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Abstract. An axisymmetric MHD model is examined analyt-
ically to illustrate some key aspects of the physics of hot and
magnetized outflows which originate in the near environment
of a central gravitating body. By analyzing the asymptotical
behaviour of the outflows it is found that they attain a variety
of shapes such as conical, paraboloidal or cylindrical. However,
non cylindrical asymptotics can be achieved only when the mag-
netic pinching is negligible and the outflow is overpressured on
its symmetry axis. In cylindrical jet-type asymptotics, the out-
flowing plasma reaches an equilibrium wherein it is confined by
magnetic forces or gas pressure gradients, while it is supported
by centrifugal forces or gas pressure gradients. In which of the
two regimes (with thermal or magnetic confinement) a jet can be
found depends on the efficiency of the central magnetic rotator.
The radius and terminal speed of the jet are analytically given
in terms of the variation across the poloidal streamlines of the
total energy. Large radius of the jet and efficient acceleration
are best obtained when the external confinement is provided
with comparable contributions by magnetic pinching and ther-
mal pressure. In most cases, collimated streamlines undergo
oscillations with various wavelengths, as also found by other
analytical models. Scenarios for the evolution of outflows into
winds and jets in the different confinement regimes are shortly
outlined.
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1. Introduction

Nonuniform plasma outflows seem to be ubiquitous in astro-
physics on galactic and extragalactic scales. The closest exam-
ple is the solar wind itself which shows strong heliolatitudi-
nal velocity gradients as recently observed byUlysses(Lima
& Tsinganos 1996, McComas et al. 1998). Further away colli-
mated outflows are observed in association with several galactic
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objects, such as young and evolved stars, planetary nebulae, X-
ray binaries and collapsed objects (for reviews see Ray 1996,
Kafatos 1996, Mirabel & Rodriguez 1996, Brinkmann & Müller
1998, Livio 1998). Finally, on extragalactic scales jets are ob-
served to originate in many Active Galactic Nuclei and Quasars
(Biretta 1996, Ferrari et al. 1996).

Yet, despite their abundance the basic questions on the for-
mation, acceleration and propagation of nonuniform winds and
jets have not been fully answered. Nevertheless, observations
seem to indicate that the basic ingredients for producing astro-
physical outflows are some sort of heating to launch thermally
the wind at the axis plus a rotating central gravitating object
and/or an accretion disk threaded with magnetic fields to accel-
erate magnetocentrifugally and collimate the outflow.

1.1. Drivers of the collimated plasma outflow

Several mechanisms have been investigated for accelerating and
collimating astrophysical outflows in galactic and extragalactic
scales. Magnetic rotator forces seem to play a rather dominant
and crucial role (Lynden-Bell 1996) but they are probably not
the only relevant mechanism.
First, thermally driven models are based on thede Laval nozzle
analogy of the solar wind (Parker 1963, Liffman & Siora 1997).
This requires the presence of a hot corona around the central
body of the YSO or the AGN. X-ray emission detected in sev-
eral of these objects may imply that thermal effects contribute to
the general acceleration mechanism at the base of the flow but
they are probably not the only ingredient. Furthermore, if the
wind is associated to a very bright object, the flow can be effec-
tively accelerated by the photon flux (radiatively driven winds,
Cassinelli 1979). Parallely note also that collimation of bipolar
outflows from YSOs and Planetary Nebulae by external thermal
pressure gradients have been extensively studied in the frame of
the Generalized Wind Blown Bubble scenario (GWBB, Frank
1998). It has demonstrated successfully that magnetic processes
may not be the only way to achieve collimated outflows.
Second, magnetic pressure driven models are based on theun-
coiling spring analogy and have been examined by Draine
(1983), Uchida & Shibata (1985) and Contopoulos (1995).
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There, it is assumed that a toroidal magnetic fieldBφ is cre-
ated and highly amplified by the winding-up of its field lines by
a radially collapsing and non-Keplerian rotating disk. Plasma is
then accelerated from the disk in the poloidal direction by the
action of the resulting torsional Alfv́en waves.
Third, magnetocentrifugally driven outflow models are based on
the classicalbead on a rotating rigid wireanalogy. There, the
magnetized cold fluid is flung out (even to relativistic velocities)
from the surface of the Keplerian accretion disk, provided that
the poloidal field lines are inclined enough with respect to the
disk axis (Blandford & Payne 1982, Pelletier & Pudritz 1992,
Contopoulos & Lovelace 1994, Cao 1997). This approach is
suitable to model winds from accretion disks, but is not valid
around the symmetry axis. Moreover it has been pointed out
recently (Ogilvie & Livio 1998) that, even if the lines are suffi-
ciently inclined, a potential barrier still exists that can be over-
come only by the presence of an extra source of energy (e.g. a
hot corona).

