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A B S T R A C T

By a systematic method we construct general classes of exact and self-consistent axisym-

metric magnetohydrodynamic (MHD) solutions describing flows that originate in the near

environment of a central gravitating astrophysical object. The unifying scheme contains two

large groups of exact MHD outflow models: (I) meridionally self-similar models with

spherical critical surfaces; and (II) radially self-similar models with conical critical surfaces.

This classification includes known polytropic models, such as the classical Parker description

of a stellar wind and the Blandford & Payne model of a disc wind; it also contains non-

polytropic models, such as those of winds/jets in Sauty & Tsinganos, Lima, Tsinganos &

Priest, and Trussoni, Tsinganos & Sauty. Besides the unification of all known cases under a

common scheme, several new classes emerge and some are briefly analysed; they could be

explored for a further understanding of the physical properties of MHD outflows from various

magnetized and rotating astrophysical objects in stellar or galactic systems.

Key words: MHD – solar wind – stars: atmospheres – stars: mass-loss – ISM: jets and

outflows – galaxies: jets.

1 I N T RO D U C T I O N

Awidespread phenomenon in astrophysics is the outflow of plasma

from the environment of stellar or galactic objects, either in the

form of a non-collimated wind (Parker 1958; Feldman et al. 1996),

or in the form of collimated jets (Blandford & Rees 1974; Biretta

1996). These outflows not only occur around typical stars and the

nuclei of many radio galaxies and quasars, but are also associated

with young stars, older mass-losing stars and planetary nebula

nuclei, symbiotic stars, black hole X-ray transients, low- and

high-mass X-ray binaries and cataclysmic variables (for recent

reviews see e.g., respectively, Ferrari et al. 1996, Ray 1996, Kafatos

1996, Mirabel & Rodriguez 1996 and Livio 1997). Even for the two

spectacular rings seen with the Hubble Space Telescope (HST) in

SN1987A, it has been proposed that they may be produced by two

precessing jets from an object similar to SS433 on a hourglass-

shaped cavity which is created by non-uniform winds from the

progenitor star (Burderi & King 1995; Burrows et al. 1995). Also

recently, in the well-known long jet of the distant radio galaxy NGC

6251, an ,103 light-year-wide warped dust disc perpendicular to

the main jet axis has been observed by HST to surround and reflect

UV light from the bright core of the galaxy which probably hosts a

black hole (Crane & Vernet 1997).

Nevertheless, despite their abundance, the questions of the

formation, acceleration and propagation of non-uniform winds

and jets have not been fully resolved. One of the main difficulties

in dealing with the theoretical problem posed by cosmical outflows

is that their dynamics needs to be described – even to lowest order –

by the highly intractable set of magnetohydrodynamic (MHD)

equations. As is well known, this is a non-linear system of partial

differential equations with several critical points, etc., and only a

very few classes of solutions are available for axisymmetric systems

obtained by assuming a separation of variables in several key

functions. This hypothesis allows an analysis in a 2D geometry of

the full MHD equations which reduce then to a system of ordinary

differential equations. The basis of such a self-similarity treatment

is the prescription of a scaling law in the variables as a function of

one of the coordinates. The choice of the scaling variable depends

on the specific astrophysical problem.

In spherical coordinates (r ; v ; f), a first broad class for describ-

ing outflows comprises the so-called meridionally self-similar

MHD models. Parker’s (1958) classical modelling of the spheri-

cally symmetric polytropic solar wind is the simplest member of

this class. A new class of such a type of model for describing

magnetized and rotating MHD outflows from a central gravitating

object has also been examined (Sauty & Tsinganos 1994, hence-

forth ST94; Lima, Tsinganos & Priest 1996; Trussoni, Tsinganos &

Sauty 1997). For example, an energetic criterion for the transition of

an asymptotically conical outflow originating at an inefficient

magnetic rotator to an asymptotically cylindrical outflow from an
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efficient magnetic rotator was derived. In the present paper, it will

be shown that this special class of meridionally self-similar solu-

tions is one of the simplest possible meridionally self-similar

models. Furthermore, a new interesting member of this class of

radially self-similar MHD models will be briefly sketched.

A second broad class of solutions contains the radially self-

similar MHD models. Bardeen & Berger (1978) presented the first

such models in the context of hydrodynamic and polytropic galactic

winds. Nevertheless, their generalization to a cold magnetized

plasma by Blandford & Payne (1982, henceforth BP82) remains

widely known because of their success in showing for the first time

that astrophysical jets can be accelerated magnetocentrifugally

from a Keplerian accretion disc, if the poloidal fieldlines are

inclined by an angle of 608, or less, to the disc mid-plane (but see

also Cao 1997). A further extension has been presented by Con-

topoulos & Lovelace (1994) for a hot plasma with a more general

parametrization of the magnetic flux on the disc, while these models

form the basis of several investigations of accretion–ejection flows

from stars and active galactic nuclei (AGN) (Konigl 1989; Ferreira

& Pelletier 1995; Ferreira 1997; Li 1995). In this paper it will be

shown that this special class of radially self-similar solutions is one

of the simplest possible such models. Furthermore, a new interest-

ing member of the radially self-similar MHD models will be

sketched.

The paper is organized as follows. After a brief introduction of

the basic MHD quantities, in Section 2.1 we use a simple theorem in

order to construct several classes of meridionally self-similar

solutions, and the resulting cases are then summarized in Tables 1

and 2. The general method is next applied in Section 2.2 to a step-

by-step construction of a new model for collimated outflows which

is also briefly sketched there. In Section 3 the other remaining

possibility in spherical coordinates, i.e. radial self-similarity, is

taken up. The resulting cases are summarized in Table 3, while a

new model is also briefly sketched which gives asymptotically

cylindrical, paraboloidal and conical streamlines. Finally, the

results are summarized in Section 4.

2 M E R I D I O NA L LY S E L F - S I M I L A R M H D

O U T F L OW S

Consider the steady ð∂=∂t ¼ 0Þ hydromagnetic equations. They

consist of a set of eight coupled, non-linear, partial differential

equations expressing momentum, magnetic and mass flux conser-

vation, together with Faraday’s law of induction in the ideal MHD

limit,

rðV·=ÞV ¼
= × Bð Þ × B

4p
¹ =P ¹ r=V ; ð1Þ

=·B ¼ 0 ; =· rVð Þ ¼ 0 ; = × V × Bð Þ ¼ 0 : ð2Þ

B, V and ¹=V ¼ ¹=ð¹GM=rÞ denote the magnetic, velocity and

external gravity fields, respectively, while r and P denote the gas

density and pressure. With axisymmetry ð∂=∂f ¼ 0Þ, we may

introduce the magnetic flux function A, such that three free integrals

exist for the total specific angular momentum carried by the flow

and the magnetic field, LðAÞ, the corotation angular velocity of each

streamline at the base of the flow, QðAÞ, and the ratio of the mass and

magnetic fluxes, WAðAÞ (Tsinganos 1982). In terms of these

integrals and the square of the poloidal Alfvén Mach number (or

Alfvén number),

M
2

¼
4prV

2
p

B2
p

¼
W2

A

4pr
; ð3Þ

the magnetic field and bulk flow speed are given in spherical

coordinates ðr; v; fÞ by

B ¼ = ×
Aðr; vÞf̂

r sin v
¹

LWA ¹ r
2 sin2 vQWA

r sin vð1 ¹ M2Þ
f̂ ; ð4Þ

V ¼
WA

4pr
= ×

Aðr; vÞf̂

r sin v
þ

r
2

sin
2 vQ ¹ LM

2

r sin vð1 ¹ M2Þ
f̂ : ð5Þ

To construct classes of exact solutions, we shall make two crucial

assumptions:

(i) that the Alfvén number M is some function of the dimension-

less radial distance R ¼ r=r,,

M ¼ MðRÞ ; ð6Þ

and

(ii) that the poloidal velocity and magnetic fields have a dipolar

angular dependence,

A ¼
r

2
,B,

2
A að Þ ; a ¼

R
2

G2 Rð Þ
sin2 v : ð7Þ

By choosing G R ¼ 1ð Þ ¼ 1 at the Alfvén transition R ¼ 1, GðRÞ

evidently measures the cylindrical distance Ã to the polar axis of

each fieldline labelled by a, normalized to its cylindrical distance

Ãa at the Alfvén point, G Rð Þ ¼ Ã=Ãa. For a smooth crossing of the

Alfvén sphere R ¼ 1 [r ¼ r,; v ¼ vaðaÞ], the free integrals L and Q

are related by

L

Q
¼ Ã

2
aðAÞ ¼ r

2
, sin2 vaðaÞ ¼ r

2
,a : ð8Þ

Therefore the second assumption is equivalent to the statement that

at the Alfvén surface the cylindrical distance Ãa of each magnetic

flux surface a ¼ const and is simply proportional to
���

a
p

.

