7 VNRAS. 2927 51V

rt

Mon. Not. R. Astron. Soc. 292, 591-600 (1997)

On the topological stability of astrophysical jets

N. Vlahakis"** and K. Tsinganosl’z*

1Department of Physics, University of Crete, GR-710 03 Heraklion, Crete, Greece
2 Foundation for Research and Technology Hellas (FORTH), GR-711 10 Heraklion, Crete, Greece

Accepted 1997 July 11. Received 1997 May 22; in original form 1997 January 15

ABSTRACT

General theoretical arguments and various analytic self-similar solutions have recently shown
that magnetized and rotating astrophysical outflows may become asymptotically cylindrical,
in agreement with observations of cosmical jets. A notable common feature in all such self-
consistent, self-similar MHD solutions is that before final cylindrical collimation is achieved,
the jet passes from a stage of oscillations in its radius, Mach number and other physical
parameters. It is shown that under rather general assumptions this oscillatory behaviour of
collimated outflows is not restricted to the few specific models examined so far, but instead
seems to be a rather general physical property of an MHD outflow that starts non-cylindrically
before it reaches collimation. It is concluded thence that astrophysical jets are topologically
stable to small-amplitude, time-independent perturbations in their asymptotically cylindrical
shape. Also, similarly to the familiar fluid instabilities, these oscillations may give rise to
brightness enhancements along jets.

Key words: instabilities — MHD — plasmas — stars: mass-loss — ISM: jets and outflows —

galaxies: jets.

1 INTRODUCTION

Astrophysical jets have by now been widely observed in several
cosmical environments, from the rich variety of stellar objects to
active galactic nuclei (AGN) and quasars (e.g. see reviews by
Biretta 1996, Ferrari et al. 1996 and Ray 1996). Three key aspects
of the theoretical problem posed by the observations of jets are (i)
the construction of self-consistent dynamical equilibria describing
the initial acceleration and final collimation of the outflow; (ii) the
examination of the stability properties of the beam and the detailed
energetics of the outflow together with the in situ acceleration of
particles and subsequent emission of radiation; and (iii) the model-
ling of the time-dependent problem.

Since magnetic fields seem to play a pivotal role in the accel-
eration, collimation and emission of radiation in jets, one may try to
answer these questions by considering to lowest approximation the
magnetohydrodynamic (MHD) description. For example, in meri-
dionally self-similar models (Sauty & Tsinganos 1994, henceforth
ST94; Trussoni, Sauty & Tsinganos 1996) the outflow is accelerated
by a combination of gas pressure gradients and magnetocentrifugal
forces; after the outflow crosses the (modified by self-similarity)
slow/fast magneto-acoustic surfaces (Tsinganos et al. 1996), the jet
is confined either magnetically or by the thermal gas pressure.
Similar is the situation in radially self-similar (Blandford & Payne
1982; Fiege & Henriksen 1996) or translationally self-similar MHD
models (Chan & Henriksen 1980; Bacciotti & Chiuderi 1992).
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Regarding the question of classical stability of collimated
outflows, it is well known that low Mach number, laboratory fluid
beams maintain their directionality for relatively short distances,
typically 10 times their diameter. The basic reason for beam
disruption is the familiar Kelvin—Helmholtz (KH) instability due
to the motion of the fluid of the beam relative to the surrounding
medium (Ferrari, Trussoni & Zaninetti 1978, 1981; Ferrari et al.
1996). Linear KH stability analysis (Ferrari et al. 1978, 1981)
predicts that the most unstable modes are of the order of
the circumference of the beam times its Mach number,
Ngn ~ 2mR;M;, while typical times of the fastest growing modes
are of the order of the ratio of the circumference of the beam to the
sound or Alfvén speed times its Mach number, 7gy ~ 27(R;/c)M;.
Nevertheless, astrophysical jets, observed first in association with
extragalactic radio sources and secondly in association with young
stellar objects, often extend over distances which are a much larger
multiple of their width. Apart from the occasional wiggles and
knots of enhanced surface brightness along their length, these
astrophysical jets appear to survive for much longer periods than
the time-scales on which the linear analysis of the KH instability
predicts that they should break up. In order to investigate possible
saturation effects of the linear phase of the instability, the non-linear
evolution of the KH hydrodynamic instability has also been
followed (Bodo et al. 1994, 1995). In this case, it is found that the
persistence of the jet depends principally on the density contrast
with the ambient medium and the Mach number.

In addition to the KH instabilities, magnetized jets are also
subject to current-driven instabilities which are well known to
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create great difficulties in the confinement of laboratory plasmas. In
superfast magnetosonic jets with speeds exceeding the fast MHD
speed, the kinetic energy dominates the sum of the magnetic and
thermal energies and therefore the KH instability growth rates are
an order of magnitude or so higher than the growth rates of the kink
instabilities (Appl & Camenzind 1992; Appl 1996). Instead, in
transfast magnetosonic jets, the current and fluid instabilities have
comparable effects.

