic and rotation axis is caused predominantly by

the magnetic pinching force; this may be seen in the left panel of

Fig. 8 where the various components of the forces acting on the

plasma perpendicular to the poloidal ®eld lines are plotted. In the

inner region of the out¯ow R& 1, the total inertial force perpendi-

cular to the lines (centripetal force) is almost exclusively provided

by the inwards magnetic force. In the far zone where gravity is

negligible, R* 1, the inwards magnetic pinching force is balanced

by the pressure gradient of the overpressured jet and the centrifugal

force. The acceleration of the plasma along the poloidal lines can be

seen in the right panel of Fig. 8. In the inner region R& 1 the

magnetic and pressure gradient forces accelerate the plasma; in the

outer region where gravity and the magnetic forces are negligible,

the pressure gradient force is left alone to accelerate the plasma. As

in case (a), it may also be seen in the right panel of Fig. 8 that most

of the acceleration occurs in the far region at R< 10 caused by the

thermal pressure gradient force.

Fig. 9 is a plot of the values of p, andF, for which the fast point is

crossed. As in case (a), we integrate equations (B6)±(B9) down-

stream of the AlfveÂn critical point at which R � G � M � 1,

F � F,, P1 � P1, and P0 � P0,. At R � 1 the AlfveÂn regularity

condition relates F,, p, and P1,, equation (30). Also there is a

relation between F,,p, such that the solution passes through the fast

critical point; this is the solid line in Fig. 9. Assume for example that

we choose F, � 0:7 and we vary p, (Fig. 9). There is only one value

of p, < 2:6 that satis®es the AlfveÂn regularity condition and the

solution crosses the fast critical point. For other values of p, above

and below p, < 2:6 we have different types of solutions shown in

Fig. 9:

(i) at point (6) of Fig. 9 corresponding to p, higher than p, < 2:6

we get solutions in which the denominator of the differential

equation for M
2
becomes zero and the curve M

2
�R� turns back to

smaller distances;

(ii) at points (5), (4) and (1) of Fig. 9 we get solutions in which the

numerator of the differential equation forM
2
becomes zero and then

the solutions become again subAlfveÂnic;

(iii) at points (2) and (3) of Fig. 9 we get oscillatory solutions that

do not cross the fast critical point. These solutions are shown in

Figs 7 and 8.

A ®ne tuning between points (6) and (5) gives the unique solution

that goes to in®nitywith superAlfveÂnic and superfast radial velocity.

Note that in this case there exists a value aout where Vf � 0 and

Bf � 0. In this streamline the enclosed poloidal current is zero. For

m � 9 and the parameters as in Fig. 7, aout � 3:24.
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5.3 Case (c): e > 1, y > 0

As discussed in the beginning of Section 5, when e > 1 the strong

magnetic pinching force results in a jet of zero asymptotic radius; in

addition, this asymptote is achieved without oscillations, i.e., we

obtain Type II solutions (Figs 11±13). The values of p, and F, for

which the solution crosses the fast critical point are shown in

Fig. 12.

As with the previous cases, for each value of F, there is only one

value of the AlfveÂn number slope p, for which the solution passes

through the fast critical point; this is the solid line in Fig. 12.

Assume for example that we choose F, � 0:8 and we vary p, (Fig.

12). There is only one value of p, < 2:53 that satis®es the AlfveÂn

regularity condition and the solution crosses the fast critical point.

For other values of p, above and below p, < 2:53 we have two

different types of unphysical solutions shown in Fig. 12:

(i) at point (1) of Fig. 12 corresponding to p, higher than 2:53 we

get solutions in which the denominator of the differential equation

for M
2
becomes zero and the curve M

2
�R� turns back to smaller

distances;

(ii) at point (2) of Fig. 12 corresponding to p, lower than 2:53 we

get solutions in which the numerator of the differential equation for

M
2 becomes zero and then the solutions again become subAlfveÂnic.

Fine tuning between points (1) and (2) gives the unique solution

that goes to in®nity with superAlfveÂnic and superfast radial velo-

city. Nevertheless, the jet radius goes to zero in this case.