Note also that the gravitational potential can be expressed in

terms of the escape speed Vesc at the Alfvén radius r,,

V ¼ ¹
n2

V
2
,

2R
; n ¼

Vesc

V,

; Vesc ¼

������������

2GM

r,

s

:

Instead of using the three free functions of a, (A ; WA , Q), we found

it more convenient to work instead with the three dimensionless

functions of a, (g1 , g2 , g3),

g1 að Þ ¼

�

A
02

da ; ð9Þ

g2 að Þ ¼
r

2
,

B2
,

�

Q2W2
Ada; ð10Þ

g3 að Þ ¼
W2

A

4pr,

: ð11Þ

Also, we shall indicate by P the total pressure in units of the

magnetic pressure at the Alfvén surface on the polar axis,

B
2
,=8p ¼ r,V

2
, =2,

P ¼
8p

B2
,

P þ
B

2

8p

� �

;

such that

P ¼
B

2
,

8p
P þ f1g

0
1 þ f2ag

0
1 þ f3ag

0
2

ÿ �

: ð12Þ

The functions fiðRÞ, i ¼ 1; 2; 3, are given in Appendix A, while all

starred quantities refer to their respective values at the polar Alfvén
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point (R ¼ 1 ; a ¼ 0). Hence

A0 a ¼ 0ð Þ ¼ 1 ; WA a ¼ 0ð Þ ¼
�����������

4pr,

p

;

or

g
0
1 a ¼ 0ð Þ ¼ 1 ; g3 a ¼ 0ð Þ ¼ 1 : ð13Þ

With assumptions (i)–(ii) and in this notation, the r̂- and v̂-

components of the momentum equation become

∂P R; vð Þ

∂R
¼ f6g

0
1 þ f7 þ

F

R
f4

� �

ag
0
1

þ f8 þ
F

R
f5

� �

ag
0
2 þ f9g3 ; ð14Þ

∂P R; vð Þ

∂v
¼ 2 cot v f4ag

0
1 þ f5ag

0
2

ÿ �

: ð15Þ

Next, by using a instead of v as an independent variable, we may

transform from the pair of independent variables (R ; v) to the pair of

independent variables (R ; a). With the following elementary rela-

tions valid for any differentiable function F,

∂F R; vð Þ

∂R
¼

∂F R; að Þ

∂R
þ a

F

R

∂F R; að Þ

∂a
; ð16Þ

∂F R; vð Þ

∂v
¼ 2a cot v

∂F R; að Þ

∂a
; ð17Þ

we may transform equations (14) and (15) into the following two

equations:

∂P a; Rð Þ

∂a
¼ f4g

0
1 þ f5g

0
2 ; ð18Þ

∂P a; Rð Þ

∂R
¼ f6g

0
1 þ f7ag

0
1 þ f8ag

0
2 þ f9g3 : ð19Þ

By integrating equation (18) we get P ¼ f4g1 þ f5g2 þ f0 where f0
is an arbitrary function of R. From equation (12) the pressure is

P ¼
B

2
,

8p
f4g1 þ f5g2 þ f0 þ f1g

0
1 þ f2ag

0
1 þ f3ag

0
2

ÿ �

; ð20Þ

or,

P ¼
B

2
,

8p
YP†

;

where P and Y are the (1 × 7) matrices

P ¼ f0 f4 f1 f2 f5 f3 0
� �

ð21Þ

and

Y ¼ Y1 Y2 Y3 Y4 Y5 Y6 Y7

� �

¼ 1 g1 g
0
1 ag

0
1 g2 ag

0
2 g3

� �

:

ð22Þ

Substituting for P in equation (19) it follows that

¹f9g3 ¹ f8ag
0
2 þ f

0
5g2 ¹ f7ag

0
1 ¹ f6g

0
1 þ f

0
4 g1 þ f

0
0 ¼ 0 ; ð23Þ

an expression of the form

X7 Rð ÞY7 að Þ þ X6 Rð ÞY6 að Þ þ … þ X1 Rð ÞY1 að Þ ¼ 0 ;

or,

YX†
¼ 0 ; ð24Þ

with X the (1 × 7) matrix:

X ¼ ½ X1 X2 X3 X4 X5 X6 X7 ÿ

¼ ½ f
0
0 f

0
4 ¹ f6 ¹ f7 f

0
5 ¹ f8 ¹ f9 ÿ : ð25Þ

2.1 Systematic construction of classes of meridionally self-

similar MHD outflows

It is straightforward to prove the following useful theorem (Vlaha-

kis & Tsinganos 1997).

Theorem. If FnðaÞ, YiðaÞ, XiðRÞ, i ¼ 1; 2; . . . ; n are arbitrary func-

tions of the independent variables a and R and

Fn að Þ ¼ Y1 að ÞX1 Rð Þ þ … þ Yn að ÞXn Rð Þ; ð26Þ

then there exist constants c1; c2; . . . ; cn such that

Fn að Þ ¼ c1Y1 að Þ þ c2Y2 að Þ þ … þ cnYn að Þ: ð27Þ

Consider then a relation of the form

Xn Rð ÞYn að Þ þ … þ X1 Rð ÞY1 að Þ ¼ 0 : ð28Þ

Regarding the first term of the sum, there are evidently only two

possibilities. Either

(i) Xn Rð Þ ¼ 0 for every R, in which case (indicated by the digit

‘0’) we have

Xn¹1 Rð ÞYn¹1 að Þ þ … þ X1 Rð ÞY1 að Þ ¼ 0 ;

or

(ii) Xn Rð Þ Þ 0, in which case (indicated by the digit ‘1’) we have

Yn að Þ ¼ ¹
X1 Rð Þ

Xn Rð Þ
Y1 að Þ ¹ … ¹

Xn¹1 Rð Þ

Xn Rð Þ
Yn¹1 að Þ :

Then, according to the theorem stated at the beginning of this

section, there are constants m
nð Þ

i ; i ¼ 1; 2; . . . ; n ¹ 1, such that

Yn að Þ ¼
Pn¹1

i¼1 m
nð Þ

i Yi að Þ. This gives a condition between the func-

tions of a. Substituting this condition in the initial sum we find

½Xn¹1ðRÞ þ m
ðnÞ
n¹1XnðRÞÿYn¹1ðaÞ

þ Xn¹2 Rð Þ þ m
nð Þ

n¹2Xn Rð Þ
� �

Yn¹2 að Þ ð29Þ

þ . . . þ X1 Rð Þ þ m
nð Þ

1 Xn Rð Þ
� �

Y1 að Þ ¼ 0 :

Hence in both cases (i) and (ii) we find a sum with n ¹ 1 terms.

Following this algorithm, at the end we will have only one term.

Since for each product we have the above two possibilities, in total

we obtain 2n cases. Each of them corresponds to a set ‘xx. . .xx’ with

x ¼ 1; 0 (n digits). The number of ‘1’ digits is the number of

conditions between functions of a, while the number of ‘0’ digits

is the number of conditions between functions of R.

Following this method, from equation (23) we get 27 solutions.

Each of them corresponds to a set ‘xxxxxxx’ with x either 1 or 0. Of

those numbers we can say the following.