In all the above treatments the effects of thecombination
of gas pressureandmagnetic fields in accelerating, collimating
and confining jets have not been discussed adequately, despite
the fact that the role of the gas pressure has been recognized for
a long time, i.e., that jets are not moving in a vacuum (molecular
clouds around YSO’s, or host galaxies in AGN) and hence they
must have some interaction with the external medium (Ferrari
et al. 1996; Frank 1998). This approach may also highlight the
transition from fully thermally driven to fully magnetocentrifu-
gally driven collimated winds.

1.2. Radially self-similar models

As with any fully MHD approach and despite of the simplifi-
cations of steadiness and axisymmetric geometry, several ap-
proximations are still unavoidable in order to obtain exact so-
lutions useful for an understanding of the MHD mechanism for
the initial acceleration and final collimation. Thus, one simple
analytical way out is the use of self-similarity. This hypothe-
sis allows an analysis in a 2-D geometry of the MHD equations
which reduce then to a system of ordinary differential equations.
The basis of the self-similarity treatment is the assumption of
a scaling law of one of the variables as function of one of the
coordinates. The choice of the scaling variable depends on the
specific astrophysical problem.

Several models self-similar in theradial direction have been
investigated to analyze the structure of winds from accretion
disks (Blandford & Payne 1982, Contopoulos & Lovelace 1994,
Li et al. 1992, Li 1995, 1996, Ferreira 1997, Ostriker 1997). In
these models the driving force and the collimation derive from a
combination of the magnetic and centrifugal forces. Moreover,
as disc-winds are associated with jets, these studies usually do
not consider under which parametric conditions full collimation
is obtained. Exceptions are given in Pelletier & Pudritz (1992)
and Contopoulos & Lovelace (1994) where the collimation ef-
ficiency is linked to a current flowing in agreement with the
Heyvaerts & Norman (1989) general analysis. However, the ab-
sence of an exact crossing of all the existing critical points in the

solutions presented in these papers prevents from considering
their conclusions as definitive. Nevertheless, it has been shown
that within the frame of self-similar disc-wind assumptions, it
is possible to cross all critical points thus getting meaningful
solutions (Tsinganos et al. 1996, Vlahakis 1998). Moreover, the
role of the inhomogeneity in the pressure distribution has not
been taken into account until recently in these models (Ferreira
1997) and a full parametric study of this extra variable is yet to
be performed.

1.3. Meridionally self-similar models

In a series of studies, solutions of the MHD equations that are
self-similar in themeridionaldirection have been also analyzed
(Tsinganos & Trussoni 1990, 1991, Tsinganos & Sauty 1992a,b,
Papers I and II of this series, Trussoni & Tsinganos 1993, Sauty
& Tsinganos 1994, Paper III of this series, Trussoni et al. 1997,
henceforth TTS97). Such a treatment allows to study the phys-
ical properties of the outflow close to its rotational axis. As in
this region the contribution to acceleration of the magnetocen-
trifugal forces is small, the effect of a thermal driving force is
essential. This implies also that the structure of the gas pressure
in the flow is essential.

Two main classes of such self similar solutions have been in-
vestigated depending on whether the components of the pressure
gradient along the radial and meridional directions are related or
not. In the second case the shape of the streamlines and fieldlines
is prescribed ‘a priori’, and the main features of the dynamical
variables are self-consistently deduced from the integration. In
particular, it has been shown that acceptable solutions for mag-
netized flows with asymptotic superAlfvénic velocity exist only
when rotation is included (Tsinganos & Trussoni 1991, Trussoni
& Tsinganos 1993, TTS97). As a consequence of this study it
seems that even pressure confined jets from slow magnetic ro-
tators need magnetic fields and rotation.