6 ASTROPHYSICAL APPL ICATIONS

It should be noted that the purpose of this paper has not been to

construct a speci®c model for a given collimated out¯ow;

instead, our goal has been to outline via a speci®c class of exact
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Figure 7. Poloidal streamlines near (left) and far (right) from the central object for case (b) with parameters: e � 0:5, y � ÿ5, dn2 � 4, d0n
2
� 0:001, m0 � 0,

F, � 1 and p, � 2. With dotted lines the density isocontours are indicated with r=r, � 0:1; 1; 10 from top to bottom in the left panel and

r=r, � 0:01; 0:04; 0:07; 1; 10 from left to right in the right panel. The AlfveÂn surface in the left panel is indicated by dashed lines.

Figure 8. In the left panel are plotted the components of the magnetic (solid), pressure gradient (small dashes), gravitational (dot±dashed) and total acceleration

(long dashes) perpendicular to the poloidal streamlines on linea � alim. In the right panel the corresponding components parallel to the poloidal lines are plotted

also for case (b) and the same set of parameters: e � 0:5, y � ÿ5, dn2 � 4, d0n
2
� 0:001, m0 � 0, F, � 1 and p, � 2.



and self-consistent models, the interplay of the various MHD

processes contributing into the acceleration and collimation of

jets. Nevertheless, the illustrative examples analysed in this paper

can be compared with the observable characteristics of out¯ows

from stellar or galactic objects, say, those associated with young

stellar objects. For this purpose, in the following we establish the

connection between the non-dimensional models and the observa-

ble parameters of the out¯ow.

Suppose that at the polar direction of the stellar surface

(r � r0 ;a � 0) we know the values of Vr ;Br and r, say, V0, B0

and r0, respectively, such that we calculate M0 � V0

����������

4pr0
p

=B0.

From the integration we can ®nd the distance R0 where

M�R0� � M0. Thus, we may calculate the AlfveÂn distance

r, � r0=R0. Each line that has its footpoint on the stellar surface

at angle vi is labelled by a � r0 sin vi=r,G r0=r,
ÿ �� �2

. The last line

originating from the star is alim. Each line that has its footpoint on

the disc at distance ri > r0 from the axis of rotation is labelled by

a � ri=r,G ri=r,
ÿ �� �2

> alim.

If at the stellar surface G�R0� � G0 we ®nd the AlfveÂn values,

V, � V0G
2
0=M

2
0 , B, � B0G

2
0, r, � r0M

2
0 and from equations (26)±

(29) we can ®nd all physical quantities at any point. For example at

Rq 1, a � 0 we have the following asymptotic values:

V¥ � V0G
2
0M

2
¥=M

2
0G

2
¥, B¥ � B0G

2
0=G

2
¥, r¥ � r0M

2
0 =M

2
¥ :

6.1 Model of case (a)

For a typical solution with parameters as those plotted in Fig. 3, the

values of characteristic physical quantities are shown in Table 1.

288 N. Vlahakis and K. Tsinganos

q 1999 RAS, MNRAS 307, 279±292

Figure 9. The solid line gives the relation between the expansion factor F, and the slope p, ofM
2
�R� at the AlfveÂn point for a solution through all critical points,

for case (b) with parameters: e � 0:5, y � ÿ5, dn2 � 4, d0n
2
� 0:001, m0 � 0. The topologies of M2

�R� at the neighbouring points (1) to (6) are also shown.

Figure 10. Dimensionless velocities for case (b) with parameters: e � 0:5,

y � ÿ5, dn2 � 4, d0n
2
� 0:001, m0 � 0, F, � 1 and p, � 2.