(i) The first digit is always ‘1’ (because X7 Þ 0).

(ii) The last digit is always ‘0’ (because Y1 Þ 0).

(iii)Since A0
Þ 0, it follows that g

0
1 Þ 0 and thus g1 cannot be a

constant. Hence the function Y2 ¼ g1 cannot be proportional to Y1

and therefore all numbers always have ‘00’ at the end.

(iv) We have in total six unknown functions: the three functions

of R, (G; M; f0) and the three functions of a, (g1; g2; g3). On the other

hand, the number of conditions between the functions of R (their

number is equal to the number of digits ‘0’) and the functions of a

(their number is equal to the number of digits ‘1’) in each one of the

sets ‘xxxxxxx’ is seven. It follows that the system of (G; M; f0) and

(g1; g2; g3) is overdetermined. Note, however, that since the forms

of the functions XiðRÞ are more complicated than the forms of the

functions YiðaÞ, we choose sets ‘xxxxxxx’ with at most three ‘0s’

because in the case of four or more ‘0s’ we have correspondingly
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four or more relations between the three functions of R, which in

general overdetermines the system of (G; M; f0). In this way we shift

the difficulty of overdetermination of the problem to the set of the

three functions of a, (g1; g2; g3), which need to satisfy four

relations. In this system, however, it is possible to choose the

constants m
jð Þ

i such that a consistent solution for the functions of

a can be finally constructed.

Altogether, then, and with these considerations in mind, from the

2
7

¼ 128 possible cases we end up with only five: 1011100,

1101100, 1110100, 1111000 and 1111100. For each one of those

sets we can solve the system for g1 ; g2 ; g3, as is shown in the

example of the next section.

From a different perspective, g1ðaÞ; g2ðaÞ and g3ðaÞ are vectors

in a 3D a-space with basis vectors [u1ðaÞ ; u2ðaÞ ; u3ðaÞ]. This space

contains all vectors giðaÞ, i ¼ 1; 2; 3, subject to the v-self-similarity

constraint manifested by equation (23), i.e. that, for a given such set

giðaÞ, i ¼ 1; 2; 3, the vectors 1; ag
0
1ðaÞ ; ag

0
2ðaÞ and g

0
1ðaÞ also

belong to the same space. Each of the resulting functions giðaÞ,

i ¼ 1; 2; 3, is then a linear combination of the basis vectors

u1ðaÞ; u2ðaÞ and u3ðaÞ. In the following, we choose u1 ¼ 1,

u2 ¼ g1ðaÞ. All such sets of basis vectors give all possible mer-

idionally self-similar solutions. Therefore, collecting all possibili-

ties, we end up with the classes of solutions shown in Table 1. Note

that in the last three cases A
0 a ¼ 0ð Þ Þ 1, but one can say that the

starred quantities refer to values at the point R ¼ 1; a ¼ a0 < 1.

In all nine cases of Table 1, from equations (9), (10) and (11) we

may easily find the forms of the free integrals from the relations

A ¼
B,r

2
,

2

�a

0

�����

g0
1

p

da; WA ¼
���������������

4pr,g3

p

; ð30Þ

Q ¼
V,

r,

�����

g0
2

g3

s

; L ¼ r,V,a

�����

g0
2

g3

s

; ð31Þ

while, by substituting g1; g2 and g3 in equations (20) and (23), the

corresponding ordinary differential equations for the jet radius

GðRÞ, Alfvén number MðRÞ and pressure component f0ðRÞ are

found from the R-relations, as is illustrated in the following section.

From the perspective of the a-space, in each one of the cases of

Table 1 there exists a 3 × 7 matrix K such that

Y ¼ u1 u2 u3

� �

K ; ð32Þ

so that, from equation (24),

u1 u2 u3

� �

KX†
¼ 0 :

If the ui are linearly independent then

KX†
¼ 0 :

These three equations are the ordinary differential equations for the

functions of R in each model, while the pressure is

P ¼
B

2
,

8p
u1 u2 u3

� �

KP†
¼

B
2
,

8p
P0 þ P1g1 þ P2u3

ÿ �

;

where

KP†
¼ ½P0 P1 P2ÿ

†
:

The first two cases of Table 1 are of some interest. The first is a

degenerate one with u3 ¼ 0 and the following form of the free

integrals:

A ¼
B,r

2
,

2
a ; WA ¼

���������������������������

4pr, 1 þ dað Þ
p

Q ¼
lV,

r,

1
��������������

1 þ da
p :

ð33Þ

This is a special case of the more general following case (2) for

m ¼ 0 (and y ¼ l2), and has been studied in detail in ST94 and

Trussoni et al. (1997). It is the single case where we have only two

conditions between the functions of R, so that the third relation

between the unknown functions G; M and f0 is freely chosen. In

Trussoni et al. (1997) this corresponds to an a priori specification of

the shape of the poloidal streamlines, while in ST94 it corresponds

to an a priori imposed relationship between the spherically and non-

spherically symmetric components of the pressure. This last case

leads to a generalized polytropic-type relation between pressure

and density of the form

Pða; RÞ

Pð0; RÞ
¼ function of

rða; RÞ

rð0; RÞ
: ð34Þ

As a result, a Bernoulli-type constant exists and, among others, this

constant gives a quantitative criterion for the transition of an

asymptotically conical wind from an inefficient magnetic rotator

to an asymptotically cylindrical jet from an efficient magnetic

rotator.

The second case with e Þ 0; 1; m Þ 0 has u2 ¼ a, u3 ¼ ae. The
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Table 1. Meridionally self-similar models.

Case g1ðaÞ g2ðaÞ g3ðaÞ constraints on constants

(1) a l2a 1 þ da

(2) a ya þ mae
=e 1 þ da þ md0ae e Þ 0; 1; m Þ 0

(3) a ya þ ma ln a 1 þ da þ md0a ln a m Þ 0

(4) a0e
a

a0 le
a

a0 1 þ dae
a

a0 þ m e
a

a0 ¹ 1
� �

(5)
a0

e
| a

a0
¹ 1 |e¹1 a

a0
¹ 1

� �

y | a
a0

¹ 1|e 1 þ d | a
a0

¹ 1 |e þm | a
a0

¹ 1 |e¹1
¹d ¹ m e Þ 0; 1

(6) ¹a0 ln | a
a0

¹ 1| y ln | a
a0

¹ 1| 1 þ d ln | a
a0

¹ 1| þ m a
a0 a¹a0ð Þ

(7) a
1¹a0

m ln a
a0

þ ya 1 þ d a ¹ a0

ÿ �

þ md0 ln a
a0

m Þ 0

(8)
a0

e 1¹a0ð Þ
a
a0

� �e

l1ae
þ l2ae¹1 1 þ d1 ae

¹ ae
0

ÿ �

þ d2 ae¹1
¹ ae¹1

0

ÿ �

e Þ 0; 1

(9)
a0

1¹a0
ln a

a0
l1 ln a

a0
þ

l2

a
1 þ d1 ln a

a0
þ d2

1
a

¹ 1
a0

� �



corresponding form of the free integrals is

A ¼
B,r

2
,

2
a; WA ¼

���������������������������������������������

4pr, 1 þ da þ md0ae
ÿ �

q

Q ¼
V,

r,

�������������������������������

mae¹1 þ y

1 þ da þ md0ae

s

: ð35Þ

This is a new case which emerged from the present systematic

construction. The corresponding differential equations are derived

in detail in the example of the next section where the solution is

briefly analysed.

In the special configuration with G ¼ R ⇔ a ¼ sin
2 v, the field-

and streamlines on the poloidal plane are radial and we find the five

cases shown in Table 2.

The first case is a degenerate one, wherein there is only one

condition between the unknown functions MðRÞ and f0ðRÞ. Thus a

second relation between MðRÞ and f0ðRÞ can be imposed a priori, for

example a polytropic relation between pressure and density. This

last possibility leads precisely to Parker’s (1958) classical solar

wind solution with a radial and non-rotating outflow. All other cases

(2)–(5) are non-degenerate, i.e. there are two relations between

MðRÞ and f0ðRÞ.

