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Abstract. We resolve the paradox that although magnetic colli-
mation of an isotropic solar wind results in an enhancement of its
proton flux along the polar directions, several observations in-
dicate a wind proton flux peaked at the equator. To that goal, we
solve the full set of the time-dependent MHD equations describ-
ing the axisymmetric outflow of plasma from the magnetized
and rotating Sun, either in its present form of the solar wind,
or, in its earlier form of a protosolar wind. Special attention is
directed towards the collimation properties of the solar outflow
at large heliocentric distances. For the present day solar wind
it is found that the poloidal streamlines and fieldlines are only
slightly focused toward the solar poles. However, even such a
modest compression of the flow by the azimuthal magnetic field
would lead to an increase of the mass flux at the polar axis by
about 20% at 1 AU, relatively to its value at the equator, for an
initially isotropic at the base wind, contrary to older and recent
(Prognoz, Ulysses, SOHO) observations. For the anisotropic in
heliolatitude wind with parameters at the base inferred from
in situ observations by ULYSSES/SWOOPS and SOHO/CDS
the effect of collimation is almost totally compensated by the
initial velocity and density anisotropy of the wind. This effect
should be taken into account in the interpretation of the recent
SOHO observations by the SWAN instrument. Similar simula-
tions have been performed for a five- and ten-fold increase of
the solar angular velocity corresponding presumably to the wind
of an earlier phase of our Sun. For such conditions it is found
that for initially radial streamlines, the azimuthal magnetic field
created by the fast rotation focus them toward the rotation axis
and forms a tightly collimated jet.

Key words: ISM: jets and outflows – stars: pre-main sequence
– Sun: solar wind – stars: winds, outflows – plasmas – Magne-
tohydrodynamics (MHD)

1. Introduction

Several stellar and extragalactic astrophysical systems have
been observed to exhibit collimated outflows in the form of jets
(young stellar objects, low and high mass X-ray binaries, black
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hole X-ray transients, symbiotic stars, planetary nebulae nuclei,
supersoft X-ray sources, active galactic nuclei and quasars). In
recent reviews of observations from all such classes of astro-
physical objects it has been argued that an interconnecting ele-
ment may be a rotating accretion disk threaded by a magnetic
field (Livio 1999; Königl & Pudritz 2000). Such connection
between the disk and the jet is particularly evident in HST ob-
servations of several young stars in the nearby Orion nebula
(Ray 1996). This rather convincing observational evidence of
a close jet-disk relation is the basis for the presently prevailing
view that an accretion disk is the necessary ingredient for the
production of collimated jets.

On the other hand, theoretically it has been shown for quite
some time by now that gas outflows from a rotating magne-
tized object of any nature can be magnetically self-collimated
to form a jet (Heyvaerts & Norman 1989; Chiueh et al. 1991;
Sauty & Tsinganos 1994; Bogovalov 1995). This result seems
to be a rather intrinsic property of magnetized winds with poly-
tropic thermodynamics or not, where the self-compression of
the plasma is provided by the toroidal magnetic field induced by
the rotation of the central source. Henceforth emerges the gen-
erally accepted opinion that all observed jets are magnetically
collimated (Livio 1999). However, no direct observational evi-
dence exists today that most observed jets are indeed collimated
solely by magnetic fields. Recently, it has been pointed out that
the toroidal magnetic field is unstable and cannot collimate the
jet effectively (Spruit et al. 1997; Lucek & Bell 1997) and it has
been argued that magnetized winds do not collimate without an
external help, such as the channelling effects of a thick accretion
disk and/or confinement from the ambient medium (Okamoto
1999). It is thus crucially important to find direct observational
evidence that the magnetic field mainly collimates the plasma
in observed jets and by this way to test the theory of magnetic
collimation.

Nevertheless, plasma outflows do also emanate from iso-
lated magnetized and rotating stars without an accretion disk,
of which the solar wind (SW) is the classical and best stud-
ied example. The natural question which arises then is to what
observable degree dynamical effects are capable to collimate
outflows from such single stars too. Theoretical studies on the
angular momentum evolution of solar-type stars have concluded
that at the end of the early accretion phase (PTTS) the star may
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be span up by more than 10 times the present solar rotation
rate while its magnetic field is also strong (Bouvier et al. 1997).
And, in recent studies it has been shown that cold winds from
such rapidly rotating and highly magnetized stars lead to con-
siderable collimation of the outflow (Bogovalov & Tsinganos
1999, henceforth Paper I). Similar is the result from studies of
hot plasma outflows from efficient magnetic rotators (Sauty &
Tsinganos 1994; Sauty et al. 1999). Hence, observation of the
collimation effect in outflows from single stars could be the most
reliable observational test of the theory of magnetic collimation.

The question of the degree of collimation of the SW is an
interesting possibility that has not been fully answered theo-
retically and observationally for quite some time now. Suess
(1972) and Nerney & Suess (1975) were the first to model
the axisymmetric interaction of magnetic fields with rotation
in stellar winds by a linearisation of the MHD equations in in-
verse Rossby numbers and to find a poleward deflection of the
streamlines of the solar wind caused by the toroidal magnetic
field. Later, Sakurai (1985) addressed the same problem by nu-
merically solving the system of the polytropic MHD equations
for the stationary outflow. Washimi & Shibata (1993) modelled
time dependent axisymmetric thermo-centrifugal winds with
a dipole magnetic flux distribution on the stellar surface and
a radial field in Washimi & Sakurai (1993). Polytropic MHD
simulations of magnetized winds containing both a ”wind” and
a ”dead” zone (Tsinganos & Low 1989; Mestel 1999) have also
been performed up to distances of 0.25 AU (Keppens & Goed-
bloed 1999). All these studies show some small deflection of
the flow toward the axis of rotation.

In the observational front, information on the degree of col-
limation of the SW can be inferred from anisotropies in the
Lyman alpha emission. These solar UV photons are scattered
by neutral H atoms of interstellar origin and where the SW mass
flux is increased the neutral H atoms are destroyed and thus the
Lyman alpha emission is reduced. Early observations by the
Mariner 10 (Kumar & Broadfoot 1979) and Prognoz (Bertaux
et al. 1985) satellites have shown that there is less Lyman alpha
emission near the equator in comparison to the ecliptic poles,
than predicted by an isotropic SW (Bertaux et al. 1997). There-
fore, these Lyman alpha observations imply that the SW mass
efflux should be maximum at the equator and minimum at the
poles. The same trend is confirmed byin situ observations of
Ulysses (Goldstein et al. 1996) and the SWAN instrument on-
board of the SOHO spacecraft (Kyrölä et al. 1998). However, the
effect of SW collimation around the ecliptic poles would cause
the opposite effect on Lyman alpha observations. In other words,
although UV observations infer a SW mass efflux peaked at the
equator, magnetic collimation would cause a SW mass efflux
peaked at the poles, for an isotropic at the base wind.