In the other case, in which the two components of the gas
pressure are related, the structure of the streamlines is deduced
as a self-consistent solution of the MHD equations. It has been
shown (Papers I and II) that hydrodynamical and nonrotat-
ing magnetized winds are always radially expanding from the
source. On the other hand, rotating magnetized flows with a
spherically symmetric structure for the pressure gradient can
have final superAlfv́enic velocities with either radial or colli-
mated asymptotically streamlines, depending on the values of
the parameters (Paper III). This allows to deduce a criterium to
select conically expanding winds from cylindrically collimated
jets (Sauty et al. 1996).

1.4. Plan of this paper

We extend here the analysis of Paper III to the more general case
of solutions for rotating magnetized winds with anonspherically
symmetric gas pressure. In the present paper we concentrate
on the asymptotic analysis and its link to the initial boundary
conditions: this allows us to derive a general criterion for the
collimation of winds into jets. The analysis of the properties
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of the complete numerical solutions deserves a separate study
which is postponed to a following paper.

In Sect. 2 we summarize the properties of the meridional
self-similar MHD equations while in Sect. 3 we discuss the en-
ergetic structure of the outflow. In particular we show that an
energy integral exists that links the asymptotic regime to the
boundary conditions at the base, allowing to formulate a general
criterion for the collimation of the wind. The different physical
conditions for asymptotic confinement (magnetic or thermal)
are discussed in detail in Sect. 4, and in Sect. 5 we show that
oscillating configurations can be present in cylindrically colli-
mated jets. In Sect. 6 the equilibrium asymptotic properties of
non collimated flows are outlined, while in Sect. 7 we summa-
rize the results and shortly discuss the astrophysical implications
of our analysis.

2. Meridionally self-similar MHD model

2.1. Steady axisymmetric ideal MHD outflows

The global dynamical properties of cosmic winds and jets are
usually analyzed by assuming that they represent outflows of a
fully ionized plasma with a bulk speedV and carrying a mag-
netic fieldB in the gravitational field of a central body of mass
M. The familiar MHD equations are employed for a physical
description of these phenomena. In particular, under steady and
axisymmetric conditions (∂/∂t = ∂/∂ϕ = 0), the MHD equa-
tions are known to admit certain free integrals, i.e., functions
which remain constant on the magnetic surfaces generated by
the revolution around the magnetic/flow symmetry axis of the
system of a poloidal magnetic lineA(r, θ)= constant (Tsinganos
1982). Specifically, on the surface of such a flux tubeA = const.,
the following physical quantities remain invariant throughout
the extent of these surfaces from the base to infinity:

– ΨA(A), the ratio of the magnetic and mass fluxes,
– L(A), the total specific angular momentum carried by the

flow andthe magnetic field,
– Ω(A), the corotation frequency or angular velocity of each

streamline at the base of the flow.

Furthermore, it is well known that the poloidal (p) and az-
imuthal (toroidal,ϕ) components of the magnetic field and the
velocity can be expressed in terms of these free integrals and
the poloidal Alfv́en Mach number, using spherical (r, θ, ϕ) or
cylindrical ($, ϕ, z) coordinates (for details see Paper III). In
particular, the poloidal Alfv́en Mach number (or Alfv́en num-
ber)M is,

M2 = 4πρ
V 2

p

B2
p

=
Ψ2

A

4πρ
. (1)

On the other hand, the two integralsL(A) andΩ(A) are not
independentif the flow is transalfv́enic. In such a case, at the
cylindrical distance$a of the Alfvén point (M = 1) from the
field/flow axis of a flux tube labeled byA they are related as
$2

a(A) = (r∗ sinθa)2 = L/Ω.

2.2. Generalized Bernoulli integral

A fourth constant of the motion expresses the conservation of
energy along streamlines. Thus, by projecting the momentum
equation along a streamline, taking into account the first law of
thermodynamics for energy conservation, we obtain the gener-
alized classical Bernoulli integral (Paper III),

E(A) =
1
2
V 2

p +
1
2
V 2

ϕ − GM
r

− Ω
ΨA

$Bϕ + h − Θr
ro

(A) , (2.2a)

where

Θr
ro

(A) =
∫ r

ro

q(r′, A)
ρ(r′, A)Vr(r′, A)

dr′ , (2.2b)

h is the enthalpy of the perfect monoatomic gas (Γ = 5/3), q
is the net local volumetric heating/cooling rate, andG the grav-
itational constant. Thus, at a given radial distancer along the
streamline labeled byA, the conserved energyE(A) represents
the sum of the kinetic, gravitational, Poynting and ideal thermal
energy flux densities per unit of mass flux density, minus the
extra heat received by the flow between the anchored footpoint
at a basal radial distancero and the pointr under consideration,
Θr

ro
(A).