The second case has been analysed in detail in Lima et al. (1996)

and corresponds to a radial but heliolatitudinally dependent outflow.

If in addition m ¼ ¹1, e ¼ 1, this case coincides with (1) in Table 1

for radial poloidal streamlines. Note that a common feature of all

rotating cases with radial streamlines on the poloidal plane is that

they cannot be extended over all of the poloidal plane, for suffi-

ciently fast magnetic rotators. For example, in the model of Lima et

al.. (1996) the pressure becomes negative at some colatitude vmax,

for large values of rotation. This is basically due to the fact that, with

the poloidal magnetic field dropping like 1=R
2 and the azimuthal

field dropping like 1=R, the magnetic pressure drops like 1=R
4 and by

itself alone cannot balance the magnetic tension which drops like

1=R
3
; a strong pressure gradient is then needed from the pole

towards the equator to balance the magnetic pinching. In fast

magnetic rotators this pressure gradient is so strong that it leads

to negative values of the pressure at angles v > vmax. A collimated

outflow with uniform asymptotic conditions is the only way left for

an everywhere valid outflow from an efficient magnetic rotator

(Heyvaerts & Norman 1989; ST94).

2.2 Example of a new model for a meridionally self-similar

MHD outflow

Let us illustrate the previous construction with the example

1101100 obtained from the present case with n ¼ 7. This number

has the following meaning.

Since the first digit is 1, there are six constants m 7ð Þ
i ; i ¼ 1; 2; . . . ; 6

such that the following relation holds between the functions

YiðaÞ; i ¼ 1; 2; . . . 7:

Y7 ¼
X

6

i¼1

m 7ð Þ
i Yi (a-relation-1) : ð36Þ

Substituting this expression for Y7 in the initial relation equation

(24) between the functions (Xi, YiÞ; i ¼ 1; . . . ; 7; we obtain

X6 þ m 7ð Þ
6 X7

ÿ �

Y6 þ X5 þ m 7ð Þ
5 X7

ÿ �

Y5

þ . . . þ X1 þ m
7ð Þ

1 X7

ÿ �

Y1 ¼ 0 :

ð37Þ

Now the second digit is again 1 and thus there are five constants

m
6ð Þ

i ; i ¼ 1; 2; . . . ; 5 such that

Y6 ¼
X

5

i¼1

m
6ð Þ

i Yi (a-relation-2) ; ð38Þ

while substituting this relation in equation (39) we obtain

X5 þ m
7ð Þ

5 X7

ÿ �

þ m
6ð Þ

5 X6 þ m
7ð Þ

6 X7

ÿ �� �

Y5

þ . . . þ X1 þ m
7ð Þ

5 X7

ÿ �

þ m
6ð Þ

1 X6 þ m
7ð Þ

6 X7

ÿ �� �

Y1 ¼ 0 : ð39Þ

The third digit is 0 and hence

X5 þ m
7ð Þ

5 X7

ÿ �

þ m
6ð Þ

5 X6 þ m
7ð Þ

6 X7

ÿ �

¼ 0 (R-relation-1), ð40Þ

a relation between the functions of R. With the help of equation

(42), equation (41) now reduces to

X

4

i¼1

Xi þ m
7ð Þ

i X7

ÿ �

þ m
6ð Þ

i X6 þ m
7ð Þ

6 X7

ÿ �� �

Yi ¼ 0 : ð41Þ

The fourth digit is 1 and thus there are three constants

m
4ð Þ

i ; i ¼ 1; 2; 3, such that

Y4 ¼
X

3

i¼1

m
4ð Þ

i Yi (a-relation-3) : ð42Þ

Substituting this relation in equation (43) we obtain

X

3

i¼1

f½ðXi þ m
ð7Þ
i X7Þ þ m

ð6Þ
i ðX6 þ m

ð7Þ
6 X7Þÿ

þ m
ð4Þ
i ½ðX4 þ m

ð7Þ
4 X7Þ þ m

ð6Þ
4 ðX6 þ m

ð7Þ
6 X7ÞÿgYi ¼ 0 : ð43Þ

The fifth digit is 1 and there are two constants m
3ð Þ

i ; i ¼ 1; 2, such that

Y3 ¼ m 3ð Þ
1 Y1 þ m 3ð Þ

2 Y2 (a-relation-4) : ð44Þ

Substituting this in equation (43) we find a relation involving Y1 and

Y2. Finally, we must put equal to zero the multipliers of Y1; Y2 in this
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Table 2. Meridionally self-similar radial models.

Case g1ðaÞ g2ðaÞ g3ðaÞ

(1) ¹ ln |1 ¹ a| 0 1

(2) m
�

ae

1¹a
da ¹ ln |1 ¹ a| l2 ae

e
1 þ dae

(3) m1 ln |1 ¹ a| þ m2

�

ln a
1¹a

da l ln a d1 þ d2 ln a

(4) g1ðaÞ Þ m1 ln |1 ¹ a| þ m2 0 dg
0
1 1 ¹ að Þ þ l

(5) m ln |1 ¹ a| g2ðaÞ Þ ðm; m1 ln a þ m2; m1am2 þ m3Þ d



relation because the two remaining digits are 0. So we have

Xi þ m
7ð Þ

i X7

ÿ �

þ m
6ð Þ

i X6 þ m
7ð Þ

6 X7

ÿ �� �

þ m
4ð Þ

i X4 þ m
7ð Þ

4 X7

ÿ �

þ m
6ð Þ

4 X6 þ m
7ð Þ

6 X7

ÿ �� �

þ m 3ð Þ
i X3 þ m 7ð Þ

3 X7

ÿ �

þ m 6ð Þ
3 X6 þ m 7ð Þ

6 X7

ÿ �� ��

ð45Þ

þ m
4ð Þ

3 X4 þ m
7ð Þ

4 X7

ÿ �

þ m
6ð Þ

4 X6 þ m
7ð Þ

6 X7

ÿ �� �	

¼ 0 ;

for i ¼ 1; 2 (R-relations-2,3) .

These last two equations together with equation (40) are the three

equations for the functions of R. On the other hand, equations (36),

(38), (42) and (44) are four relations among the three functions of a.

These relations of the functions of a [equations (44), (42), (38) and

(36)] are equivalent to the system

Y3 ¼ c1Y1 þ c2Y2

Y4 ¼ c3Y1 þ c4Y2

Y6 ¼ c5Y1 þ c6Y2 þ c7Y5

Y7 ¼ c8Y1 þ c9Y2 þ c10Y5

9

>

>

=

>

>

;

⇔

g
0
1 ¼ c1 þ c2g1

ag
0
1 ¼ c3 þ c4g1

ag
0
2 ¼ c5 þ c6g1 þ c7g2

g3 ¼ c8 þ c9g1 þ c10g2:

8

>

>

<

>

>

:

Note that we have renamed the constants and also used equation

(22). From the first, if c2 Þ 0 it follows that g1 ¼ ¹c1=c2 þ cec2a.

Then, from the second c ¼ 0 and hence g1 ¼ ¹c1=c2. However, g1

cannot be a constant. Thus, c2 ¼ 0, and the first two equations

combined with equation (13) give g1 ¼ a þ c11, while the third has

the solutions

g2 ¼

c6

1 ¹ c7

a þ c12 þ c13ac7 ; if c7 Þ 0; 1;

c6a ln a þ c14 þ c15a ; if c7 ¼ 1;

c6a þ c16 ln a þ c17 ; if c7 ¼ 0:

8

>

<

>

:

For the first possibility, we have finally the second case of Table 1:

g1 ¼ a;

g2 ¼ ya þ
mae

e
; e Þ 0; 1;

g3 ¼ 1 þ da þ md0ae
;

where we have absorbed the constants c11; c12 in the unknown

function f0, c11f4 þ c12f5 þ f0 → f0, equations (20), (23).