Probably related to the stability of jets, a notable aspect of
available self-consistent MHD equilibrium solutions is that the
beam width and other parameters undergo small-amplitude oscilla-
tions which often decay with distance from the source (Chan &
Henriksen 1980; Bacciotti & Chiuderi 1992; ST94; Contopoulos &
Lovelace 1994). These exact and quasi-analytic solutions have been
obtained under specific assumptions such as the corresponding self-
similarity Ansatz. The aim of this paper is to investigate further the
question that naturally arises then: whether the particular features of
oscillations in the jet’s width can be obtained from the general set of
MHD equations, regardless of specific models. Hence, we shall
examine the fopological stability of an MHD outflow which is
asymptotically collimated, and together with its ambient medium
consists of a compressible plasma of infinite conductivity. Classical
stability theory addresses the question of whether a given equili-
brium configuration evolves away from (unstable) or back toward
(stable) the initial state when perturbed. In the present context,
topological stability refers to the question of whether a given
equilibrium state preserves its topological properties when sub-
jected to a perturbation. We should keep in mind that topologically
stable configurations may well be unstable from the classical point
of view. However, since, for sufficiently slow time variations, the
outflow can be modelled by a sequence of quasi-static (equilibrium)
states, the topological stability of a configuration may provide
evidence on its classical stability.

2 PERTURBATIONS OF COLLIMATED
OUTFLOWS

Consider the steady (9/0¢ = 0) hydromagnetic equations,

(VxB)XB

—VP—pVV, (1)
4

p(V-V)V =

VB =0, V(V)=0, Vx(VxB)=0, 2)

where B, V, —V V are the magnetic, velocity and external gravity
fields, respectively, while p and P denote the gas density and
pressure. With axisymmetry (d/0¢ = 0), we may introduce the
magnetic flux function A, such that three free integrals
Y(A), QA), L(A) exist (ST94). In terms of these integrals and the
square of the poloidal Alfvén number,

2 4mpV2 7
Bg 4mp’

3

the magnetic field and bulk flow speed are given in cylindrical
coordinates (@, ¢, z) by the forms

_VAx$ LY, —w'QVY, .

B - - >
w @(l — M?)
oy 2 2
V=&VAX¢ w Q- LM 3, @
4mp w w(l — M?)

while force balance in the poloidal plane is expressed by the

transfield equation (Hu & Low 1989),
1— M 2
o (128 2
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If P is related to p and A, for example, via a polytropic relationship
with constant or variable polytropic index v, this last vector
equation leads to two scalar equations in any two independent
directions on the poloidal plane for the unknowns A and M? (or,
equivalently, A and p). Quasi-analytical solutions of equation (5)
have been found only by additionally assuming a self-similar
Ansatz for the dependence of the physical variables on the spherical
(r, 0) or cylindrical coordinates (@, z) of the poloidal plane. Thus,
we have available solutions which are self-similar in (i) the
cylindrical radius @ (Chan & Henriksen 1980; Bacciotti & Chiuderi
1992), (ii) the spherical radius r (Blandford & Payne 1982; Con-
topoulos & Lovelace 1994; Fiege & Henriksen 1996) and (iii) the
meridional angle 0 (Tsinganos & Trussoni 1991; ST94).

In the following we shall consider an infinitely long jet where, in
a direction perpendicular to the flow axis, the outwards-directed
centrifugal force is balanced by the inwards tension of the toroidal
magnetic field and gradient of the magnetic pressure, enhanced
(reduced) by the gradient of the gas pressure,

v: 4 |B} B2
p—i——[—fﬂf’] o ©)

w dw (8w 4w’

where w is the cylindrical distance in spherical coordinates (, 8, ¢),
@ = rsinf. In such a case of an asymptotically (r — o) collimated
outflow (jet) (Heyvaerts & Norman 1989), the magnetic flux
function A.,, Alfvén number M., and gas pressure P, all become
functions of the cylindrical distance w at large radial distances r (in
comparison with the Alfvén radius r.) from the source of the
outflow where we may neglect the gravitational field,

A, = A(w), M2 = Mi(w), P..(w) = J Fodw, 0

where the pressure gradient F, is given in Appendix A. For
example, in the cases of cylindrical collimation of ST94 and
Contopoulos & Lovelace (1994), M. (w) = constant; while
A () x w?, or A..(w) « w’, for a constant F, in ST94, or Con-
topoulos & Lovelace (1994), respectively.