2.3. Self-similarity: scaling laws for the variables

The model analysed in this paper belongs to the wide class of
meridionally self-similar MHD equilibria (see also Trussoni et
al. 1996; Tsinganos et al. 1996; TTS97; Vlahakis & Tsinganos
1998, henceforth VT98). In the following we briefly summa-
rize the main steps for the construction of such a model (see
Appendix A for more technical details).

For convenience, first of all the variables are normalized to
their respective values at the Alfvén surface along the axis of
rotation,r = r∗. In particular, we define the dimensionless ra-
dial distanceR = r/r∗ and the Alfv́en speedV 2

∗ = B2
∗/4πρ∗,

whereB∗, V∗ andρ∗ are the poloidal magnetic field, poloidal
velocity and density along the polar axis at the characteristic
radiusr∗. For the magnetic flux functionA we define its dimen-
sionless form by

α(R, θ) =
A(r, θ)
2r2∗B∗

.

Note that along the polar axisα(R, 0) = 0. To obtain the final
expressions for the physical variables, we make the following
crucial assumptions:

– First, we assume that the Alfvén surface isspherical, M =
M(R). Then, according to Eq. (2.1), the density can be ex-
pressed as the product of a function ofR [i.e. 1/4πM2(R)]
and a function ofα [i.e. Ψ2

A(α)]. Furthermore, we Taylor
expand the functionΨ2

A(α) to the first order inα such that
the variation of the density on a spherical surface of given
radiusR is proportional to the magnetic fluxα.
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– Second, we assume that the magnetic flux functionα is ex-
pressed as the product of a function ofR and a function
of θ. Furthermore, for the function ofθ we take a dipolar
dependence with the colatitudeθ. This immediately implies
that the Alfv́en cross sectional areaπ$2

a of a flux surface
is proportional to the corresponding magnetic fluxα. Also,
the ratioG2 = $2/$2

a of the cross sectional area of the
flux tube to the Alfv́en cross sectional area of the same flux
tube depends solely on the radial distanceR.

– Third, we assume that the total axial currentIz enclosed by
a flux tubeα = const. is proportional to the corresponding
magnetic flux. This assumption fixes the angular momentum
integralL (Paper III). Note that at once the integral of the
corotation frequencyΩ follows from its relation withL at
the Alfvén distance,L = Ω$2

a. Note also that the integrals
L andΩ are chosen such thatLΨA andLΩΨ2

A contain only
first orderα-terms, in analogy with the previous assump-
tions.

– Fourth, we assume that theα-dependence of the gas pres-
sure is similar to that of the density distribution. This means
that the pressure is ultimately a function of the density along
a given magnetic surface, a situation analogous to the often
used polytropic assumption. However, this implicit relation-
ship between pressure and density is much more general than
the somehow artificial polytropic assumption. Contrary to
the polytropic relation, its exact form is not imposeda priori
but is determined by the full solution.

Altogether, the four main assumptions of this meridionally
self-similar model can be summarized as follows,

ρ(R, α) =
ρ∗

M2(R)
(1 + δα) , Ψ2

A = 4πρ∗(1 + δα) , (2.3a)

$2(R, α) = r2
∗G2(R)α , $2

a(α) = r2
∗α , (2.3b)

LΨA = λr∗B∗α , LΩΨ2
A = λ2B2

∗α , (2.3c)

P (R, α) =
1
2
ρ∗V 2

∗ Π(R)(1 + κα) . (2.3d)

The introduced parametersδ, κ andλ measure the variation
with the colatitude of the density, pressure and rotation, respec-
tively. A fourth parameterν enters from the momentum equation
as the ratio, at the Alfv́en distance along the polar axis, of the
escape speed to the flow speed there,

ν2 =
2GM
r∗V 2∗

. (2.4)

2.4. Magnetic rotator energy

An important physical quantity in magnetized outflows is the so
calledmagnetic rotator energy(Michel 1969, Belcher & Mc-
Gregor 1976),