After substituting these values of g1; g2 and g3 in equations (20)–

(23), we find that

½f
0
0 ¹ f6 ¹ f9ÿ þ f

0
4 þ yf

0
5 ¹ f7 ¹ yf8 ¹ df9

� �

a

þ m f
0
5=e ¹ f8 ¹ d0f9

� �

ae
¼ 0 ; ð46Þ

and

P ¼
B

2
,

8p
P0 þ P1a þ P2ae
ÿ �

¼
B

2
,

8p
f0 þ f1 þ f4 þ yf5 þ f2 þ yf3

ÿ �

a þ m
f5

e
þ f3

� �

ae

� �

: ð47Þ

By setting equal to zero the three expressions in the square brackets

of equation (46) (since m Þ 0 and 1 ; a and ae are linearly indepen-

dent vectors in the a-space for e Þ 0; 1) we find the three R-

relations for the functions GðRÞ, MðRÞ and f0ðRÞ [which are the same

with equations (42) and (45)]. Using the functions f4 and F and the

definitions of P0 and P1 we obtain five, first order, ordinary

differential equations for GðRÞ, FðRÞ, MðRÞ and the two pressure

components P1ðRÞ and P0ðRÞ,

dG
2

dR
¼ ¹

F ¹ 2

R
G

2
; ð48Þ

dF

dR
¼

F

1 ¹ M2

dM
2

dR
¹

FðF ¹ 2Þ

2R

¹
F

2
¹ 4

2Rð1 ¹ M2Þ
¹

2G
2
RP1

1 ¹ M2
ð49Þ

¹
2yR

M2ð1 ¹ M2Þ3
½ð2M

2
¹ 1ÞG

4
¹ M

4
þ 2M

2
ð1 ¹ G

2
Þÿ;

dM
2

dR
¼

M
2
ð1 ¹ M

2
Þ

ð2M2 ¹ 1ÞG4 ¹ M4

�

¹ ed0n2 G
2
ð1 ¹ M

2
Þ

R2
ð50Þ

þ
F ¹ 2

R
½ðe þ 1ÞM

2
¹ ðe ¹ 1ÞG

4
ÿ

�

;

dP1

dR
¼ ¹

F
2

¹ 4

2R2G2
þ 2y

ð1 ¹ G
2
Þ

G2ð1 ¹ M2Þ3

� �

dM
2

dR

¹
M

2
F

2R2G2

dF

dR
¹

dn2

R2M2
¹

M
2
ðF

2
¹ 4ÞðF ¹ 4Þ

4R3G2
ð51Þ

þ y
ðF ¹ 2Þ½ð2M

2
¹ 1ÞG

4
¹ M

4
ÿ

RG2M2ð1 ¹ M2Þ2
;

dP0

dR
¼ ¹

2

G4

dM
2

dR
¹

n2

R2M2
¹

2M
2
ðF ¹ 2Þ

RG4
: ð52Þ

Note that the third pressure component P2ðRÞ is given explicitly in

terms of M and G (f3 and f5). An integration of the above set of

equations will give the complete solution. However, this exercise is

rather complicated since any physically accepted solution should

pass through the various MHD critical points (Tsinganos et al.

1996). This undertaking, together with a discussion of the solution

and application to collimated outflows, is the subject of our next

paper.

It is worth mentioning at this point that our analysis of model (2)

of Table 1 shows that mainly cylindrically collimated solutions are

obtained. The set of Figs 1 and 2 illustrates such a typical solution

for a representative set of the constants describing the particular

model. This solution crosses the Alfvén surface for appropriate

values of the slope of the square of the Alfvén number

p, ¼ dM
2
=dR

ÿ �

,
, the expansion function F, and P1, which satisfy

the Alfvén regularity condition (Heyvaerts & Norman 1989; ST94)

which is easily obtained from equation (77) of Appendix A at

(R ¼ G ¼ M ¼ 1), i.e.

F,p, ¼ 2f4, : ð53Þ

The non-spherically symmetric part of the pressure P1, is obtained

from its definition while the functions f3, and f5, are calculated for

R ¼ 1 using the L’Hospital rule. Figs 1–3 correspond to the set

F, ¼ 1:1 and p, ¼ 1:6. Note that after the Alfvén star-type critical

point is crossed, the (modified by self-similarity) X-type fast critical

point (Tsinganos et al. 1996) may be crossed by further adjusting

appropriately the triplet of the variables ðF, ; p, ; P1,Þ. It suffices to

note that solutions crossing only the Alfvén surface do not differ

qualitatively from those that in addition cross the (modified by the

present meridional self-similarity) fast critical surface.

Fig. 1 shows the shape of the streamlines on the poloidal plane

and close to the Alfvén surface. The cylindrical asymptotic shape of

the poloidal streamlines may be better seen in the enlarged scale of

Fig. 2. Note also the constant wavelength but the amplitude of

oscillation decaying with distance, in full agreement with the

analysis in Vlahakis & Tsinganos (1997). At the last displayed
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fieldline aout ¼ 4, the toroidal fields vanish, Bf ¼ 0, Vf ¼ 0. For

a > aout ; Q2 becomes negative, so there is no solution there. The

same oscillatory behaviour can be seen in the fieldlines that are not

attached to the star but are perpendicular to a thin disc around it

(dash-dotted curves in Figs 1 and 2). The oscillatory structure of all

flow speeds before the flow reaches full cylindrical collimation is

also shown in Fig. 3 where we have plotted the characteristic

velocities in units of the Alfvén speed at the polar axis and the

Alfvén sphere (a ¼ 0 ; R ¼ 1), V,.

The poloidal speed along the polar axis Vp;pol increases to a

uniform superAlfvénic value and is higher than the same speed

along the limiting streamline Vp;lim (i.e. the last fieldline attached to

the stellar base rstar taken to be at 0:315r,). Both reach asympto-

tically uniform values after Vp;lim intersects the curve of the poloidal

Alfvén speed VAp;lim at R ¼ 1. Note that corotation may be seen up

to the Alfvén distance R ¼ 1: the azimuthal speed Vf;lim at the

‘limiting fieldine’ increases until the Alfvén surface is reached and

drops from angular momentum conservation as the outflow expands

almost conically. Further away, however, this speed too levels off to

a constant value when full collimation is achieved, as expected.

Finally, the fact that the jet has a large component of toroidal field is

reflected by the large values of the Alfvén speed associatd with the

toroidal magnetic field, VAf;lim, as compared with the rotational

speed Vf;lim.

3 S Y S T E M AT I C C O N S T RU C T I O N O F

C L A S S E S O F R A D I A L LY S E L F - S I M I L A R M H D

O U T F L OW S

To construct general classes of radially self-similar solutions, we

make the following two key assumptions: (i) the Alfvén Mach

number M is solely a function of v,

M ¼ MðvÞ ; Mðv,Þ ¼ 1 ; ð54Þ

and (ii) the poloidal velocity and magnetic fields have a dipolar

angular dependence,

A ¼
B0Ã

2
0

2
A að Þ ; a ¼

R
2

G2 vð Þ
sin

2 v ; R ¼
r

Ã0

; ð55Þ

where B0 and Ã0 are constants. By choosing G v,

ÿ �

¼ 1 at the

Alfvén transition v,, GðvÞ evidently measures the cylindrical

distance Ã to the polar axis of each fieldline labelled by a,

normalized to its cylindrical distance Ãa at the Alfvén point,

G vð Þ ¼ Ã=Ãa. For a smooth crossing of the Alfvén cone v ¼ v,

[r ¼ ra að Þ; v ¼ v,], the free integrals L and Q are related by

L

Q
¼ Ã

2
aðAÞ ¼ r

2
a að Þ sin2 v, ¼ Ã

2
0a : ð56Þ

Therefore the second assumption is equivalent to the statement that,

at the Alfvén conical surface, the cylindrical distance Ãa of each

magnetic flux surface a ¼ const and is simply proportional to
���

a
p

,

exactly as in the previous meridionally self-similar case.