In the following we shall investigate the topological or structural
stability of such collimated solutions. In other words, we are
interested in checking whether there exist small-amplitude steady
and axisymmetric perturbations in the streamline shape, Alfvén
number and pressure, which satisfy equation (5). We are interested
in deriving the dependence of these perturbations on the radial
distance from the central object. Consider then a solution which is
topologically close to one describing a collimated outflow, equation

D,
A=A @)1 +e), M =M(w)(l+s),
P =P (w) + 8P, ®

where all functions |el, |e;| and |6P/P., | <1. By substituting equa-
tions (8) into equation (5) and by assuming that the derivatives of
g,&; are also very small (so that we may ignore squares and
products of the perturbation quantities), we obtain from the 2 and
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%y components of the momentum equation (1) two equations which
the perturbations &, £; and 6P satisfy

o
5P=f18+f281+f38—8, ©)
@
d6P / ,
P (.T1 + glGO)s + (Tz + 6250)81
de og; e e
TGt et Gam t G052 (0
or (because of equation 9)
Fe e (24 1) %
072 dw? A w) dw
M A\ oe
- <mz)wa—m‘+ Gae1 + Gi1e=0. 1D

The perturbations ¢, £; and 6P satisfy the above equations contain-
ing the lengthy general expressions [ F(w), F»(w), F3(w)] and
[GO(W)’ gl ('El'), G2(11T), 63(15), G4(m), gS (m)] which are all given
in Appendix A.

The previous analysis is independent of a specific polytropic
relationship between pressure and density, and of some particular
dependence of the perturbations &, £; and 6P on their variables, as
well as of any special choice of the free integrals ¥,(A), L(A) and
Q(A). In order to get some insight into the behaviour of the
perturbations, one should analyse the above general non-linear
equation. This is, however, a formidable mathematical task, and
instead it occurred to us that some physical understanding of the
physical trends of the perturbations can be gained by examining
separately (a) the case where the perturbations in streamline shape
and Alfvén number are related, (b) the case where the perturbations
in streamline shape and Alfvén number are unrelated, and (c) the
case where a constant-index polytropic relation between pressure
and density is assumed. In each of the above cases (a), (b) and (c),
we shall further examine separately the various cases where a
separation of the variables in the perturbations € and &, is possible.
Finally, in each such subcase, we shall apply the results of
our analysis to the few examples where special sets of the
free integrals ¥, (A), L(A) and Q(A) have provided known quasi-
analytical solutions.

3 LINEARLY RELATED PERTURBATIONS,

g1 = M(w)e

In order to make further progress, we shall first examine the case
where the perturbations € and ¢, are linearly related,

g1 = No(w)e . 12)
No specific polytropic relationship between pressure and density is
imposed at this stage, where the pressure perturbation is given by
equation (9) while & and A\y(w) satisfy equation (11) which now
becomes

Po e [ () ey 1] 2
072 dw? A 1—M? w| 0w

2
M A} e=0. (13)

+ [51 thG—NT—m T i
The above equation, obtained by substituting equation (12) into
equation (11), relates the two unknown functions € and )\, and their

derivatives. However, it is still too complicated for a general
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analysis; in the following, we shall analyse equation (13) in some
special cases where the variables of the perturbations can be
separated in various coordinates of the poloidal plane.

3.1 Perturbations separable in cylindrical and spherical
coordinates

Assume that the variables of the cylindrical and radial distances
(w, r) are separable in &,

& = f(w)g(r), lgl<1. (14

Then equation (13) gives

’

g f A AoM?
S . Z (22—
g+r{2mf+mA( 1-M2) [

+g{j;—+ [% (2—%> —%]];74' G+ NG
- )\;)M2 i} =0. (15)
1-M*A R
Therefore (Appendix B), there are constants (s, k) such that
¢ +2si 4P =0, (16)
or
8o (-2 =
x=kr, y=gx 17

The last differential equation is the familiar Bessel differential
equation with the solution

y =Dy @) + DyY, 4(x). (18)

In the limit x — oo, Bessel’s functions become

J,,(x)—»icos (x e E),
x

\/_ 2 4
1
Y,(x) — —=sin (x—E —f), (19)
x
and therefore the solution of (16) is

g= gs'm (kr + &) - (20)

Finally, equation (15) gives two conditions relating the functions of
w:

£, A AN
{2m?+ m’X (2 1= M2) }wn 2s 21)
and
oA AoM? 1]f
{7+ [z<2‘1 ) _w]f
M2 A
+G; + NG —m—z}w— k. (22)
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In the following we shall test our analysis by comparing it with
available exact solutions of analytical models of outflows that
exhibit an oscillatory behaviour.