One of the main purposes of this paper is to resolve this
paradox. We shall follow the idea of magnetic collimation of
the SW and show which values of the parameters characterizing
the heliolatitudinal dependance of the SW (Lima et al. 1997;
Gallagher et al. 1999), such as density, bulk flow speed, mass
efflux, etc are consistent with the observations by the Lyman
alpha method. Furthermore, we shall follow the increase of the
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Fig. 1a and b.Schematic drawing of a white light image of the so-
lar atmosphere indicating the shape of the solar magnetic fieldlines.
Beyond the dotted spherical distance located around the slow mag-
netosonic critical surface the magnetic fieldlines are radial to a first
approximation. Electric sheet currents are located on the dotted lines.

degree of collimation of a hot stellar wind by increasing the
rotation rate of the star and show that a ten-fold increase of
angular velocity, as is the case in the majority of the young rapid
rotators, leads to a dramatic increase of the degree of stellar wind
collimation.

The paper is organised as follows. In Sect. 2 we justify the
use of a split monopole model in our analysis for the collimation
properties of the realistic solar wind at large distances from the
Sun. In order to establish notation in Sect. 3 we give briefly the
basic equations describing a stationary and polytropic Parker
wind. In Sect. 4, the initial configuration used together with the
boundary conditions for the numerical simulation in the nearest
zone are discussed. In Sect. 5 the analytical method for extend-
ing the integration to unlimited large distances outside the near
zone is briefly described while in Sect. 6 the parametrization of
the presented solutions is given. In Sect. 7 we discuss the results
for the isotropic SW in the near zone containing the critical sur-
faces and in the asymptotic regime of the collimated outflow,
for a uniform rotation. In Sect. 8 the case of a stellar wind from
a star rotating faster than the Sun is taken up. A brief summary
with a discussion of the main results is finally given in Sect. 9.

2. The assumption of a split-monopole model
for a stellar wind

Fig. 1a is a sketch of the magnetic field structure in the corona
of a star. Close to the stellar base the structure of the magneto-
sphere may be rather complicated. In this paper we are interested
in the study of winds at distances much larger than the radius of
the star where no closed field lines exist. It is therefore reason-
able to consider the plasma flow starting at distances shown in
Fig. 1a by the dashed line. For the solar wind the location of this
surface can be put somewhere between the slow magnetosonic
surface and the Alfv́enic surface. We choose this location of the
starting surface to avoid the solution of the problem of the wind
acceleration in the very vicinity of the star which is defined not
only by thermal pressure gradients but also by nonthermal pro-
cesses of acceleration where the acceleration mechanisms have
not still studied sufficienty well and are beyond the scope of
the present study (e.g., see Holzer & Leer 1997; Hansteen et al.
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Fig. 2a and b.Plasma flow from an axisymmetric rotator with an ini-
tially split-monopole magnetic field, as in panela. Reversing the di-
rection of the poloidal magnetic field in an arbitrary flux tube does not
change the dynamics of the problem while we obtain the configuration
shown in panelb which describes a nonstationary and nonaxisymmet-
ric plasma flow from a rotator with a magnetic spot of opposite polarity
on the base surface. The distribution of such spots can be arbitrary.

1997; Wang et al. 1998). Above this base surface we can assume
that the dynamics of the wind is mainly controlled by thermal
and electromagnetic forces. In this approach the density and ve-
locity of the plasma, together with the tangential components
of the electric field and the normal component of the magnetic
field are specified on this base surface while the tangential com-
ponents of the magnetic field are free.

Nevertheless, the solution of this problem is still too com-
plicated. Open poloidal magnetic field lines go to infinity and
change their direction on the so called current sheets, some of
which are indicated with dotted lines in Fig. 1a. These current
sheets are present in any realistic wind from a stellar atmo-
sphere, since the total magnetic flux of the open poloidal mag-
netic field lines is equal to zero while the mass loss rate is finite.
The invariance principle summarized in the Appendix in a form
appropriate to hot winds in a gravitational field allows us to sim-
plify the structure of the magnetic field in the wind (Bogovalov
1999). According to this principle, we can reverse the direction
of some field lines so that the magnetic field is unipolar in each
hemisphere, e.g., outward in the upper and inwards in the lower
hemisphere. In ideal MHD wherein we neglect all dissipative
processes such as magnetic reconnection, this operation does
not affect the dynamics of the plasma as long as the streamlines
are not modified. This results in the configuration shown in
Fig. 1b where since we are not interested in the region upstream
of the base surface, this region is not shown. In this structure
the current sheet is located only around the equatorial plane. To
proceed, we further assume that the distribution of the normal
component of the poloidal magnetic field is uniform in the up-
per and lower hemispheres. In that case we get the model of
the axisymmetric rotator with an initially split-monopole mag-
netic field. The field lines are magnetically focused toward the
system’s axis, as shown in Fig. 2a.

We would like to stress that the model of the axisymmetric
rotator describes not only axisymmetric outflows but also a wide
class of nonstationary and axially nonsymmetric outflows. This
is due to the fact that according to the invariance principle (cf.
Appendix) the change of the direction of a magnetic field line

in some flux tube does not affect the dynamics of the plasma.
For example, let’s assume that we obtain a solution for the ax-
isymmetric rotator, as shown schematically in Fig. 2a. Then, a
reversal of the sign of some magnetic field lines in an arbitrary
poloidal flux tube gives us a solution which is not axisymmetric
and nonstationary, as shown in Fig. 2b. This is a solution for the
plasma outflow from a rotator with uniform magnetic field at the
base surface but with a magnetic spot of the opposite polarity on
the upper hemisphere. Fig. 2b shows the cross-section of such
a magnetic field by the poloidal plane. The stream lines are the
same as for the axisymmetric case. But the poloidal magnetic
field changes sign in magnetic spots corresponding to the flux
tube of the opposite polarity. The path of the field line in this
flux tube in 3D is shown by a dashed line. These spots propagate
in the poloidal plane with the velocity of the plasma and hence
the pattern is nonstationary.

It is clear that the number of such magnetic spots and their
position at the base surface can be arbitrary. Therefore the study
of the plasma outflow in the model of the axisymmetric rota-
tor with an initially split-monopole magnetic field allows us to
study a much more wider classes of nonstationary and nonax-
isymmetric flows.

3. The stationary polytropic Parker wind

A Parker wind is taken as the initial state (t=0) for the solution
of the time-dependent problem. In this initial state, the wind
is assumed to flow along the radial magnetic field lines of an
isotropic magnetic field (Parker 1963), although in general, the
flow is not isotropic such that the wind has its own integrals
of motion on every stream lineψ = const. For simplicity, a
polytropic relationship between the pressureP and the density
ρ is assumed

P = Q(ψ)ργ , (1)

whereγ is the polytropic index. Then, the Bernoulli equation for
energy conservation along a radial line in such an anisotropic
wind from a nonrotating star has the form

V 2

2
+

γ

γ − 1
Q(ψ)ργ−1 − GM

R
= E(ψ) . (2)

Denote byV∞(ψ) the terminal velocity of the plasma on
each fieldline. In order to get equations in dimensionless vari-
ables, we shall use for the radial distanceR̃ = R/Rs,eq, the
densityρ̃ = ρ/ρs,eq, the enthalpy functioñQ = Q/Qeq and the
velocity v = V/Vs,eq, in terms of the equatorial values of the
sonic distanceRs,eq, densityρs,eq, enthalpy functionQeq and
sound speedVs,eq.