Instead of using the three functions of a, (A ; WA, Q), we found it
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Figure 1. Poloidal field and streamlines close to the stellar base for the

asymptotically cylindrical v-self-similar model of case (2) from Table 1, for

the following set of parameters: e ¼ 0:5, n2
¼ 2GM=r,V

2
, ¼ 10, dn2

¼ 3:5,

d0n2
¼ 0:1, y ¼ ¹10, m ¼ 20, p, ¼ dM

2
=dR

ÿ �

,
¼ 1:6, F, ¼ 1:1.

Figure 2. Poloidal field and streamlines as in Fig. 1, but on an enlarged scale

to show the asymptotic collimation reached after the oscillations have

decayed.



more convenient to work with the three dimensionless functions of

a, (q1 ; q2 ; q3),

q1 að Þ ¼

�

A
02

a
da ; ð57Þ

q2 að Þ ¼
Ã

2
0

B2
0

�

Q2W2
Ada ; ð58Þ

q3 að Þ ¼
GM

B2
0Ã0

�

W2
A

a
3
2

da : ð59Þ

Following the same algorithm as in the previous case, we shall

use (a ; v) as the independent variables and transform the derivatives

with respect to r and v to derivatives with respect to a and v in the r̂-

and v̂-components of the momentum equation. Integrating the

resulting r̂-component of the momentum equation, we get

P ¼
B

2
0

8p
h1aq

0
1 þ h2aq

0
2 þ h3q2 þ h4q3 þ h5q1 þ h0

ÿ �

; ð60Þ

or

P ¼
B

2
o

8p
YP†

with

P ¼ h0 h5 h1 h3 h2 h4 0
� �

; ð61Þ

and

Y ¼ Y1 Y2 Y3 Y4 Y5 Y6 Y7

� �

¼ 1 q1 aq
0
1 q2 aq

0
2 q3 aq

0
3

� �

; ð62Þ

and after substituting the pressure in the other component of the

momentum equation we obtain

Hh4aq
0
3 þ h

0
4q3 þ h3 H ¹ 2ð Þaq

0
2 þ h

0
3q2

þ
h1 1 ¹ M

2
ÿ �2

h i0

aq
0
1

1 ¹ M2
ÿ � þ h

0
5q1 þ h

0
0 ¼ 0

ð63Þ

where a prime in the functions of qiðaÞ; i ¼ 1; 2; 3, and hi indicates a

derivative with respect to their variables a and ln sin v, respectively,

while the functions hj vð Þ; j ¼ 1; 2; 3; 4; 5, and H are given in

Appendix B.

This expression is again of the form

X7 vð ÞY7 að Þ þ X6 vð ÞY6 að Þ þ … þ X1 vð ÞY1 að Þ ¼ 0; or YX†
¼ 0;

ð64Þ

with X the (1 × 7) matrix

X ¼ X1 X2 X3 X4 X5 X6 X7

� �

¼ h
0
0 h

0
5

h1 1 ¹ M
2

ÿ �2
h i0

1 ¹ M2
ÿ � h

0
3 h3 H ¹ 2ð Þ h

0
4 Hh4

2

4

3

5 : ð65Þ

As in the previous case of meridionally self-similar solutions, we

classify the various possibilities by the sets ‘xxxxxxx’. These sets

always have ‘00’ at the end, their first digit is ‘1’ and they have at

most three ‘0s’, while from the 27 possibilities we end up again with

the cases 1011100, 1101100, 1110100, 1111000 and 1111100. Now

the vectors q1ðaÞ; q2ðaÞ and q3ðaÞ belong to a 3D a-space with basis

vectors [e1ðaÞ ; e2ðaÞ ; e3ðaÞ]. This space contains all vectors qiðaÞ,

i ¼ 1; 2; 3, subject to the r-self-similarity constraint manifested by

equation (63), i.e. that for a given such set qiðaÞ, i ¼ 1; 2; 3, the

vectors 1; aq
0
iðaÞ, i ¼ 1; 2; 3, also belong to the same space. Each of

the functions qiðaÞ, i ¼ 1; 2; 3, that satisfies this constraint is then a

linear combination of the basis vectors e1ðaÞ; e2ðaÞ and e3ðaÞ. In the

following, we choose e1 ¼ 1, e2 ¼ q1ðaÞ. All such sets of basis

vectors give all possible radially self-similar solutions. Therefore,

collecting all possibilities, we end up with the six classes of

solutions shown in Table 3.

In all of the cases of Table 3, from equations (57), (58) and (59)

we find the form of the functions of a,

A ¼
B0Ã

2
0

2

�a

0

��������

aq0
1

p

da ; W2
A ¼

B
2
0Ã0

GM
a

3
2q

0
3;

Q2
¼

GM

Ã3
0

q
0
2

q0
3

a¹3
2 ; L

2
¼ GMÃ0

q
0
2

q0
3

a
1
2: ð66Þ
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Figure 3. Outflow velocities in units of V,, the radial speed at the Alfvén

point ða ¼ 0; R ¼ 1Þ, for the parameters given in the caption of Fig. 1 of

model (2) of Table 1.

Table 3. Radially self-similar models.

Case q1ðaÞ q2ðaÞ q3ðaÞ constants

(1) E1

F¹2
aF¹2 D1

F¹2
aF¹2 C1

F¹2
aF¹2

E1; F ¹ 2 Þ 0

(2) E1 ln a D1 ln a C1 ln a E1 Þ 0

(3) E1ax1 þ E2ax2 D1ax1 þ D2ax2 C1ax1 þ C2ax2 E
2
1 þ D

2
1 þ C

2
1 ; E2; x1; x2; x1 ¹ x2 Þ 0

(4) E1 ln a þ E2ax
D1 ln a þ D2ax

C1 ln a þ C2ax
E

2
i þ D

2
i þ C

2
i ; x Þ 0; i ¼ 1; 2

(5) E1 ln að Þ
2
þE2 ln a D1 ln að Þ

2
þD2 ln a C1 ln að Þ

2
þC2 ln a E

2
1 þ D

2
1 þ C

2
1 Þ 0

(6) E1ax ln a þ E2ax
D1ax ln a þ D2ax

C1ax ln a þ C2ax
E

2
1 þ D

2
1 þ C

2
1 Þ 0



Finally, by substituting q1 ; q2 and q3 in equations (60) and (63), we

find the ordinary differential equations which the functions

GðvÞ ; MðvÞ and h0ðvÞ obey.

In a-space, for each of the cases of Table 3 there exists a (3 × 7)

matrix K such that

Y ¼ e1 e2 e3

� �

K ; ð67Þ

and from equation (64)

e1 e2 e3

� �

KX†
¼ 0 :

If the basis vectors ei are linearly independent, then

KX†
¼ 0 :

These three equations are the ordinary differential equations for the

functions of v in each model of Table 3, while for the pressure

P ¼
B

2
o

8p
e1 e2 e3

� �

KP†
¼

B
2
,

8p
P0 þ P1q1 þ P2e3

ÿ �

;

where

KP†
¼ ½P0 P1 P2ÿ

†
:

As with the previous meridionally self-similar solutions, the first

two classes are of particular interest. The first corresponds to the

following form of the free integrals:

A ¼
B0Ã

2
0

�����

E1

p

F
a

F
2 ; W2

A ¼
C1B

2
0Ã0

GM
aðF¹3=2Þ

; Q2
¼

D1GM

Ã3
0C1

a¹3
2 :

ð68Þ

This is a degenerate case, i.e. e3 ¼ 0 and we have only two

conditions between the functions of v. It follows that we are free to

impose a third relation between the unknown functions

½GðvÞ ; MðvÞ ; h0ðvÞÿ. One possibility is that such a third imposed

relation is of the polytropic type, P ~ rg (in this case h0 ¼ 0). In

such a polytropic case, which has been analysed in detail by

Contopoulos & Lovelace (1994), the magnetic flux is of the form

A ¼ ff ðvÞR
F with ff ðvÞ ~ ½sin v=GðvÞÿ

F (for notation see also

Tsinganos et al. 1996). The magnetic field at the equatorial plane

v ¼ 908 is B ~ R
F¹2, the density r ~ R

2F¹3, while the sound, Alfvén

and rotational speeds scale as their Keplerian counterparts, i.e. as

R
¹1=2. Note that if ½D1G p=2ð Þ=C1ÿ ðG

2
¹ M

2
Þ=G 1 ¹ M

2
ÿ �� �2

v¼p

2
¼ 1,

the rotational velocity at the equatorial plane is exactly Keplerian.