3.1.1 Example I

We may start with the simplest case wherein M.., Ny, f, G, and G,
are constants and A, (@) < w°. Indeed this case has been studied in
ST94 (see also Trussoni et al. 1996). They considered the following
expressions of the free integrals:

4
A=TB R, W=t T

2 B,
- @ rR="_ 23

TRe® TR @

L(a) = NV, o) = M. 1 24

o
\/1+6a’ T \/1+6a’

where G(R) is the radius of the jet in units of the Alfvén radius and
A, 6 and G(R — «0) = G,, are constants, while the starred quantities
refer to values at the Alfvén radius r,.. Writing down the expressions
of the perturbations for this case we have

G2 M)
e L v

e(r) = -1 (25)

It follows from equations (21) and (22) that f(w) = 1 while A is a
constant which furthermore can be calculated at r = r,,

M. -1
N=—Nol = TG (26)

This is the same result as that in the study of ST94, although the
surface r = r, is not always in the asymptotic regime where gravity
is negligible. The functions G, and G, given in Appendix A are
constants in this model, and from equations (21) and (22) the
corresponding expressions for s and k are

oy oM
s=2+30 @7
4n?
Cer
2\ (2M% - 1)GL — ML
=—= |- 28
TRy R T (e ey e

The wavelength of the oscillations grows quadratically with the
Alfvén number, Ay M?, while the amplitude of the oscillations
drops with distance as r®~™D as found in ST94 (their figs 2, 8 and
10). For example, as the magnitude of the asymptotic Alfvén
number M., increases by a factor of about 10 when the energetic
parameter € in the ST94 notation decreases from e = 10to e = 1,
A increases accordingly by a factor of about 100. Similarly, the
amplitude of the oscillations A in the width of the jet and the
Alfvén number drops with radial distance as r~°, where 1 <s <2
with its exact value s =2 — |N\g| depending on M., and G.,
according to equation (27).

3.1.2 Example 2

Another more general class of solutions can be generated by the

following set of free integrals:

2

B, 4mp, V.
A= ’Lz—a(R, 9), ¥,(a) = % V1 60+ pdgots,
*

2 e—1
w £+ po
=7 L = 1)
*=oG@me KW=V \/ T+ 6a + wdgar
A £+ pa!
Qo) = 24 [—BE 2
(@) re \| 1+ 8 + pdpa® @)

where p, €, 8y, £ are constants, in addition to the ones introduced in
the previous example. If M_,, N\ and f are constants then

PG (G —M2) _2%(1—¢

30

AE(—ME) | PME G0
because Mf, >1,

1-—M>
= DM2 — (e — DG od , 31
Ao = [(e+ M. — (e )G“](zMi_l)Gi_Mi @D
and

M2

s=2+$§_l’f=e+3. (32)

Substituting in equation (8) the above expressions for k and s, we
find the perturbed form of the streamfunction,
2

A=~ I;cg, {1 +Rle)f3 sin —VZ”;%G)R + 0 } (33)
A comparison of the oscillatory behaviour of a solution obtained by
this perturbative analysis with the corresponding exact solution,
obtained by integrating the MHD equations and selecting a super-
fast solution crossing the (modified by self-similarity) fast critical
point, is shown in Figs 1 and 2. In Fig. 1 the dimensionless radial
speed oscillates with the dimensionless radial distance, while in
Fig. 2 the shape of the streamlines in the poloidal plane shows a
similar behaviour. Since by assumption the present perturbation
analysis applies to large distances where gravity is negligible and
the jet starts approaching its cylindrical shape, such a comparison is
meaningful far away from the Alfvén surface, r > r,. Then, the
purpose of Figs 1 and 2 is to show by a specific example that at such
distances the perturbation analysis gives results which compare
rather well with the corresponding exact solution. Also, with the
perturbation analysis being independent of any specific model, this
comparison shows that the effect of the oscillations is rather model-
independent, as discussed in the previous section.

For the specific example shown in Figs 1 and 2, the amplitude of
the oscillations in the strength of the radial speed is rather low, at the
3 per cent level; although the same oscillatory behaviour has also
been found for other parameters, yielding larger amplitudes of the
oscillations close to the 10 per cent level, similarly to the ST94
solution. However, a peculiarity of the present model equation (29)
is that the crossing of the critical point becomes numerically rather
difficult for parameters giving larger amplitude oscillations. Also,
such a crossing of the critical point is the main difficulty in
obtaining exact solutions (Tsinganos et al. 1996). Hence, in the
illustrations shown in Figs 1 and 2 we have been restricted to a case
with an unambiguous crossing of the critical point. In other words,
numerical difficulties prohibit the construction of exact solutions
with larger amplitudes of oscillation, unlike the case of ST94.
Nevertheless, and as discussed in the previous section, the physics
of the oscillations remains the same.

© 1997 RAS, MNRAS 292, 591-600
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Figure 1. Dimensionless radial velocity V, on the rotation/magnetic
axis versus dimensionless radial distance R. The solid curve indicates
the superfast exact solution of the model of example 2 for the
following set of parameters: e=0.1, 6 =035 6 =001, £=5,
w=0.01,2GM/r, Vf = 10. From the integration of the MHD equation (5)
we find that M2 = 490.24, G% = 0.0769. The dashed line indicates the
corresponding solution which emerges from the perturbation analysis with
Dy =2.79% 107, ¢ = 0.46.