The mass flux conservation in these dimensionless variables
takes the form

ρ̃vR̃2 = ṁ(ψ) , (3)

while the Bernoulli integral becomes,

v2

2
+

γ

γ − 1
Q̃(ψ)ρ̃(γ−1) −

(
GM

V 2
s,eqRs,eq

)
1
R̃

=
v2

∞(ψ)
2

. (4)
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Sincev∞(ψ) can be regarded as a function ofR̃ andρ̃ along a
particular streamlineψ, by taking the partial derivative ofv2

∞
with respect tõρ andR̃ we obtain the usual Parker criticality
relations which give the sound speedvs(ψ) and the spherical
distanceR̃s(ψ) of the critical surface along each streamlineψ
=const.,

v2
s (ψ) = γQ̃(ψ)ρ̃(γ−1)

s (ψ) , (5)

and

R̃s(ψ) =
GM

2V 2
s,eqRs,eq

1
v2
s (ψ)

, (6)

with the lower indexs refering to the respective value of the
variable at the sonic surface. Since,R̃s,eq = vs,eq = 1 we have
from the two criticality conditions,

GM

2V 2
s,eqRs,eq

= 1 , (7)

such that

R̃s(ψ) =
1

v2
s (ψ)

. (8)

We are interested in obtaining the flow at large distances
from the central source. Therefore we shall take the distribution
of the velocity and mass flux at infinity as the input parameters
of the problem and introduce the parameter

ξ(ψ) =
V∞(ψ)
V∞,eq

.

Taking into account the above two criticality conditions we have,

v2
s (ψ)
2

+
v2
s (ψ)
γ − 1

− 2v2
s (ψ) =

v2
∞,eqξ

2(ψ)
2

, (9)

which gives

v2
s (ψ) = ξ2(ψ) , (10)

and

v2
∞,eq =

5 − 3γ
γ − 1

. (11)

Note thatv∞,eq ≥ 1 only if γ ≤ 3/2. The enthalpy function
Q̃(ψ) can be calculated in terms ofξ(ψ) andṁ(ψ) from Eq. (3)
evaluated at the sonic surface and Eqs. (8) - (5),

γQ̃(ψ) =
ξ2(ψ)

ρ̃s
γ−1(ψ)

=
ξ5−3γ(ψ)
ṁγ−1(ψ)

. (12)

From Eqs. (3) - (8), the density at the critical surface is given in
terms ofξ(ψ) andṁ(ψ),

ρ̃s(ψ) = ξ3(ψ)ṁ(ψ) . (13)

The Bernoulli equation in dimensionless variables has the
form

v2

2
+
ξ5−3γ(ψ)
γ − 1

(
vR̃2

)(1−γ)
− 2
R̃

=
5 − 3γ
(γ − 1)

ξ2(ψ)
2

. (14)

The above Bernoulli equation determines the plasma flow
v(R̃;ψ) along the prescribed radial magnetic field, once the
polytropic indexγ and the distribution of the asymptotic velo-
city ξ(ψ) are given. Then, Eq. (3) gives the densityρ̃ = ṁ/vR̃2

once the mass fluẋm(ψ) accross the poloidal streamlines is
given. Note that in order to finally calculate the physical vari-
ablesV andρ we need in addition, as input parameter of the
problem, the equatorial sound speedVs,eq while ρs,eq can be
calculated from the giveṅmeq.

Finally, consider the initial radial magnetic field

B = Bs,eq

(
Rs,eq

R

)2

=
Bs,eq

R̃2
, (15)

whereBs,eq is the magnetic field at the equatorial sonic transi-
tion. To define a dimensionless magnetic field,B̃, we need to
normalizeB to some characteristic valueBc which we choose
to be given by the conditionB2

c = 4πρs,eqV
2
s,eq. The dimen-

sionless magnetic field̃B ≡ B/Bc then has the form

B̃ =
Bs,eq√

4πρs,eqVs,eq

(
Rs,eq

R

)2

=
VA,s,eq

Vs,eq

1
R̃2

, (16)

whereVA,s,eq = Bs,eq/
√

4πρs,eq is the Alfvénic velocity at
the equatorial sonic point. Evidently, the strength of the initial
dimensionless magnetic field is controlled by the magnitude of
the ratio of the Alfv́en and sound speeds at the equatorial sonic
distance,VA,s,eq/Vs,eq.

4. The time-dependent stellar wind problem

To obtain a stationary solution of the problem in the nearest zone
of the star containing the critical surface, it is needed to solve
the complete system of the time-dependent MHD equations and
look for an asymptotic stationary state. Then, the plasma flow
in a gravitational field with the thermal pressure included is
described by the following set of the familiar MHD equations,

Bp =
∇ψ × ϕ̂

r
, (17)

∂ψ

∂t
= −Vr ∂ψ

∂r
− Vz

∂ψ

∂z
, (18)

∂ρ

∂t
= −1

r

∂

∂r
(ρrVr) − ∂

∂z
(ρVz) , (19)

∂Bϕ
∂t

=
∂

∂z
(VϕBz − VzBϕ) − ∂

∂r
(VrBϕ − VϕBr) , (20)

∂Vϕ
∂t

= −Vr
r

∂

∂r
(rVϕ) − Vz

∂Vϕ
∂z

+
1

4πρ

(
Br

∂

r∂r
(rBϕ) +Bz

∂Bϕ
∂z

)
, (21)

∂Vz
∂t

= −Vr ∂Vz
∂r

− Vz
∂Vz
∂z

− 1
ρ

∂P

∂z
− GMz

R3 − 1
8πρr2

×
∂

∂z
(rBϕ)2 − Br

4πρ

(
∂Br
∂z

− ∂Bz
∂r

)
, (22)
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∂Vr
∂t

= −Vr ∂Vr
∂r

− Vz
∂Vr
∂z

− 1
ρ

∂P

∂r
− GMr

R3 − 1
8πρr2

×

∂

∂r
(rBϕ)2 +

V 2
ϕ

r
+

Bz
4πρ

(
∂Br
∂z

− ∂Bz
∂r

)
, (23)

where we have used cylindrical coordinates(z, r, ϕ) and the
magnetic field B has a poloidal magnetic flux denoted by
ψ(z, r). In the simulation we assumed a polytropic equation
of state, so that the relationship of pressure and density in the
plasma isP = Q(ψ)ργ , at any point along the flow.

A correct solution of the problem requires a specification of
the appropriate boundary conditions at the base surface. In this
paper our main intention is to compare our results with observa-
tions at large distances from the source. In other words, we are
interested in the asymptotic properties of the plasma flow in stel-
lar winds. It is reasonable to start our numerical integration at a
boundary surfaceRo placed just downstream of the slow mode
critical surface. In this way we avoid the problems connected
with the correct description of the acceleration of the flow be-
low the slow mode critical surface. Nevertheless, our boundary
sourface will be placed below the Alfvén and fast mode criti-
cal surfaces. The correct passage of the physical solution from
these two critical surfaces will yield the appropriate values of
the toroidal component of the magnetic field which is important
in controlling the process of outflow collimation.