The classical and simplest subcase analysed in BP82 corresponds to

the subclass with F ¼ 3=4, wherein B ~ R
¹5=4. The two relations

among the functions of v are the two resulting first-order differential

equations for the Alfvén number MðvÞ and dimensionless radius

GðvÞ [mðxÞ ¼ M
2
ðvÞ and yðxÞ ¼ GðvÞ=Gðp

2
Þ in the notation of BP82].

The second case is also degenerate since e3 ¼ 0 with again only

two conditions between the functions of v. As before, we are free to

impose a third relation between the unknown functions

½GðvÞ ; MðvÞ ; h0ðvÞÿ: for example, a polytropic relationship. Then

one can prove that this case is a subcase of the first one (if it is

polytropic), for F ¼ 2. All other cases shown in Table 3 are non-

degenerate.

The third class is characterized first by a set of parameters

describing the particular model and the dependence of the

free integrals on the magnetic flux function A að Þ,

(x1 ; x2 ; E1 ; E2 ; C1 ; C2 ; D1 ; D2Þ, secondly by the Alfvén angle v,,

and thirdly, by the set of critical point parameters p, ¼ dM
2
=dv

ÿ �

,

and J, which denote the slope of the Alfvén number and the

expansion angle, respectively, at the Alfvén angle v,, together with

the pressure component P1, through h5,. This triplet of ‘dynamical’

parameters fixes the physical solution, and they are related through

the Alfvén regularity condition which is now obtained from

equation (92) of Appendix B at the Alfvén angle v, where

M ¼ G ¼ 1 and h5 ¼ h5,, i.e.

h5, ¼ ¹sin2 v, tanðv, þ J,Þp, : ð69Þ

As with the previous case of meridional self-similarity, this condi-

tion relates the slope of the square of the Alfvén number

p, ¼ dM
2
=dv

ÿ �

,
and the expansion angle J, with the pressure

component P1, through h5,. Finally, the requirement that the

solution crosses the two slow and fast X-type critical points

[modified by the radial self-similarity assumption (Tsinganos et

al. 1996)] determines all these three ‘dynamical’ parameters

½J, ; p, ; P1,ÿ.

It is interesting to note that, contrary to classes (1)–(2) in Table 3,

this model (3) may be characterized by a scale, for example the

radial distance on the plane of the disc where the magnitudes of the

poloidal speed and magnetic field or the toroidal speed and

magnetic field become zero. Hence it occurred to us that this is

an interesting generalization of the BP82 model and therefore

worthy of further investigation.

Figs 4 and 5 are a typical illustration of model (3) for describing

collimated jet-type outflows with an oscillatory behaviour. In Fig. 4

the poloidal field and streamlines reach a cylindrical shape after

undergoing oscillations in their radius. As we move downstream,

the amplitude of these oscillations decays while their wavelength

increases. In fact, the exact behaviour of the oscillations is
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Figure 4. Field and streamlines for the cylindrical r-self-similar model of

case (3) from Table 3 and the following set of parameters: x1 ¼ ¹0:6,

x2 ¼ ¹0:5, E1 ¼ ¹0:03, E2 ¼ 0:03, C1 ¼ ¹1:5, C2 ¼ ¹0:6, D1 ¼ ¹25,

D2 ¼ ¹10, v, ¼ 628, J, ¼ 558, p, ¼ ¹3. At the disc level, Vf ~ R
¹1=2,

while on the poloidal field/streamline aout ¼ 6:191 736, Bp ¼ Vp ¼ 0.



analytically described by Vlahakis & Tsinganos (1997), where it is

shown that they can be regarded as perturbations on an asympto-

tically cylindrical shape which can be expressed in terms of the

Legendre functions P
m
n ðcos vÞ and Q

m
n ðcos vÞ. According to this

analysis, when m2
< 0, the asymptotically cylindrical shape is

finally obtained through those oscillations. Then the perturbation

(for v → 0) is proportional to v6m¹n, or, since m2
< 0, proportional to

Ã

z

� �¹n

cos |m | ln Ã

z
þ D0

� �

. In the example shown in Figs 4 and 5 the

amplitude of the oscillations is rather weak. Note, however, that

cases also exist with an extremely strong oscillation amplitude, and

such examples will be analysed in another connection. On the other

hand, when m2
$ 0 the asymptotically cylindrical shape is reached

without such oscillations. Exactly this last possibility is shown in

the following case of (Figs 6 and 7).

To illustrate further the various possibilities for the asymptotic

behaviour of outflows starting from a Keplerian disc, we examine

briefly the group of three models in Figs 6–7, 8–9 and 10–11

where, depending on the values of the model constants, we obtain

one with cylindrical, parabolical or conical terminal geometry.

(1) In Figs 6 and 7 a cylindrically collimated outflow [when

v → 0 ; ðM
2

; G
2
Þ → constants] is obtained for a set of model

parameters (xi, Ei, Ci, DiÞ; i ¼ 1; 2. The Alfvén conical surface is

taken at v, ¼ 608 where the slope of the square of the Alfvén

number is fixed as p, ¼ ¹1:1, while the expansion angle J, < 758

(the angle of the poloidal streamline with the cylindrical radius).

The characteristic scale of the model is taken to indicate approxi-

mately the radius of the jet, or, more precisely, the distance along

the disc where for aout ¼ 2 we have Bp ¼ Vp ¼ 0. In Fig. 7 the

velocities on the reference line a ¼ 1 are plotted in units of V0, the

z-component of the flow speed at the point ða ¼ 1; v ¼ p=2Þ.

(2) In Figs 8 and 9 an r-self-similar model belonging to case (3) in

Table 3 with parabolic asymptotic geometry [when

v → 0 ; ðM
2

; G
2
Þ → ∞] is examined for another set of parameters

(xi, Ei, Ci, DiÞ; i ¼ 1; 2. The Alfvén conical surface is taken now at

v, ¼ 458, where the slope of the square of the Alfvén number is

chosen as p, ¼ ¹1:7 and the expansion angle J, < 758.

(3) Finally, in Figs 10 and 11 the r-self-similar model of case (3)

in Table 3 gives a conical asymptotic geometry for a third set of

parameters (xi, Ei, Ci, DiÞ; i ¼ 1; 2 and v, ¼ 658, J, ¼ 758,

p, ¼ ¹0:5. Note that now the solution exists only for v > vmin

where vmin < 178: 5. When this value of v is approached,

ðM
2

; G
2
Þ → ∞.

In all these four possibilities and along a given field/streamline,
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Figure 5. The characteristic velocities of model (3) of Table 3 with

cylindrical asymptotics are plotted in units of the z-component of the flow

speed at the point ða ¼ 1; v ¼ p=2Þ ; V0 and for the same parameters as in

Fig. 4.

Figure 6. Field and streamlines for the cylindrical r-self-similar model of

case (3) from Table 3 and the following set of parameters: x1 ¼ ¹0:9, x2 ¼

¹0:6, E1 ¼ ¹2:142 1466, E2 ¼ 2:609 945 52, C1 ¼ ¹3:213 2198,

C2 ¼ D2 ¼ 0, D1 ¼ ¹160:660 99, v, ¼ 608, J, ¼ 748: 704 656, p, ¼

¹1:1. At the disc level, Vf ~ R
¹1=2, while on the poloidal field/streamline

aout ¼ 2, Bp ¼ Vp ¼ 0.