3.2 Perturbations separable in cylindrical distance and
meridional angle

Assume next that the variables of the cylindrical distance and
meridional angle (@, §) are separable in &,

& = f(w)g(0), lgl<1. (34
Then equation (13) gives

, , )
sin? g + sin 6 cos fg {21;;JJ;+1::11 (2— RoM )—1}

A 1—M?
’ ' 2
+gw’ {};— + [‘% <2 - 1)‘21‘142)
1f MM A
—;]7*' G +>\o§2—WK}N— 0. (35)

Therefore (Appendix B), there are constants p, » with u = 0 such
that

sin*6g -+ (2v + 1)sinfcosbg + (> — u?)g =0, (36)

© 1997 RAS, MNRAS 292, 591-600
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Figure 2. Shape of the streamline on the poloidal plane for the model of
example 2, which emerges from the perturbation analysis
Dy =2.79% 107,¢0 = 0.46). With the dotted line an exact solution is
shown for the model of example 2 where gravity is included.

or
dy | dy w

1 -2 —2x—= - =

(1-x)33 dx+[”("+1) |y =0, 37)

where

x = cosé, y=gsin" 0. (38)

The last differential equation is the associated Legendre equation,
and the solution is given in terms of the associated Legendre
functions P (x) and Q% (x) which also show an oscillatory behaviour
with the angle 6(x) that is similar to the Bessel functions of the
previous section (Abramowitz & Stegun 1972),

y = D1P}(x) + D0y (%). (39

Furthermore, equation (35) gives two conditions for the functions of
w:

! ! 2
{2m§7+m% (2— 1)\31‘14‘42)} =2w+2 (40)

and
FolA MNMEN 1| f
{7+ [X(z‘l—w> ‘6}7

NoM> A'} P

+(51+)\062_1—M2X 13‘2 (41)
It is worth noting that equations (40) and (41) are identical to the
corresponding equations (21) and (22) except for the factor w? in
the denominator of equation (41). The wavelength of the oscilla-
tions was found constant in Section 3.1, while now it varies with
distance.

3.3 Perturbations separable in cylindrical and axial distances

Assume finally that the variables of the cylindrical and axial
distances (@, z) are separable in &,

& = f(w)g(2), lgl<1. (42)
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Then equation (13) gives

oA e f
g+g{7+[z(2 i) - —}7

e
+ G+ NG ‘%WX} =0. 43)

Proceeding as before (Appendix B), it follows that there is constant
k such that

g +kg =0 g =Dsin(kz + ¢o), (44)

and the oscillations are undamped in this case. This result should be
expected because now the radial distance r with its associated scale
r = r, does not enter directly into the analysis, while with the
neglect of gravity the distance z along the jet does not have any
associated scale.

4 UNRELATED PERTURBATIONS

Non-oscillating jet-type solutions have been also found recently
(Trussoni et al. 1996), and they also emerge from this topological
stability analysis by considering the case where the perturbations
in the streamline shape and Alfvén number are uncoupled.
Assume for simplicity that & =g(r) and &, = gi(r). For

= M w?, Ay = constant and M2 = 0, equation (11) takes the
form

" g, 2M g
g +47_1———Mi S+ Gig+ Gogr =0. (45)
Then (Appendix B), there are constants ¢y, ¢, such that
. g 2ME g '
+47—1_M£—1+c1g+62g1—0 (46)
Comparing this with equation (45) it follows that
(Gi—c1)g+ (G —c2)g1 =0. “47)

From this last equation two possibilities emerge. The first, where g
and g, are proportional to each other, has been already studied in
Section 3.1, and it was found to give an oscillatory behaviour. The
second one corresponds to setting G; = ¢; and G, = ¢,. By solving
these equations we find then the following general expressions:
LY\ M2 BES o(1- M)
(T> S T T

(4%)

M2 -1

ME(1-M2)°
2MZ — 1
where ¢, is a constant. In other words, if the functions of A
LY, (A)/A and Q¥ ,(A) are given by equations (48) and (49), the
corresponding solutions may not exhibit an oscillatory behaviour.
So the above conditions are the necessary (but not sufficient)
conditions for the appearance of oscillations in the asymptotic
regime of collimated outflows, if € and &, are functions only of r.

[e1M2 — 2,05 (1 — M2)], (49)

4.1 Examples

For the case that has been studied by Trussoni et al. (1996) the free
integrals are given by equations (23) and (24) with Ay = B,2G~.