Then, the appropriate physical conditions at the boundary
surface of integration are in dimensional variables:
1. The density of the plasma atR = Ro kept constant in time,
although it may depend on the colatitudeθ, ρ = ρo(θ).
2. The total plasma speedVo(θ) in the corotating frame of ref-
erence atR = Ro, kept constant in time, although it may also
depend on the colatitudeθ, V 2

(r,o) +V 2
(z,o) +(V(ϕ,o) −Ωro)2 =

V 2
o (θ) whereVo(θ) is the plasma speed on the surfaceRo of

the initial flow. The value of the initial velocityVo(θ) was taken
such as to yield the observable values of the terminal velocity
of the wind from a nonrotating star, i.e., typical solar wind ve-
locities at 1 AU.
3. A constant and uniform in latitude distribution of the mag-
netic flux function atR = Ro, ψ = ψo.
4. Finally, the continuity of the tangential component of the elec-
tric field across the stellar surface in the corotating frame gives
the last condition,(V(ϕ,o) − Ωro)B(p,o) − V(p,o)B(ϕ,o) = 0.

Recently it was realized by Ustyugova et al. (1999) that the
boundary conditions at the outer box of simulation are impor-
tant for obtaining the correct physical stationary solution. The
importance of a correct specification of the outer boundary con-
ditions in MHD outflows has been emphasized previously in
Bogovalov (1996, 1997) where we controlled the position of
the outer boundary in the region where no signal can propagate
from this boundary into the box of the simulation. For the so-
lution of the full system of equations on the outer boundary we
used only internal derivatives.

5. Method of numerical solution of the problem
of stationary plasma flow to large distances from the star

The asymptotic solution of the time-dependent problem in the
nearest zone containing the Alfvén and fast mode surfaces was
used as the boundary condition for the far zone wherein we have
a supersonic stationary flow. This boundary condition was then
used in order to solve the system of the MHD equations describ-
ing the stationary outflow of superfast magnetosonic plasma.
This system of equations consists of the set of the MHD inte-
grals and of the transfield equation.

As is well known, the stationary MHD equations admit four
integrals. They are the ratio of the poloidal magnetic and mass
fluxes,F (ψ) = Bp/4πρVp; the total angular momentum per
unit mass,rVϕ−FrBϕ = L(ψ); the corotation frequencyΩ(ψ)
in the frozen-in MHD conditionVϕBp − VpBϕ = rBpΩ(ψ)
and finally the total energyE(ψ) in the equation for total energy
conservation,

The method of the solution of the transfield equation in
the super fast magnetosonic region is described in detail in our
previous Paper I. An orthogonal curvilinear coordinate system
(ψ, η) is used, formed by the tangent to the poloidal magnetic
field line η̂ = p̂ and the first normal towards the center of cur-
vature of the poloidal lines,̂ψ = ∇ψ/|∇ψ|. A geometrical
interval in these coordinates can be expressed as

(dr)2 = g2
ψdψ

2 + g2
ηdη

2 + r2dϕ2, (24)

wheregψ, gη are the corresponding line elements, i.e., the com-
ponents of the metric tensor.

According to Landau & Lifshitz (1975) the equationT kψ;k =
ρ ∂
∂ψ (GMR ), whereT ik is the energy-momentum tensor, will

have the following form in these coordinates in the nonrela-
tivistic limit,

∂

∂ψ

[
P +

B2

8π

]
− 1
r

∂r

∂ψ

[
ρV 2

ϕ − B2
ϕ

4π

]
−

1
gη

∂gη
∂ψ

[
ρV 2

p − B2
p

4π

]
= ρ

∂

∂ψ
(
GM

R
) .

(25)

It is convenient to solve the transfield equation in the system
of the curvilinear coordinates (ψ, η) introduced above. The un-
known variables arez(η, ψ) and r(η, ψ). Therefore we need
to know the quantitiesrψ, zψ, rη, zη, whererη = ∂r/∂η,
zη = ∂z/∂η, rψ = ∂r/∂ψ, zψ = ∂z/∂ψ andgη, gψ.

First, the metric coefficientgη is obtained from the above
transfield Eq. (25),

gη = exp (

ψ∫
a

G(η, ψ)dψ), (26)

where

G(η, ψ)

=
∂
∂ψ

[
P + B2

8π

]
− ρ ∂

∂ψ (GMR ) − 1
r
∂r
∂ψ

[
ρV 2

ϕ − B2
ϕ

4π

]
[
ρV 2

p − B2
p

4π

] . (27)
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The lower limit of the integration in (26) is chosen to be
0 such that the coordinateη is uniquely defined. In this wayη
coincides with the coordinatez where the surface of constantη
crosses the axis of rotation.

The metric coefficientgψ is given in terms of the magnitude
of the poloidal magnetic field,

gψ =
1
rBp

. (28)

To obtain the expressions ofrψ, zψ, rη, zη we may use the
orthogonality condition

rηrψ + zηzψ = 0 , (29)

and also the fact that they are related to the metric coefficients
gη andgψ as follows,

g2
η = r2η + z2

η , g2
ψ = r2ψ + z2

ψ . (30)

Finally, by combining the condition of orthogonality (29)
and Eqs. (30) the remaining values ofrη, zη are obtained,

rη = −zψgη
gψ

, zη =
rψgη
gψ

, (31)

with gη above defined by the expression (26). For the numerical
solution of the system of Eqs. (31) the two step Lax-Wendroff
method on the lattice with a dimension equal to 1000 is used.

Eqs. (31) should be supplemented by appropriate boundary
conditions on some initial surface of constantη. The equations
for rψ, zψ defining this initial surface in cylindrical coordinates
are,

∂r

∂ψ
=

Bz
rB2

p
,

∂z

∂ψ
= − Br

rB2
p
. (32)

We need to specify on this surface the integrals
E(ψ), L(ψ),Ω(ψ), F (ψ) as the boundary conditions for the ini-
tial value problem. To specify the initial surface of constantη
and the above integrals, we use the results of the solution of
the problem in the nearest zone when a stationary solution is
obtained for the time-dependent problem.

6. Parametrization of the stationary solution

It is convenient to consider the solution in dimensionless vari-
ables. In the present paper we express the velocities in units of
the initial sound speed at the sound point on the equatorVs,eq,
all the geometrical variables in units of the initial radius of the
sound point on the equatorRs,eq and the magnetic field in units
of Bc =

√
4πρs,eqVs,eq.

In this notation the solution depends on a few parameters.
Among them is the ratio of the radius of the star to the radius of
the initial sound point̃R∗ = R∗/Rs,eq, the parameters

β =
ΩRs,eq

Vs,eq
, (33)

and

Va =
VA,s,eq

Vs,eq
, (34)

together with the two dimensionless functionsξ(ψ) andṁ(ψ)
which are equal to 1 in the case of uniform ejection of plasma
at the base.

Since we are not interested here in the dependence of the
solution on the radius of the star, basically the flow is defined
by the two parametersβ andVa.

Using the above definition ofβ and the relationships at the
critical surface, Eqs. (7) - (8), this parameter can be expressed
through observable parameters as

β =
ΩGM
2V 3∞

(
5 − 3γ
γ − 1

)3/2, (35)

whereV∞ is the terminal velocity of the plasma for the nonro-
tating star with massM . The parameter

Va =
ψt√

ṀR2
s,eqVs,eq

, (36)

whereψt = limr→∞B · r2 is estimated on the equator of the
nonrotating star anḋM is the total mass loss of the nonrotating
star.