Figure 7. The characteristic velocities of model (3) of Table 3 with

cylindrical asymptotics are plotted in units of the z-component of the flow

speed V0 at the point ða ¼ 1; v ¼ p=2Þ and for the same parameters as in Fig. 6.



the outflow starts from the equator where Vf ~ R
¹1=2 with a low

subAlfvénic poloidal speed. This poloidal speed Vp crosses the

Alfvén conical surface at v, in all cases. In the cylindrical case of

Fig. 7, Vp increases rapidly to a uniform value when collimation is

achieved. The azimuthal speed Vf, on the other hand, drops with

height in all cases, as rotational energy is transformed to poloidal

kinetic energy. Finally, the azimuthal Alfvén speed is strongest in

the cylindrical case where the toroidal magnetic field is responsible

for the ensuing final collimation.

4 S U M M A RY

In this paper we have examined a systematic way of constructing

exact MHD solutions for plasma flows. The first assumption was to

consider the ideal plasma MHD equations for time-independent

conditions, equations (1) and (2), without imposing the extra

constraint of the frequently used polytropic assumption. Secondly,

we confined our attention to axisymmetric situations, in which case

the poloidal magnetic and velocity fields can be expressed in terms

of the magnetic flux function A while several integrals exist

(equations 4–5). In that case, besides A, a second natural variable

is the Alfvén Mach number M, equation (3). We denoted by G the

cylindrical distance Ã of a poloidal streamline from the symmetry

axis of the system, in units of the cylindrical distance of the Alfvén

surface from the same axis, Ãa. Thirdly, we further confined our

attention to transAlfvenic outflows in which case the regularization

of the azimuthal components in equations (4) and (5) requires that

the ratio of the two integrals of the total specific angular momentum

in the flow LðAÞ and corotation frequency QðAÞ be some function

aðAÞ [as in equation (8)]. By introducing some reference scale Ã0

this function a is dimensionless [as in equation (7) where Ã0 ; r,].

Apparently (M; a) is a rather convenient set of dimensionless

variables for describing all physical quantities in the poloidal

plane. For any set of orthogonal curvilinear coordinates suitable

for describing axisymmetric problems, we may then convert their

poloidal coordinates to (M; a). Examples are spherical coordinates

[rðM; aÞ; vðM; aÞ; f], cylindrical coordinates [zðM; aÞ; ÃðM; aÞ; f],

toroidal coordinates [uðM; aÞ; vðM; aÞ; f], oblate/prolate spheroidal

coordinates [yðM; aÞ; hðM; aÞ; f], paraboloidal coordinates, etc.

Then, the distance from the symmetry axis of the outflow is

GðM; aÞ. In the present first study we made the simplifying fourth

assumption that G is independent of a, G ¼ GðMÞ only. Finally, to

re-establish the connection with the geometry of the problem and

the particular set of coordinates used, we made our fifth and final

assumption that M ¼ MðxÞ [and G ¼ GðxÞ], where x ¼ r, or x ¼ v.

This leads then to the two broad classes of meridionally and radially

self-similar outflows. Needless to say, additional symmetries may

in principle be considered, something which may be taken up in

another connection (equilibria in tokamak geometries, etc.).

After these five assumptions are well posed, and with the help of a

simple theorem, it is possible (i) to unify all existing exact solutions

for astrophysical outflows (Tables 1, 2 and 3), and (ii) qualitatively

to sketch a few of them. With this method, the system of coupled

MHD equations reduces to a set of five ordinary differential

equations for the dimensionless jet radius (G), the flow’s expansion

factor or angle (F or J), the Alfvén Mach number (M) and the two

pressure components (P1 and P0). The requirement that the solu-

tions pass through the Alfvén critical point gives a condition

relating the values of the expansion function or angle, Alfvén

number slope and pressure component at this critical point. The

Alfveń regularity conditions, equations (69) and (53) are similar to

that discussed by Heyvarts & Norman (1989) and ST94.

As a byproduct of this construction, two representative models
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Figure 8. Poloidal field and streamlines for the parabolic r-self-similar

model of case (3) from Table 3 and the following set of parameters:

x1 ¼ ¹0:9, x2 ¼ ¹0:6, E1 ¼ ¹0:825 2542, E2 ¼ 1:005 47, C1 ¼

¹1:237 88, C2 ¼ D2 ¼ 0, D1 ¼ ¹12:378 813, v, ¼ 458, J, ¼

758: 465 545, p, ¼ ¹1:7. In this case Vf ~ R
¹1=2 on the equatorial plane,

while on the streamline aout ¼ 2, Bp ¼ Vp ¼ 0.

Figure 9. The characteristic velocities of model (3) of Table 3 with

paraboloidal asymptotics are plotted in units of the z-component of the

flow speed V0 at the point ða ¼ 1; v ¼ p=2Þ and for the same parameters as in

Fig. 8.



for radially and meridionally self-similar outflows, BP82 and ST94

respectively, have been generalized. In the former case of BP82, it is

well known that the cold plasma solution is terminated at a finite

height above the disc, while the general case (3) in Table 3 extends

all the way to infinity. Also, it is shown that the expressions of the

MHD integrals that correspond to the ST94 model are only a special

case of case (2) in Table 1.

Having in mind the ubiquitously observed collimated outflows

from astrophysical objects, we have paid more attention to the self-

consistently derived asymptotic shape of the streamlines. Of the

various such asymptotic geometries derived, a prominent class

seems to be the cylindrically collimated jet-type solutions, in

accordance also with the conclusions of observations (Livio

1997), general theoretical arguments (Heyvaerts & Norman 1989)

and recent numerical simulations (Goodson, Winglee & Bohm

1997). Another feature that appeared in the solutions is that

cylindrical collimation may or may not be achieved with oscilla-

tions in the width of the jet (Vlahakis & Tsinganos 1997). Although

in the examples analysed here the amplitude of the oscillations is

rather weak and the flow collimates rather smoothly, preliminary

results show that cases also exist where it can become rather large

and the final radius of the jet can be much smaller than the initial

large cylindrical radius and corresponding opening angle. Finally,

we should note that the pressure P denotes the total pressure

(including gas pressure, Alfvén wave pressure, radiative forces,

etc.). For example, the same formalism may also be used in

radiation-driven winds.
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where the expansion angle J is the angle between the line and the

equatorial plane, which is a function of v.

dG
2

dv
¼

2G
2 cos J

sin v cos J þ vð Þ
; ðB3Þ

h1 ¼ ¹
sin2 v þ cos2 v H

2

4

� �

G4
¼ ¹

sin
2 v

G4 cos2 J þ vð Þ
; ðB4Þ

h2 ¼ ¹
1

G2

1 ¹ G
2

1 ¹ M2

� �2

; ðB5Þ

h3 ¼
G

4
¹ M

2

M2G2 1 ¹ M2
ÿ � ; ðB6Þ

h4 ¼ ¹
sin v

GM2
; ðB7Þ

h5 ¼ ¹
cos2 v

2G4
H 1 ¹ M

2
ÿ �� �0

n

þ H ¹ 2ð Þ 1 ¹ M
2

ÿ �

H ¹ tan2 v
ÿ �	

; ðB8Þ

or

h5 ¼
1 ¹ M

2

G4

sin2 v

cos2 J þ vð Þ

dJ

dv
¹

sin2 v sin J þ vð Þ

G4 cos J þ vð Þ

dM
2

dv

¹
1 ¹ M

2

G4

sin v cos J sin J þ vð Þ

cos2 J þ vð Þ
; ðB9Þ

so

dJ

dv
¼

sin J þ vð Þ cos J þ vð Þ

1 ¹ M2

dM
2

dv
þ

sin J þ vð Þ cos J

sin v

þ
cos2 J þ vð Þ

sin2 v

G
4

1 ¹ M2
h5 : ðB10Þ

This paper has been typeset from a TEX=LATEX file prepared by the author.

Exact MHD models for astrophysical winds and jets 789

q 1998 RAS, MNRAS 298, 777–789