Their non-oscillating solutions there correspond in the notation of
the previous section to

(M2 - 1)GL - M
AMA(1-M2)’

C0=0, 6‘2=—)\2

N B2
RGL(1-M2)*
Another general class of solutions can be generated by the set of free

integrals given by equations (29). Non-oscillating solutions also exist
within this model for the following values of the constants:

N’B: _ uNB:

€= (50)

COo=—" "\ e1° ©2 =0, ¢ = T o2 (51)
72 4 _ A2
r%( 2 ) r%G‘”(l M°°)
2 _e+1 o (e+ 1)
M““e+3’ Gi—(e—l)(e+3)' 2)

5 POLYTROPIC MODELS

Assume now that there exists a polytropic relation between density
and pressure:
PM™ = Q(4), (53)

for some constant index <. For a small perturbation this relation
becomes

Pop? or

(Pe+0P)MZ (1+ £;)"= Q.. + 80, (54)
with
Q.(w) = P.MZ, (55)
and

o QwAm
50 = ( dA)@A,,e Toc (56)

Substituting the pressure perturbation from equations (54)—(56) in
equation (9) gives

A p.M* )
(Fr+vPs)er = [X (fo‘i"Y e ) _Tl]:_f38_;'
(57)
We shall distinguish two cases:
@ Fr+vyP.=0,
9 P.M?
Fae= [ (.T0+’Y e )—flLe, (58)
and
®)  F,+vP.#0, g =Kie+ :lc2 Je . (59)

In case (a), we may solve equation (58) and obtain, for each of the
particular dependences of &, the following three cases:

(@) for £ = f(w)g(r),
r 2
e=ew|-(%) ]
2 A/ T + P,,Mz/ —j:
cnn(2) ] o o) -7, |
0

Fs

(60)
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(ii) for £ = f(w)g(6),

& = (tan ) w exp J[fr (:FO i 7;?1”;) — :FIL
3

dw p; (61)

(iii) for & = f(w)g(z),

e = g@exp J [fr (fo+’)’zgz—/) —.7:1]”

dw », (62)

where gis an arbitrary function of z. In all cases equation (11) gives
£€1.

Case (b) with F, + yP., # 0, on the other hand, turns out to be the
most interesting and will be analysed in more detail in the follow-
ing. Then equation (11) takes the form

e o
5‘[18+5'[2 a?sz'i'a_;:

+ H, 0. (63)

de
ow

5.1 Perturbations separable in cylindrical and axial distances

Assume first that the variables of the cylindrical and axial distances
(w, z) are separable in ¢, € = f(w)g(r), |g | <1. Then equation (63)
gives

g [1 + —wz(}fj - 1)]
+‘% wH, + H, +2m3{3§—@]
+g(5-[1+5-[/;—/+5'-[3’;—”)=0. (64)
Therefore (Appendix B), there are constants (s, , s, s,) such that
g"(1+%)+%(2s+%)+k2g=o. (65)

The asymptotic solution of the previous equation is the solution of
Section 3.1, although the relations between the functions of w are
different. i

5.2 Perturbations separable in cylindrical distance and
meridional angle

Assume next that the variables of the cylindrical distance and
meridional angle (w, §) are separable in ¢, £ = f(w)g(®), |g| K1.
Then equation (63) gives

sin>0g" + sin” 0 cos Og’ (H;-1)

+ sinfcosfg @ <3—[2 + 2?5{3) — 2sin’fcos g

’ ”

x(Hs;—1) +gw2<9{1 +3{2’;7+3{3’;—> =0. (66)

Therefore (Appendix B), there are constants sy, 5,, 53,54 such that

sin® 6 (1+s; — s, sin® 6)

+sinfcos bg (s3 + 5, sin 0) + s4¢ = 0. (67)

For s, = —1 the solution goes asymptotically as g = (tan 0)—.&‘4/.;3,
while for the most interesting case of s; # —1 we may introduce

© 1997 RAS, MNRAS 292, 591-600

the new constants p,» with p=0 and 2r + 1 = s3/(s; + 1),
v — [LZ = 84/(s; + 1), such that the differential equation for g
becomes

sin g’ (1 - sli sin’ 0) + sin 6 cos g

53

><<2u +1+4 sin® 0) + (¥ - u)g=0. (68)

s+ 1
The asymptotic solution of the previous equation is similar to the
solution of equation (36), i.e. it is given by equation (39), with of
course different relations between the functions of w. Oscillations
like those predicted by the analysis of this section have indeed been
found in the model of Contopoulos & Lovelace (1994), where

F
w 3
Ac | 2| W, xAlF,
- [Gw)] 4
LxA¥, — QoA™%, (69)

and where (M., \g,f) are constants.

5.3 Perturbations separable in cylindrical and axial distances

Finally, assume that the variables of the cylindrical and axial
distances (w,z) are separable in &, € = f(w)g(z),|g| <1. Then
equation (63) gives

¢ +elat, v+l 3.l ) 2o 70
f f

Therefore (Appendix B), there is a constant k such that

g +Kg=0%g=Dsin(kz+ do), (1)

and the oscillations do not decay due to the lack of scale in the
direction z, similarly to the case of Section 3.3. Examples of models
with such oscillations have been analysed by Chan & Henriksen
(1980) and Bacciotti & Chiuderi (1992).