In Paper I the degree of collimation of the outflow depended
critically on a parameterα which was defined for cold plasmas
as the ratio of the corotation speed at the Alfvén transition to
the initial velocity of the plasma. However for hot winds where
the velocity depends on the radial distance we should introduce
a more general definition of this parameterα.

In general, winds from astrophysical objects can be driven
by a combination of several mechanisms of acceleration such
as the gradients of thermal pressure, Alfvén wave and radiation
pressures, magnetocentrifugal forces, etc. It is natural to char-
acterize the efficiency of the magnetocentrifugal forces by the
ratioVm/V∞,0 whereVm = (Ω2ψ2

t /Ṁ)1/3is Michel’s (1969)
terminal velocity of a plasma accelerated only by magnetocen-
trifugal forces in the split-monopole model provided that the
initial velocity is zero whileV∞, 0 is the terminal wind speed
due to all other mechnisms of acceleration. In other words,V∞, 0
is the terminal velocity of the plasma for the nonrotating star.
In this case the generalizedα can be defined as

α =
(
Vm
V∞,0

)3/2

. (37)

In the special case of cold plasma outflow this definition
of the parameterα coincides with the parameter introduced in
our previous Paper I. It can be easily shown that for polytropic
winds this parameter can be expressed as

α = βVa(
γ − 1
5 − 3γ

)3/4 , (38)

or,

α =
ψtΩ√
ṀV

3/2
∞,0

. (39)

Magnetic rotators withα > 1 shall be called fast magnetic
rotators and those withα < 1 slow magnetic rotators. It is
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a b

Fig. 3a and b.Shape of poloidal magnetic field lines and streamlines in the near zone of an isotropic (panela) and anisotropic (panelb) solar
wind with γ = 1.1, Va = 6.15 andβ = 0.165. Spherical distance is given in units of radius of slow point atRslow = 8.4 R�, with the base
radius atR = 1.5 (dashed line). Thick lines indicate slow, Alfvén and fast critical surfaces.

a b

Fig. 4a and b.Shape of poloidal magnetic field lines in the far zone of an isotropic SW withγ = 1.1 andβ = 0.165. In a the poloidal field
lines are plotted in a logarithmic scale, which magnifies their slight bending towards the axis, while in the linear scale ofb it may be seen that
collimation is negligible.

useful to note that for a slow magnetic rotator such as the Sun,
RA ≈ ψt/(ṀV∞,0)1/2 (MacGregor 1996), and henceα ≈
ΩRA/V∞, 0.

A quantitative classification of magnetic rotators on slow
and fast (Belcher & MacGregor 1976) has also been introduced
in Ferreira (1997) by using the parameterΩRA/VA, whereVA
is the Alfvén velocity in the Alfv́en transition located at the ra-
diusRA. This parameter is also less than 1 for slow rotators, but
for fast rotators it is of the order of 1, since for fast magnetic ro-
tatorsVA ∼ ΩRA (Michel 1969). Nevertheless, physically this
classification of magnetic rotators to fast and slow coincides in
both cases. Note also in passing that in terms of an energetic
criterion for collimation deduced in Sauty & Tsinganos (1994)
and Sauty et al. (1999) magnetic rotators are analogously clas-
sified as efficient (with cylindrical asymptotics) and inefficient
(with radial asymptotics).

In Fig. 3a we plot the shape of the poloidal magnetic field
lines and streamlines in the near zone of a wind which is
isotropic at the base withγ = 1.1, Va = 6.15 andβ = 0.165.
With these parametersα = 0.12, i.e., in our terminology the
Sun is a slow rotator. Careful inspection of this figure shows
that the flow is very slightly collimated to the axis of rotation.
The solution in the far zone is presented in Fig. 4.

7. Results for the isotropic and nonisotropic solar wind

The most often used magnetized polytropic solar wind model
is the classical one proposed by Weber & Davis (1967) where
the poloidal magnetic field and stream lines are radial (see also
MacGregor 1996). This model reproduces the observed prop-
erties of the low speed streams at 1 AU within the observed
fluctuations (Charbonneau 1995).
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Fig. 5a and b.Variation with dimensionless cylindrical distanceX = r/Rslow of enclosed magnetic fluxψ(X) (dot-dashed) and magnetic
field Bp(X)/Bo (solid) for β = 0.165 andγ = 1.1 (panela) andβ = 0.044 andγ = 1.2 (panelb). Dashed line indicates the analytically
predicted values ofBp(X)/Bo.

We will choose in our analysis the polytropic index to the
valueγ = 1.1 such that the wind is heated. The spherical dis-
tance will be expressed in units of the distance of the slow mag-
netosonic pointRslow ≈ 8.4 R� and the velocity in units of
the slow magnetosonic speed there,Vslow ≈ 106 km/s. Thefast
magnetosonic transition occurs atRfast ≈ 38R� where the fast
magnetosonic speed isVfast ≈ 230 km/sec. Note that for slow
magnetic rotators like our Sun, the slow magnetosonic speed
almost coincides with the sound speed and the Alfvén critical
point with the fast magnetosonic critical point. In particular, at
the axis the Alfv́en and fast transitions coincide but at the equa-
tor the Alfvén transition occurs earlier as in Figs. 3 (see also
Paper I and Keppens & Goedbloed 1999)

In Fig. 4a the poloidal field lines of the SW are plotted in a
logarithmic scale, which magnifies their slight bending towards
the axis. This logarithmic scale extends to the huge distance of
1010Rslow, i.e, about4 × 108 AU ≈ 60 light years. This figure
shows that the solar wind is indeed collimated toward the axis
of rotation. But this collimation is indeed very weak. Fig. 4b
shows the same field in a linear scale which shows that a jet is
still not formed even at these huge distances.

As is shown in Bogovalov (1995), the dependence of the
magnitude of the poloidal magnetic field and density on the
cylindrical distancer becomes rather simple if we assume for
convenience that the MHD integralsE(ψ), L(ψ), F (ψ),Ω(ψ)
and the terminal velocity of the jetVj are constants and do not
depend onψ and also thatVj � VA(0), whereVA(0) is the
Alfv énic velocity at the axis of rotationr = 0. In such a case,
an approximate estimate of the dependence of the magnetic field
on r is given in terms of the magnetic field and the density of
the plasma on the axis of the jet,Bp(0) andρ(0), respectively,

Bp(r)
Bp(0)

=
ρ(r)
ρ(0)

=
1

1 + (r/Rj)2
. (40)

The radius of the core of the jetRj is given in terms of the sound
and Alfvén speeds along the jet’s axisVs(0) andVA(0),

Rj =

√(
1 +

Vs(0)2

VA(0)2

)
Vj
Ω
, (41)

Hence, the poloidal magnetic field and density remain prac-
tically constant up to axial distances of orderRj and then they
decay fast like1/r2 outside the jet’s core.

The comparison of this theoretical prediction with the char-
acteristics of the solar wind is shown in Fig. 5. There is a re-
markable discreapancy between them which tells us that even at
these unrealistically huge distance (the SW wind is presumably
terminated earlier) the jet has still not formed. The reason is that
the collimation of the wind occurs logarithmically with distance
(Paper I) provided that the jet is not formed in the nearest zone,
as it happens for fast rotators. For the solar parameters, there
isn’t enough radial distance to form the jet.