EMR = ΩL . (2.5a)

The basal Poynting energyEPoynt.,o, defined as the ratio of the
Poynting flux densitySz per unit of mass flux densityρVz, is

roughly equal to the magnetic rotator energyΩL if at the base
the radius of the jet is much smaller than the Alfvén radius
(Go � 1) and the Alfv́en number there is also negligibly small
(Mo � 1),

EPoynt.,o =
Sz

ρVz

∣∣∣
o
= ΩL

1 − G2
o

1 − M2
o

≈ ΩL . (2.5b)

Let Eo be the sum of the kinetic, gravitational and thermal en-
ergies per unit mass at the base of the outflow. Then the total
available energy for the outflow at the base isE ≈ Eo + ΩL.
Accordingly, we have an outflow from aFast Magnetic Rotator
(FMR) whenEo � ΩL and an outflow from aSlow Magnetic
Rotator(SMR) in the opposite case ofEo � ΩL.

2.5. Solving the self-similar MHD equations

In order to solve the resulting MHD equations, it is useful to
introduce an extra functionF (R) (Papers II and III),

F (R) = 2
(

1 − d lnG(R)
d lnR

)
. (2.6)

Evidently, whileG(R) defined in Eq. (2.3b) measures the di-
mensionless cylindrical radius of a flux tube at the distanceR,
F (R) is simply giving the expansion factor of the streamlines.
The limiting caseF (R) = 0 corresponds to conical expansion
and radial fieldlines, while forF (R) = 2 we have cylindrical
expansion parallel to the axis (collimation). In between these
two regimes the flow is paraboloidal.

The above assumptions, Eqs. (2.3), immediately give the
components of the velocity and magnetic fields (Eqs. A.3 in
Appendix A). On the other hand, the momentum conservation
law in combination with the above assumptions gives fourordi-
narydifferential equations for the four variablesM2(R), F (R),
Π(R) andG(R) (see Appendix A for details).

The complete solution of these equations, from the base of
the outflow to infinity, with the required crossing of all appro-
priate critical points, is indeed an interesting undertaking and
worth of a separate paper. Here instead, we shall concentrate
on some novel results obtained solely by solving the equations
asymptotically far from the Alfv́en surface (R � 1) andtaking
into account the boundary conditions on the source.

3. The energy integral and collimation criterion

3.1. The generalized Bernoulli integral

A nonadiabatic flow of a monoatomic gas with ratio of specific
heatsΓ = 5/3 is always heated at a net volumetric rateq

q = ρV ·
(

∇h − ∇P

ρ

)
, h =

Γ
Γ − 1

P

ρ
. (3.1a)

With expressions (2.3a) and (2.3d) for the gas density and pres-
sure, it follows immediately that this heating can be written as
(see Sect. 5 in Paper III for details of the derivation),

q(R, α)
ρ(R, α)Vr(R, α)

=
V 2

∗
2r∗

1 + κ α

1 + δ α
Q(R) , (3.1b)
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where the dimensionless specific heating rate per unit of radial
length along a given streamline is,

Q(R) =
1

Γ − 1

[
M2 dΠ

dR
+ ΓΠ

dM2

dR

]
. (3.1c)

Hence, the generalized classical Bernoulli integral (2.2) takes
the simpler form

E(α) =
1
2
V 2

∗
E + α∆E
1 + δα

, (3.2)

where the twoconstantsE and∆E represent the polar specific
energy and the variation across a streamline of the specific en-
ergy, respectively (in Paper IIIE was denoted byF1, ∆E by F2
andQ by Q1).

It is straightforward to show from Eqs. (2.2), (2.3), (A.3)
and (3.1)–(3.2) thatE and ∆E have the following analytical
expressions (Paper III)

E =
M4

G4 − ν2

R
+

Γ
Γ − 1

ΠM2 −
∫ R

Ro

Q(R)dR , (3.3a)

∆E =
M4

R2G2

[
F 2

4
− 1
]

− δ ν2

R

+
λ2

G2

[
M2 − G2

1 − M2

]2
+ 2λ2

[
1 − G2

1 − M2

]

+κ

[
Γ

Γ − 1
ΠM2 −

∫ R

Ro

Q(R)dR

]
. (3.3b)

It is worth to digress for a moment and try to get some insight
into the physical meaning of these two conserved components
of the specific energy,E and∆E .