6 DISCUSSION

Previous studies have shown that under fairly general conditions,
magnetized outflows may become asymptotically cylindrical (Hey-
vaerts & Norman 1989). Also, this tendency for asymptotic colli-
mation has been demonstrated via quasi-analytic self-similar
solutions (ST94; Contopoulos & Lovelace 1994; Trussoni et al.
1996). A common feature in all such self-similar solutions is that,
before the final cylindrical collimation is achieved, the jet passes
through a stage of oscillations in its radius, Alfvén number and
other physical parameters. In the previous sections we have shown
under rather general assumptions that this oscillatory behaviour of
collimated outflows is not restricted to the few specific models
studied so far, but instead is a rather generic physical property of the
MHD outflow as it reaches collimation.

A simple way to demonstrate this effect physically can be
provided by the simplified construction shown in Fig. 3. A single
streamline A(w, z) = constant of an initially radial magnetized and
rotating outflow becomes asymptotically cylindrical (dashed line).
Assume for simplicity that the jet carries an electric current I, « w?
with a uniform surface density J, = constant. In its asymptotic
regime the jet is confined by the interplay of the magnetic pinching
force, the gas pressure gradient and the centrifugal force of rotation
(ST94; Trussoni et al. 1996). Assume for simplicity that the gas
pressure gradient is negligible such that at equilibrium the magnetic
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E, : Magnetic pinching force

E. : Centrifugal force

Rotational Axis

.’
.
-

Accretion Disc

Figure 3. Sketch of an oscillating streamline on the poloidal plane (w, z) of
an MHD outflow from a central object. The inwards magnetic pinching force
Fp equals the outwards inertial centrifugal force F at position 0. At position
1 Fp is greater than F while at position 2 Fp is greater than F.

pinching force exactly balances the centrifugal force. In the
superAlfvénic regime, most of the conserved specific angular
momentum is carried by the fluid, such that L= wV,. The
magnetic pinching force Fp which results from such a current I,
and the centrifugal force F for the assumed angular momentum
conservation are then

B: 3 B Ve I?
o= e T omen ™ fe= g 5 72

under uniform density conditions. If now at some equilibrium
location 0, say at the cylindrical distance @ = w, on the dashed
line in Fig. 3, we have Fp(wy) = Fc(wy), then at larger distances
@ > W, (location 1 in Fig. 3) we have, according to equation (72),
that Fg(w;) > Fc(w;). Conversely, at the smaller cylindrical dis-
tances w, < wy (location 2 in Fig. 3) we have, again according to
equation (72), Fc(®,) > Fp(w,). The net result is that as the parcel
of gas moves along the poloidal streamline from the central object
to infinity, it feels an inward force at location 1 which brings it
towards the rotation axis. On the other hand, due to inertia and its
poloidal speed, it overshoots the equilibrium position 0 and arrives
at location 2 where it now feels an outward force bringing it again
away from the rotation axis towards location 0, etc. The final result
is the oscillatory shape of the streamline shown in Fig. 3 and derived
in the previous sections. The oscillations start at the collimation
distance R, where the streamlines start to deviate significantly from
a radial form, and by means of the magnetic pinching forces are
brought to the cylindrical geometry. Obviously, at large distances
from the collimation radius R, the cause of the oscillations
disappears, and accordingly their amplitude decays to zero, i.e.
the uniform cylindrical shape is finally reached. An example of this
situation has been given in Trussoni et al. (1996), where

A =f(R) sin® @ with f(R)=1 at R=R,, while further away at
R=R.,f(R)~R* The poloidal magnetic field of such a case is a
typical radial field B, ~ B, = B,/R* cos§ at R < R., while further
away the poloidal magnetic field and flow become rather uniform,
similarly to the density at a given streamline.

At the asymptotic and collimated regime of the outflow, we
expect that gravity should be negligible. For this reason and in order
to simplify the mathematics, in the analysis presented in this paper
gravity was not included. Indeed, this assumption is verified by the
plot of Figs 1 and 2, where the solid and dotted lines, respectively,
give a full solution of the problem by including gravity, while the
other lines show the approximate solution which is calculated by
neglecting gravity. These two curves almost coincide, with some
deviation starting as we approach the source of the flow where
gravity becomes rather important.