In spite of the absence of a jet core in the solar wind, the
lines of the plasma flow are certainly bent to the axis of rotation.
And some observable effects can arise due to this bending. If the
base density is isotropic, the SW mass efflux increases with the
latitudeθ because of the magnetic focusing by about 20% from
the equator to the pole (Fig. 6a) at a distance from the Sun of
about 5.8 AU. Approximately at this distance the interplanetary
Lα emission is formed, as observed by the SWAN instrument on
board of SOHO. This theoretical anisotropy is in contradiction
with the measurements of the anisotropy of the SW at large
distance from the Sun by SWAN. This discreapency however,
can be eliminated if we take into account some initial anisotropy
in the SW.

To study in more detail the effect of the focusing of the SW,
we peformed calculations for a more realistic model of the SW
including some initial anisotropy of the wind at its base.
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a

5.8 AU

b

5.8 AU

Fig. 6a and b.Distribution with latitude of characteristics of isotropic (panela) and anisotropic (panelb) solar wind at 5.8 AU forβ = 0.165
andγ = 1.1. Dashed lines indicate thermal pressurePth(θ)/Pth(θ = 0), solid lines mass fluxJ(θ) = ρvR2, dotted lines pressure of toroidal
magnetic fieldPt(θ)/Pth(θ = 0) and dotted-dashed lines pressure of poloidal magnetic fieldPp(θ)/Pth(θ = 0).

In Fig. 3b the shape of the streamlines and Alfvén/fast crit-
ical surfaces is shown in the near zone of a wind which is lati-
tudinally anisotropic in density and speed at the reference base
atR = 1.5 Rs,eq. For this simulation we used the latitudinal
dependence of an exact MHD solution for the solar wind (Lima
et al. 1997; Gallagher et al. 1999) with

ρ(θ) = ρ0
(
1 + δ sin2ε θ

)
, Vr(θ) = Vo

√
1 + µ sin2ε θ

1 + δ sin2ε θ
, (42)

whereV0, andρ0 correspond to the reference values of the flow
speed and density and the distribution depends on the three
parametersδ,µ andε. The values ofε, δ andµ have been chosen
in Lima et al. (1997) as to best reproduce the observed values
of the wind speed at various latitudes, as obtained recently by
Ulysses (Goldstein et al. 1996). Their deduced values which we
adopted in this study areδ = 1.17, µ = −0.38 andε = 8.6. A
similar density enhancement about the ecliptic and an associated
increase of the wind speed around the poles is also found in
recent MHD simulations as well (Keppens & Goedbloed 1999).

The distribution of the mass efflux at the distance of 5.8
AU for the anisotropic at the base SW is shown in Fig. 6b. The
effect of the magnetic focusing almost totally disappears at high
latitudes. Near the equator the excess of the mass efflux remains
remarkable in the region below 30 degrees, although evidently
the mass efflux decreases below 15 degrees. Therefore these
results are in reasonable agreement with the distribution of the
mass efflux of the SW which is deduced by SWAN at distances
5-7 AU.

The drastical decrease of the effect of the focusing of the
solar wind in the anisotropic case can be naturally explained
by the larger velocity of the SW at high latitudes. According
to observations by ULYSSES, the velocity at high latitudes is
almost twice higher than the velocity at the equator (Feldman et
al. 1996). It follows from the equation of motion Eq. (25) that

the curvature radiusRc of the streamlines in the poloidal plane
at large distances can be estimated as (Paper I)

1
r2

∂

∂ψ

r2B2
ϕ

8π
∼ ρV 2

p

rRcBp
. (43)

The toroidal magnetic field at large distances can be estimated
from the frozen in condition asBϕ = −(rΩ/Vp)Bp. In this
case we have

1
Rc

∼ 1
8πρV 2

p r
3

∂

∂θ

(
rΩ
Vp

)2

B2
pr

2 . (44)

The latitudinal distributon ofρVp is almost constant with an
∼ 15% increase only near the equator. Therefore the curvature
radius depends onVp as

1
Rc

∼ 1
V 3
p

, (45)

provided that the mass flux density is fixed. Due to this strong
dependence of the effect of collimation on the velocity of the
plasma, the focusing practically disappears at high latitudes
where the velocity is almost twice the velocity near the equator
and the distribution of the mass efflux is in pretty good agree-
ment with the observed one. The decrease of the mass efflux
below15o cannot be found by the present SWAN data analysis
since it was assumed in this analysis that the mass efflux can
only monotonically increase with decreasing latitude.

Up to now we have discussed the results of calculations for
the polytropic wind withγ = 1.1. The flow with this polytropic
index is almost isothermal and approximates the SW near the
Sun, up to several dozens of solar radii. But at larger distances
the effective polytropic index should increase and at infinity it
should go to the Parker value3/2. At a first glance, it seems
reasonable to expect that the focusing of the plasma will be
stronger for a higher polytropic index.

To study this possibility we also performed calculations for
the isotropic solar wind with a polytropic indexγ = 1.2, a
reasonable value at the distance of several AU (Weber 1970).
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The change of the polytropic index results to a change of the
other parametersβ andVa so that the total magnetic flux, mass
flux and terminal velocity of the plasma remain constant as in the
case withγ = 1.1. In particular, forγ = 1.2 we haveβ = 0.044
andVa = 11.9. With these values ofβ andVa the parameterα
remains constant.

The distribution of the mass flux forγ = 1.2 is shown in
Fig. 7.

It follows from this figure that the focusing of the flow to
the axis of rotation becomes even smaller at distances below 5.8
AU than it does forγ = 1.1. This is explained by the fact that
the higher is the polytropic index, the less is the variation of the
plasma velocity with the distance. With a fixed terminal velocity,
the wind withγ = 1.2 has a higher velocity at the base than the
wind with γ = 1.1. But we already have discussed above the
dependence of the focusing on the velocity of the flow. It follows
from this discussion that the focusing is less for the wind with
higher velocity. Therefore the focusing of the wind at several
AU is maximal forγ = 1.1. Since we have agreement of theory
and observations of the solar wind anisotropy by SWAN for
this polytropic index, it is expected that the wind with a higher
polytropic index will not provide a higher level of collimation
which could be inconsistent with the observations.

The dependence of the focusing effect on the polytropic in-
dex becomes opposite at very large distances where the plasma
velocity has already achived the terminal value. In this case it
becomes important how fast the thermal pressure which tends
to decollimate the plasma falls down with distance. The higher
the polytropic index is, the faster the pressure falls down with
the distance. Therefore at very large distances we should expect
stronger collimation of the plasma for higher values of the poly-
tropic index. This tendency is indeed found. Fig. 5 demostrates
a comparison of the characteristics of the flow near the axis of
rotation for polytropic indices 1.1 and 1.2. It is seen that the
wind for γ = 1.2 is stronger collimated although the formation
of the jets is also not completed at these huge distances.