3.1.1. Polar specific energy

In the first expression, Eq. (3.3a), the polar energy fluxE is
composed of four terms which are successively the poloidal
(i.e. radial here) kinetic and gravitational energies, the enthalpy
and the heating along the polar axis.

The polar specific energyE can be evaluated at both the base
of the windRo and far from it asR −→ ∞,

E = − ν2

Ro
+

Γ
Γ − 1

ΠoM
2
o (3.4a)

=
M4

∞
G4∞

+
Γ

Γ − 1
Π∞M2

∞ −
∫ ∞

Ro

Q(R)dR . (3.4b)

At the base, wherein the kinetic energy of the outflow is neg-
ligible, Eq. (3.4a) shows that the polar energy has basically two
terms: the gravitational energy and the initial input of thermal
energy in the form of enthalpy. On the other hand, at infinity,
Eq. (3.4b), the conserved polar specific energy is composed of
the final kinetic energy along the polar axis and the terminal
enthalpy minus the additional extra heating which the flow has
received during its propagation fromRo to infinity.

Note that if the wind is cylindrically collimated,M∞, G∞
andΠ∞ have finite values. In all other cases,M∞ andG∞ may

be unbounded, although their ratio, which is the polar speed in
units of the Alfv́en speed, should remain finite,

M2
∞

G2∞
=

V∞
V∗

. (3.4c)

Moreover the terminal pressureΠ∞ vanishes unless the integral
of the heating diverges, a rather unphysical situation correspond-
ing to an infinite input of heat.

The conservation of the polar energy simply expresses the
fact that the flow along the polar axis isthermally driven. Fur-
thermore, from Eqs. (3.4a,b) it becomes evident how the con-
version of the heat content of the plasma into kinetic and grav-
itational energy maintains the outflow,

Γ
Γ − 1

(ΠoM
2
o − Π∞M2

∞) +
∫ ∞

Ro

Q(R)dR

=
ν2

Ro
+

M4
∞

G4∞
. (3.5)

In other words, the decrease of the enthalpy at infinity together
with the external heat input integrated along the polar stream-
line, on one handlifts the gas out of the gravitational potential
well and on the other, gives to it a finite terminal speed. Of
course, this is nothing more than the classical picture of the
Parker thermally driven wind.

3.1.2. Variation of the specific energy across streamlines

The second conserved component∆E of the specific energy
gives the excess or deficit of the volumetric total energyE at a
nonpolar streamline as compared to the corresponding energy
at the polar axis and the same spherical distance, normalized
to the volumetric energy of the magnetic rotator. Thus,∆E has
five contributions which correspond to the five different terms
appearing successively in the RHS of Eq. (3.3b). Each one rep-
resents the variation – in units of the volumetric energy of the
magnetic rotator – between any streamline and the polar axis
of (i) the poloidal kinetic energy, (ii) the volumetric gravita-
tional energy, (iii) the azimuthal kinetic energy (which is zero
along the polar axis), (iv) the Poynting flux (which is also zero
along the polar axis) and (v) the thermal content (enthalpy plus
heating; see Appendix B for details).

In a more compact way we may write∆E as follows,

∆E
2λ2 =

ρ(R, α)E(α) − ρ(R,pole)E(pole)
ρ(R, α)L(α)Ω(α)

. (3.6)

Evidently,∆E/2λ2 represents the variation across the flow of
the total volumetric energy in units of the volumetric energy
of the magnetic rotator. Therefore, the sign of∆E determines
whether there is a deficit of energy per unit volume (and not per
unit mass) along the polar streamline as compared to the other
streamlines (case∆E > 0) or an excess of energy in the polar
streamline as compared to the other nonpolar streamlines (case
∆E < 0).