In the example shown for illustrative purposes in Figs 1 and 2, the
oscillations in the magnitudes of the flow speed, temperature,
density and pressure of the beam are rather weak at the few per
cent level. However, this is only due to the fact that the availability
of exact superfast solutions for model 2 is constrained by numerical
problems associated with the crossing of the fast critical point. In
ST94, stronger oscillations of similar origin at the 10 per cent level
have been presented, which also emerge from the present perturba-
tion analysis. Then such large-amplitude oscillations in the initial
part of the beam may have notable effects, for example via
enhanced radiation emission either in local compressions of the
flow pattern or in shock transitions. For example, observed bright-
ness enhancements (knots) along the well-studied jet of M87 in
Virgo have been attributed to shocks (Biretta 1996), with a similar
situation for stellar jets (Ray 1996). Such shocks may be caused by
an oscillatory flow channel, in which case the hydrodynamic
equations allow multiple transonic solutions connected by shocks
(Ferrari et al. 1986). In the present study we have shown that
oscillations in the cross-section of the jet may be due, in addition to
the familiar Kelvin—Helmholtz instabilities, to the interplay of the
magnetic and inertial forces in the acceleration region of the
outflow. Although an examination of the detailed solution topol-
ogies of the present MHD case is far more complicated than the
corresponding hydrodynamic solution topologies, it is naturally
expected that similar shocks connecting various transonic solu-
tions may exist in the present MHD case as well. However, their
existence in self-similar MHD solutions is beyond the scope of
this paper, and remains a challenge for future studies. It will also
be interesting to check whether fully numerical studies of colli-
mated MHD outflows show an oscillatory behaviour in the shape
of the streamlines. In the only available such study so far, of a
paraboloidally collimated disc wind (Sakurai 1987), such oscilla-
tions are not evident.
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APPENDIX A

’ 2
1 l:A/ (_A__A”> _AI% (L\I’A - WZQ‘I/A)

.7:0(13) = 41T’572 © 2(1 _ M2)2

2 (L\I,A - WZQ\I,A)Z

(1-m2)
M — 1) (w?Q¥,)’— (LY, ) M
B oM (1 — M2)? N (D
1 . A ,
Fi@) = ——— [(1 —M2)A<A —;) +M?A*
o 2Ly, -y,
— M 4A -|—A3A(2(’;_Mz)2 2) , (A2)
Falw) = wa? 4y LYa = OL) A3
(@) = T A + TM_Z)r— ,o, A3
Fo(w) = — -y (M244)) (Ad)
1 ,
Golw) = = —— [AA (- MZ)L, (A5)
Gu(w) = M & (Ly,) o' & (0¥,)’
wM?(1 — M?)’A
A M4 43
A wA A wA w°
M M (24 3
ARy (T‘E)L’ (A6)
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Gy — | 2L A A M*A
™) =T \wa A ) A0 1)

MH(LY,)" - (202 — 1) (w?Q¥,)
, A7
* wM?(1 - M2)*AA - A7
R S PSPV S
(LY, - w?e¥,)’
AR A 4 | A8
2(1-M2)? ]w (A8
1 , (LY, — w?Q¥,)’
64(13) - _4’1TW2 |: (1 _ M2)3 w» (A9)
1 ’
Gs(@) = ——— (44)) . (A10)
[Ar (To +7Mi) —fl]
_|a M o
Ki(w) = TP , (A11)
___Fs
Ky(w) = T (A12)
A M A
H (@) =G, +XK,G, - X, (mz) , (A13)
A 1 / M2 A
Ho(w) =2 (X)w—a - (5(1 + -'Kz) (mz) w+~7<2§2,
(A14)
M* A

APPENDIX B
Theorem

If F(x), fi(x), g, i =1,2,...,n, are arbitrary functions of the
independent variables x and y and

F(x) = fi(081 () + o082 (y) +--- +f(0ega (), (B1)
then there exist constants ¢, ¢,, ..., c, such that

F(x) = c1 filx) + 2 fo(x) + -+ - + cp fu(x). (B2)
Proof

‘We shall use the method of mathematical induction.

(i) Forn =1, F(x) = fi(x)g; (y)
If fi(x) = 0 then F(x) = 0 = ¢; fi(x).

If fi(x) # O then
Fi
JT% —ab)=a = F®=af®. (B3)

i.e. for n = 1 equation (2) holds.
(ii) Assume that for n = k equation (2) holds, i.e. for given

Fx) =fi(0)g1(y) + (082 (3) + - +fix)g(v) (B4)

=3 ¢1,0,..., ¢ such that F(x) =c1 fi(x) + o o)+ - - - + e filx)
for every F.f;, g1, i=1,2,... k.
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let F(x)=fi(xg(y)+ -+
0 then from the previous hypothesis

(iii) Then, for n=k+1,
Fer1 g1 () I frar () =
F(x) = c1 i) + -+ afilx) = c1 fi(x) + -+ - + o1 frr1 (0,

(B5)
i.e. equation (2) holds. If, on the other hand, f; ;(x) # O then

Fv) _ A fulx)
’ B6
Jer1(0) fk+1(x) s1() + - +f (x) &) +&n(y) = ®B6

F(x) Six) Je(x)
(ka(x)) <fk+l(x)> ( )+ R <fk+1(x)) (y)
B7)

So from the hypothesis that for n = k there are ¢; such that

d ([ F&x ﬁ(x)) <fk<x)>

dx(fkﬂ(x)) “ <fk+1<x) toran )T
®8)

Fx) G A

T = @ T o o

< F(x)=c1 fix) + -+ crp1 frr1 (), (B9)

and therefore equation (2) holds for every n.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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