8. Stellar winds from magnetic rotators faster than the Sun

As we have seen in the previous section, the Sun is a relatively
slow magnetic rotator withα < 1. A plausible senario for the
Sun (and similar low mass stars) is that it has lost a large frac-
tion of its angular momentum via a magnetized outflow while
in its youth it was in a state of higher rotation, similar to the ob-
served high rotation states of young stars (Bouvier et al. 1997)
corresponding to larger values ofα. It is interesting then to ex-
amine the change of the shape of the magnetic field of a stellar
magnetic rotator more efficient that the Sun, in the context of
our simple modelling. For convenience and comparison with
the present era Sun, we may keep constant the parameters of
the polytropic index and sound speed. In rapid rotators, the
magnetic flux also increases roughly in proportionality to the
rotation rateΩ (Kawaler 1988, 1990). For simplicity let us ne-
glect this increase and assume that the ratio of the Alfvén and
sound speed remains the same,Va = 6.15, as in the previous
example, but the parameterβ increases by 5 and 10 times, from

���������������
���������������
���������������
���������������5.8 AU

Fig. 7. Distribution with latitude of the characteristics of the isotropic
solar wind at 5.8 AU forβ = 0.044 and γ = 1.2. Dashed line
indicates thermal pressurePth(θ)/Pth(θ = 0), solid line mass
flux J(θ) = ρvR2, dotted line pressure of toroidal magnetic field
Pt(θ)/Pth(θ = 0) and dotted-dashed line pressure of poloidal mag-
netic fieldPp(θ)/Pth(θ = 0).

β = 0.165 (α = 0.121) to β = 0.825 (α = 0.6) and then toβ =
1.65 (α = 1.21).

We shall again consider in our numerical experiment that
the star has a radial magnetic field and at t=0 rotation starts
which via the Lorentz forces distorts this magnetic field. After
some time, a final equilibrium state is reached (Figs. 8) where
the poloidal magnetic field and the plasma density are increased
along the axis because of the focusing of the field lines towards
the pole. A test that the steady state solution is reached is the
constancy of the MHD integrals of motion,E(ψ), L(ψ), F (ψ)
andΩ(ψ). Note that the wiggles appearing at the midlatitude
in Figs. 8 are due to the step-like function representation of the
surface of the star in the cylindrical coordinate system used in
our calculations. This artifact is unavoidable in this system of
coordinates and is also present in the calculations reported in
Washimi & Shibata (1993).

The shape of the poloidal field lines is shown in the near zone
in Fig. 8. Collimation of the plasma to the axis of rotation already
close to the source is evident. As in the cold plasma case of Paper
I, the elongation of the subsonic region along the axis of rotation
is present. The most surprising result is that this elongation
occurs faster with an increase of the parameterα than it does for
a cold plasma. It is easy to compare the flow in the nearest zone
for α = 1.2 shown in Fig. 8b with the corresponding figure for
similarα presented in Fig. 2 of Paper I. It appears that although
the shape of the field lines is the same, the subsonic region for
the cold plasma remains almost spherical at this parameter in
contract to the shape of the subsonic region for the hot plasma.
The physics of this interest behaviour is as follows.

The Alfvén transition at a given point of the Z-axis occurs
whenV = (Bp/4πρV )Bp. The ratioBp/ρV remains constant
along a field line. Therefore the right hand side in this expression
increases with collimation asBp. In the cold plasma limitV is
constant and the displacement of the Alfvén point down the flow
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a b

Fig. 8. Shape of poloidal magnetic field lines/streamlines in near zone of isotropic wind from a star rotating 5 times (β = 0.825, panela)
and 10 times faster than the Sun, (β = 1.65, panelb) for γ = 1.1 andVa = 6.15. Spherical distance is in units of radius of slow point at
Rslow = 8.4R�, with the base radius at1.5Rslow (dashed line). The initial nonrotating monopole magnetic field has a spherical Alfvén surface
at4.5Rslow. Thick lines indicate slow, Alfv́en and fast critical surfaces.

Fig. 9. Flow speed at the axis (solid) and the equator (dashed line) for
wind from a star rotating 10 times faster than the Sun, withγ = 1.1
andβ = 1.65.

in the cold plasma occurs only due to an increase ofBp. In the
hot plasma case, the collimation also modifies the velocityV .

This modification is shown in Fig. 9. The solid line shows
the velocity at the axis and the dashed line shows the velocity
at the equator. Collimation results in an decrease of the ther-
mal pressure gradient. Therefore the thermal acceleration of the
plasma becomes less efficient. The velocity of the plasma even
slightly decreases due to the gravitation force. Therefore the
Alfv én surface in the hot case elongates along the axis of rota-
tion with an increase ofα, faster than it does in the cold plasma
case. It is clear that at some value ofα specific for every flow, the
subsonic region near the axis will be elongated to infinity in the
Z-direction. In the hot plasma this happens at smallerα than it
does in the cold plasma case. This subfast region should be cer-
tainly unstable. Therefore, the plasma flow at these conditions

cannot be stationary. Those jets withα � 1 eventually should
become turbulent with properties differing from the properties
of the stationary jets found forα < 1. The physics of these jets
should be examined in a separate study.

In Fig. 10 the shape of the poloidal fieldlines is shown for
the case of the rapid rotator. Their bending towards the rotation
axis is evident not only in the logarithmic plot of Fig. (10a) but
also in the linear plot of Fig. 10b where a tightly collimated jet
is formed already at a relatively small distance from the source.

In Figs. 11 the poloidal component of the magnetic field is
plotted together with the magnetic flux enclosed by a cylindri-
cal distanceX. The poloidal magnetic fieldBp(X)/Bo (solid
line) is given in units of its reference valueBo, corresponding
to the magnetic field at the symmetry axisr = 0 and some
reference heightZo = 5 · 108 for β = 0.825 (Fig. 11a) and
Zo = 1.66 × 106 for β = 1.65 (Fig. 11b). The asymptotic
regime of the jet is achived at these distances. The dashed curve
gives the analytically predicted solution for the poloidal mag-
netic fieldBp(X)/Bo, Eq. (42). Note that the agreement be-
tween the calculated and analytically predicted values of the
radius of the jet is pretty good. It follows from this comparison
that for these parameters we indeed achieve the distance where
the jets are really formed.

9. Discussion of the results

One of the basic results from the numerical simulations reported
in this paper as well as in Paper I is that plasma ejected by rotat-
ing magnetized objects has the property of self-collimation. No
other special conditions are needed to get a collimated outflow.
Therefore, jets should be a rather common phenomenon in as-
trophysics. This is the most important prediction of the theory
of magnetic collimation which is in pretty good agreement with
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a b

Fig. 10a and b.Shape of poloidal magnetic field lines for a wind from a star rotating 10 times faster than the Sun, withγ = 1.1 andβ = 1.65.
In a the poloidal field lines are plotted in a logarithmic scale, which artificially magnifies their bending towards the axis, while in the linear scale
of b a higher degree of collimation in comparison to the corresponding case of Fig. 4b may be seen.
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Fig. 11a and b.Variation with dimensionless cylindrical distanceX = r/Rslow of enclosed magnetic fluxψ(X) (dot-dashed) and magnetic
fieldBp(X)/Bo (solid) from a moderate stellar magnetic rotator withβ = 0.825 (panela) and a faster magnetic rotator withβ = 1.65 (panel
b). Dashed line indicates the analytically predicted values ofBp(X)/Bo.

observations, since numerous jets are observed to be associated
with astrophysical objects of different nature.