Furthermore,∆E/2λ2 can be expressed (see Appendix B
for more comments) in terms of the conditions at the source
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boundaryRo where the cylindrical radius is$o(α), the escape
speedVesc,o, the polar densityρo(pole) and the density at any
other streamlineρo(α):

∆E
2λ2 =

∆ [ρo(EPoynt.,o + ER,o + ho + EG,o)]
∆(ρEMR)o

, (3.7a)

where∆(ρEMR)o is the variation of the energy of the magnetic
rotator,∆(ρEPoynt.)o is the variation of the Poynting energy,
∆(ρER)o is the variation of the rotational energy at the base,
∆(ρEG)o is the variation of the volumetric gravitational energy
at the base and∆(ρh)o is the variation of the volumetric thermal
flux at the base, respectively,

∆(ρEPoynt)o = ρo(α)EPoynt,o(α)
= ρo(α)(ΩL − Ω2$2

o) , (3.7b)

∆(ρER)o = ρo(α)ER,o(α)

= ρo(α)
V 2

ϕ,o

2
= ρo(α)

$2
oΩ2

2
, (3.7c)

∆(ρEG)o = −GM
ro

[ρo(α) − ρo(pole)] , (3.7d)

∆(ρh)o =
Γ

Γ − 1
[Po(α) − Po(pole)] , (3.7e)

∆(ρEMR)o = ρo(α)EMR(α) = ρo(α)L(α)Ω(α) . (3.7f)

In this notation,∆ always denotes a variation across the field-
lines at a given radial distanceR, i.e. ∆y = y(R, α) −
y(R,pole) for every functiony(R, α).

In Eq. (3.7a) note that (see also Eqs. 2.5)

EPoynt.,o + ER,o = EMR − ER,o > 0 . (3.8)

The Poynting flux plus the rotational energy is simply the energy
of the magnetic rotator minus the rotational energy. This last
form is the one used in Paper III. In other words, and even in the
slow magnetic rotator limit, the rotational energy never exceeds
the energy of the magnetic rotator.

3.2. Energetic definition
of Efficient/Inefficient Magnetic Rotators

At this point we inevitably note thatE and∆E are two incon-
venient constants because their absolute values depend on the
integration of the total heating supply and so they can be eval-
uated only after the problem has been solved and the required
heating can be calculated. However these two constants are re-
lated to each other. In fact, the last two terms in the expression of
∆E in Eq. (3.3b), which correspond to the transverse variations
of enthalpy and heating, are identical to the last two terms ofE
within a factor ofκ. Evidently, this is due to the assumptions on
the pressure and density distribution, Eqs. (2.3a,d). These ini-
tial assumptions imply the existence of animplicit relationship
between the latitudinally normalized pressure and density,

P (R, α)
P (R, 0)

= 1 +
κ

δ

[
ρ(R, α)
ρ(R, 0)

− 1
]

. (3.9)

The situation is akin to the more familiar polytropic ansatz,
although there the relationship between pressure and density is

explicit. In TTS97 the generalized Bernoulli integral has indeed
a form similar to Eq. (3.2), but the two constantsE and∆E are
not related to each other as in Eqs. (3.3), because the spherically
symmetric part of the pressure is not related to the corresponding
nonspherical part. For this reason, it was impossible to find
a relationship betweenP and ρ of the form of Eq. (3.9) and
therefore any convenient form of the Bernoulli integral.

With this in mind, we can eliminate from the expressions of
E and∆E in (Eqs. 3.3) the inconvenient enthalpy and heating
terms (Paper III) by defining the new constant

ε = ∆E − κE . (3.10)

Now this quantityε, in addition of being a constant forall
streamlines,

ε =
M4

(GR)2

[
F 2

4
− 1
]

− κ
M4

G4 − (δ − κ)ν2

R

+
λ2

G2

(
M2 − G2

1 − M2

)2

+ 2λ2 1 − G2

1 − M2 , (3.11)

can be calculateda priori from the conditions at the base of the
outflow, without a need to know the total input of heating along
each line.

A careful look at Eq. (3.11) shows that all the transverse vari-
ations of the total energy, simply reproducing, within a scaling
factor κ, the effect of thermally driven winds along the pole
(Eq. 3.4), have been removed (see Eq. B.7 in Appendix B).

In fact, comparing Eq. (3.11) to Eq. (3.3b), we see thatε
contains the same terms as∆E except the heat content, but with
two extra terms proportional toκ. Thefirst of these two terms
(κM4/G4) represents simply the transverse variation of the heat
content which is converted into kinetic energy in a thermally
driven wind, as seen by Eq. (3.5). Thesecondterm (κν2/R) is
the variation with the latitude of the thermal energy which along
the pole supports the plasma against gravity.