These values refer to the intersection of the rotational axis with (i)

the stellar surface, (ii) the AlfveÂn singular surface, (iii) the fast

singular surface modi®ed by the self-similarity and (iv) in®nite

distance from the source. For a solar-type stellar mass 2 ´ 10
33
g we

have n2 � 462, while for m � 0:01 the angular velocity at the

equatorial point of the stellar surface has the solar value

2 ´ 10ÿ6 sÿ1. Note that in this case (a) the toroidal component of

the magnetic ®eld changes sign at some spherical surface (cf. the

velocity VAf ;lim in Fig. 5. This means that the poloidal current

enclosed by this surface is zero. All ®eld lines that pass through this

surface have the same cylindrical distance from the axis with the

AlfveÂn point (G � 1 at this spherical surface) while for larger

distances G < 1. After crossing this surface the Poynting ¯ux

changes its sign and thus the toroidal component of the velocity

becomes large enough [because Vf=ÃQ � M
2
ÿ G

2
ÿ �

=G
2
M

2
ÿ 1

ÿ �

< 1=G2]. It is worth noting that even with such

rather weak strengths of the magnetic ®eld, collimation is readily

achieved.

6.2 Model of case (b)

For a typical solution with parameters such as those plotted in Fig.

7, the values of characteristic physical quantities are also shown in

Table 1 and these values refer, as before, to the intersection of the

rotational axis with (i) the stellar surface, (ii) the AlfveÂn singular

surface and (iv) in®nite distance from the source. The last line

connected with the star has alim � 0:19 while the disc has a radius

2:45 ´ 1012 cm. If we choose a one solar mass star, n2 � 0:3 while

for m � 9, the stellar equator rotates with a speed 2:7 ´ 104 cm sÿ1

(the angular velocity is 1:3 ´ 10ÿ7 sÿ1).

The asymptotic radius of the jet (which is bounded with the line

aout) is 1 au, while the part of the ¯ow starting from the stellar

surface has a radius 0:23 au.This part of the jet is collimated at a

distance of about 4 au from the equatorial plane, while the whole

solution collimates at a height of 3:3 au. These results are consistent

with recent observations of YSOs (Ray et al. 1996).

6.3 Model of case (b) including radiation

There are two parameters (m0 ; x) determining the radiative force

(the third is included in n
2
). For the parameters of case (b) but for

m0 Þ 0, we examine the effect of the radiative force on the velocity

and the asymptotic radius of the out¯ow. As we expect, as the

radiative force increases, the terminal velocity becomes larger, Fig.

14, while the AlfveÂn surface moves closer to the stellar base. From

mass conservation we expect that the cross-sectional area of the jet

decreases as x increases, as it is shown in Fig. 15.

7 SUMMARY AND CONCLUSIONS

In this paper we have examined a class of exact solutions of the set

of the MHD equations (1)±(2) governing the dynamics of a

magnetized out¯ow from a rotating gravitating object. For this

system to be closed, an additional equation is needed to describe the

energetics of the out¯ow, i.e. some form of the energy conservation

principle, equation (3). The often used simplifying polytropic

relationship between pressure and density that corresponds to a

speci®c functional form of the net heating/cooling in the plasma

was not used. This has the inconvenient consequence that the sound

speed is ill-de®ned and it can be calculated only at the critical

points. Besides this inconvenience we do not suffer any loss of

generality in adopting a more general functional form of the total

heating than the polytropic assumption implies. As explained in

Section 2, in both the familiar polytropic case of constant g and the

present non-constant g approach, the detailed spatial distribution of

the required heating can be calculated only a posteriori.

The class of solutions that is analysed in this paper belongs to a

group of nine classes of meridionally self-similar MHD solutions,

which have been shown to exist in the recent paper VT98 under the

assumptions that the AlfveÂn±Mach number is a function of the

radial distance and the poloidal magnetic ®eld has a dipolar angular

dependence (equation 7). These assumptions may be reasonable for

out¯ows around the magnetic and symmetry axis of the system. No

assumption was made about the asymptotes of the out¯ows. It is

interesting that the self-consistently deduced shape of the stream-

lines and magnetic ®eld lines was found to be helices wrapped

around surfaces that are asymptotically cylindrical. In other words,

the streamlines extended to in®nite heights above the central object

and its disc obtaining the form of a jet. It was shown that such

collimation is obtained even with very weak magnitudes of the
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Figure 11. Poloidal streamlines near (left) and far (right) from the central object for case (c) with parameters: e � 2, y � 10, dn2 � 4, d0n
2
� 0:1, m0 � 0,