However, a direct application of the theory of magnetic col-
limation to an isotropic solar wind predicts an increase of the
mass efflux near the poles while observations of the distribution
of the solar wind mass efflux with heliolatitude at distances 5 -
7 AU by a range of instruments have given the opposite result.
In this work we eliminated this apparent contradiction by taking
into account in the calculations more realistic parameters for the
anisotropic solar wind, as those inferred recently by ULYSSES
and SOHO. Then, a recalculation of the heliolatitudinal distri-
bution of the SW mass efflux at large distances with an initially
anisotropic distribution of the density and flow speed at the base
show that the initial excess of the mass flux near the equator is
preserved up to the outer boundary of the SW. Magnetic colli-
mation is remarkable only in the region of the lower speed wind

near the equator. It results in a relative decrease of the mass
efflux in comparison with the flux at the low latitudes less than
15o. Can this effect be found in the SWAN data? To answer this
question a detailed comparison of the calculations with these
data is necessary.

It is widely believed that due to the observed close disk-
jet connection collimated outflows are possible only from sys-
tems containing accretion disks. It is clearly demonstrated in
this study that fast rotating stars without disks can also produce
jet-like outflows. This prediction is crucially important for the
theory of magnetic collimation, since it gives a most reliable
observational test of the theory. Up to now there has been no
direct observational evidence that observed jets are really col-
limated by the magnetic field. And, observation of jet-like out-
flows from objects which do not contain accretion disks would
be this needed evidence.
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Young fast rotating stars of solar mass are among the objects
which produce jets. The effect of magnetic self-collimation of
the winds is parameterized byα, which can be presented in the
form

α = 0.12
(ψt/ψ�)(Ω/Ω�)√

(Ṁ/Ṁ�)(V∞/V�)3/2
, (46)

for V� ≈ 400 km/s. Some young stars with solar mass have an-
gular velocities up to 100 times the angular velocity of the Sun
(Bouvier et al. 1997). For example, in AB DoradusΩ? = 54 Ω�
(Jardine et al. 1999). A phenomenological dynamo mecha-
nism (MacGregor 1996) predicts a magnetic flux which scales
asψ?/ψ� ∝ Ω?/Ω�. However, the dependence of the mass
flux on Ω? is not known. The theoretical analysis in the We-
ber & Davis (1967) approximation shows that the mass flux
is practically independent of the angular velocity. In such a
case AB Doradus would haveα ≈ 350. On the other hand,
if the mass loss rate is proportional to the magnetic pressure,
Ṁ?/Ṁ� ∝ B2

?/B
2
�, a value ofα which is 54 times smaller

results, i.e.,α ≈ 6.5. This star is certainly a rapid rotator and
should produce a collimated outflow. However, can such jets
be observed? Unfortunately their mass flux may be too small
and thus it may be practically impossible to observe these jets
directly.

Outflows from stars with much higher mass loss rates could
be modelled with this study. For example, B/Be stars have
massive radiation driven winds. Usually these stars also rotate
rapidly, at least Be stars. Their mass loss rate lies in the range
Ṁ? = (10−6 − 10−8)M�/year, while their angular velocity is
aboutΩ? ≈ 20Ω�. The average magnetic field on the surface of
B/Be stars can vary from 200 G to 1600 G (MacGregor 1996).
Assuming thatR? = 10R�, the magnetic flux from such a star
is ψ? = (7 × 103 − 5.6 × 104)ψ�. With wind speeds of the
order ofV∞ = 1000 km/s, the parameterα lies in the range
α = 0.05−5. This means that some of these B/Be stars (but not
all) could be fast magnetic rotators producing therefore jet-like
outflows. Due to their huge mass loss comparable to the mass
loss of classical T Tauri stars, these jets could be more easily
observable. It is interesting in this connection to note observa-
tions by Marti et al. (1993) of jets from a B star in the HH 80/81
complex.

The most strikingly unwanted result obtained in this study
is that the part of the total magnetic flux (and mass flux corre-
spondingly) going in to the jet is only of the order of1%, as
it may be seen in Fig. 11. Almost all magnetic flux goes in to
the radially expanding wind with mass losṡMw. In this case
the results of our calculations can not be directly applied to jets
from YSO because in most of them it appears that the mass flux
in the jetsṀj is about1% of the accretion rateṀa (Hartigan
et al. 1995). If we assume that only about1% of the outflowing
wind goes in to the jet, like in our results, then we will have
the uncomfortably high ratioṀw/Ṁa ∼ 1, which apparently
should not be so high for outflows from accretion disks (Pelletier
& Pudritz 1992). This means that some of our assumptions are
not valid in the central source of jets from YSO. Modifications
of the input parameters of the model which provide collima-

tion of an arbitrary high fraction of the wind into the jet will be
discussed in our next paper.

Finally we would like to emphasize once more the situation
concerning wind flows from sources withα � 1. It seems that
the majority of interesting sources of outflows, such as rapidly
rotating stars and systems with accretion disks are just those
which satisfy this condition. Jets from such sources should be
nonstationary and turbulent with properties which may strongly
differ from the properties of the laminar jets conidered in this
paper. The physics of such jets still remains to be studied.
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Appendix A: Appendix

We show that the dynamics of plasma in ideal MHD flows is
invariant in relation to a reversal of the direction of the magnetic
field lines in an arbitrary flux tube. Firstly this property of ideal
MHD flows was used for the solution of the problem of plasma
outlow from oblique rotators in pulsar conditions (Bogovalov
1999). Here we simply show that it is also valid for flows in a
gravitational field with thermal pressure.

The plasma flow in the nonrelativistic limit is described by
the familiar set of the ideal MHD equations

ρ
∂V
∂t

+ρ(V · ∇)V = −∇P −ρ∇Φ+
1
4π

(∇×B)×B, (A.1)

∂B
∂t

= ∇ × (V × B), (A.2)

∇ · B = 0, (A.3)

∂ρ

∂t
+ ∇ · (ρV) = 0, (A.4)

whereΦ is the gravitational potential andP is the pressure.
Let us assume that we have some solution which is described

by the functionsB(r, t), ρ(r, t), V(r, t) andP (r, t). We show
that the change of the direction of the magnetic field in an ar-
bitrary magnetic flux tube does not change the dynamics of the
plasma.

Let us introduce a scalar functionη(r, t) with the property
thatη = 1 everywhere except inside the choosen flux tube where
η = −1. This function satisfies the following 2 conditions

B · ∇η = 0 , (A.5)

and

∂η

∂t
+ V · ∇η = 0 . (A.6)

The second equation is the consequence of the frozen-in con-
dition such that the value ofη is advected together with the
plasma.
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Then the solutionηB(r, t), ρ(r, t), V(r, t) andP (r, t) also
satisfies the system of Eqs. (A.1-A.4). Indeed, the Lorentz force
in the right hand side of (A.1) is,

[∇ × (ηB)] × (ηB) = η[∇η × B + η∇ × B] × B =
∇(η2/2) × B + η2(∇ × B) × B = (∇ × B) × B , (A.7)

sinceη2 = 1. This means that the forces affecting the plasma do
not change with this transformation. Eqs. (A.2, A.3) are satisfied
due to conditions (A.5, A.6).
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