F, � 0:8 and p, < 2:5636. The AlfveÂn (fast) surface is indicated by dashed (dot±dashed) lines.



magnetic ®eld. This result may be contrasted to the quite frequently

referred to Blandford & Payne (1982) solutions, which by

overfocusing towards the axis terminate at ®nite heights above

the disc. The new element that the present model introduces in the

self-consistent modelling of MHD out¯ows is that it produces for

the ®rst time jet-type solutions extending from the stellar base to

in®nity and where the out¯ow crosses at a ®nite distance the fast

critical point such that the MHD causality principle is satis®ed. The

cylindrical asymptotes of the present non-polytropic solutions are

consistent with the polytropic analysis of Heyvaerts & Norman

(1989) and alsowith the class of superAlfveÂnic but subfast solutions

at in®nity of Sauty & Tsinganos (1994) for ef®cient magnetic

rotators. However, no radial asymptotes were found in the present

class of models, contrary to the other class of meridionally self-

similar solutions examined in Sauty & Tsinganos (1994) where for

inef®cient magnetic rotators radial asymptotes have been found; it

may be that the present model belongs to the group of ef®cient

magnetic rotators.

The topologies of the solutions are rather rich as it was shown in

the plane de®ned by the slope of the AlfveÂn number p, and the

streamline expansion factor F, at the AlfveÂn transition. For exam-

ple, for a given streamline expansion factor F, we obtained

terminated solutions for p > p,, similar to the corresponding termi-

nated solutions in Parker's (1958) HD wind, or, the Weber & Davis

(1967) magnetized wind. For a given pressure at the AlfveÂn point,

the requirement that a solution crosses the AlfveÂn and fast critical

points eliminates the freedom in choosing p, and F, through the

corresponding regularity and criticality conditions.
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Figure 13. Dimensionless velocities for case (c) with parameters: e � 2,

y � 10, dn2 � 4, d0n
2
� 0:1, m0 � 0, F, � 0:8 and p, < 2:5636.

Figure 12.The solid line gives the relation between the expansion factorF, and the slope p, ofM
2
�R� at the AlfveÂn point for a solution through all critical points,

for case (c) with parameters: e � 2, y � 10, dn2 � 4, d0n
2
� 0:1, m0 � 0.



A plotting of the various forces acting along and perpendicular to

the poloidal streamlines reveals that the wrapping of the ®eld lines

around the symmetry axis is caused predominantly by the hoop

stress of the magnetic ®eld and is already strong at the AlfveÂn (and

fast) critical surface. Asymptotically the cylindrical column is

con®ned by the interplay of the inwards magnetic pinching force,

the outwards centrifugal force and the pressure gradient, as in

Trussoni et al. (1997). On the other hand, the acceleration of the

plasma along the poloidal magnetic lines, in the near zone close to

the AlfveÂn distance, is due to the combination of thermal pressure

and magnetic forces, while at the intermediate zone beyond the

AlfveÂn point it is basically the pressure gradient that is responsible

for the acceleration.
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APPENDIX A: FUNCTIONS OF R
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APPENDIX B : PHYS ICAL QUANTIT IES AND

DIFFERENTIAL EQUATIONS OF MODEL

The MHD integrals have the following forms,
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The three ordinary differential equations for the functions of R are
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or using the de®nitions of P0 ;P1 and F
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The pressure component P2�R� is given explicitly in terms of the

other variables:
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The functional form of the pressure, equation (27), corresponds to

the following functional form for the heating function:

q

rVr

�
V
2
,

2r,

Q0 �Q1a�Q2a
e

1� da� md0a
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with Q i � M
ÿ2 Gÿ1� � d

dR

M
2G
Pi

Gÿ 1

 !

; i � 0; 1; 2. As discussed in

Section 2.1, one could proceed in the reverse way, i.e. start with the

functional form of the heating function and deduce the functional

form of the pressure equation (27).
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