Let us assume for a momentδ = κ > 0, such that the
enthalpy and the temperature (∝ P/ρ) are spherically symmet-
ric. Since the pressure is larger on a nonpolar streamline, we
have higher heating rateq there: the extra heating converted
into kinetic energy isκM4/G4 (Eq. 3.5). In the total energy
variation budget it represents the efficiency of thermal confine-
ment. Therefore it must be removed from the energy variation
in order to form the constantε. The same holds ifκ < 0 except
that thisκ term will tend to decollimate the outflow.

Now, if κ = 0 andδ > 0 we see that there is an excess of
gravitational potential−δν2/R because the plasma is heavier
on a nonpolar streamline. In order to achieve equilibrium, part
of the Poynting flux and part of the centrifugal energy must com-
pensate this term. This reduces the energy available for magnetic
confinement. Ifδ > κ, we need to correct the previous argument
because part of the weight of the plasma is supported on a non
polar streamline by an increase of the pressure gradient. This
compensation is exactlyκν2/R. Thus the term−(δ−κ)ν2/R is
the effective increase of the gravitational potential that must be
compensated by some non thermal drivers, the magnetic driver
for instance. It reduces the efficiency of the magnetic rotator to
collimate the flow. Similar arguments hold ifδ < 0 or δ < κ.
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As in Eqs. (3.7) let us expressε/2λ2 in terms of the condi-
tions at the source boundaryro (assuming again that the velocity
is negligible there, see Appendix B for details of the derivation),

ε

2λ2 =
EPoynt.,o + ER,o + ∆E∗

G

EMR
, (3.12a)

whereEPoynt. andER,o have been already defined.∆E∗
G is the

excess or the deficit on a nonpolar streamline compared to the
polar one of the gravitational energy (per unit mass) which is
not compensated by the thermal driving,

∆E∗
G = −GM

ro

[
1 − To(α)

To(pole)

]
= −GM

ro

(δ − κ)α
1 + δα

. (3.12b)

It is indeed the term proportional to(δ − κ)ν2 in Eq. (3.11)
and the symbol∆ keeps the same meaning as previously (see
Appendix B).

It is worth to remark that this corrected gravitational term
plays an important role in thermally accelerating the flow
(Tsinganos & Vlastou 1988; Paper I) because it is proportional
to the relative variation of the temperature. We know from pre-
vious numerical studies that(κ − δ) ought to be negative in
order that we have efficient initial acceleration along the polar
axis. This amounts to say that the temperature along the polar
axis must be larger than the temperature along a non polar line.
Then, the corrected gravitational term in Eq. (3.12a) is always
negative such that it must be compensated with part of the initial
input of the magnetocentrifugal terms (Poynting and rotational)
at the base of the flow.

Hence,ε > 0 means that the magnetocentrifugal terms are
dominating the variation of gravity and that there is some energy
left from the magnetic rotator to collimate the wind. Whileε <
0 means that the magnetic rotator cannot collimate the wind
by itself. Of course the collimating efficiency of the magnetic
rotator may be eventually lowered if there is further pressure
gradient acting outwards in the wind (κ < 0) but ε/2λ2 really
quantifies the original strength of the magnetic rotator to support
the collimation of the flow.

As a conclusion of this subsection, we may define asInef-
ficient Magnetic Rotators (IMR) the magnetic rotators which
are not able to confine the flow through magnetic processes
alone and haveε < 0. Conversely we shall callEfficient Mag-
netic Rotators (EMR) the magnetic rotators potentially able to
magnetically confine the flow and which haveε > 0. We shall
further illustrate this definition at the end of the next subsec-
tion. Within this definition the classicalSlow Magnetic Rota-
tors (SMR) andFast Magnetic Rotators (FMR) correspond
respectively to (IMR) and (EMR) but only in the limit where all
other energies are distributed in a spherically symmetric manner
at the source base.

3.3. Energetic criterion for cylindrical collimation

The collimation of an outflow can be either of magnetic, or of
thermal origin. In the following, we discuss how to measure the
distribution of the thermal content along and across the flow,
before reaching some conclusions on the collimation itself.

In a thermally driven wind, all thermal input (internal en-
thalpy plus external heating provided along the flow) is not
necessarily fully converted into other forms of energy, unless
the terminal temperature is exactly zero. There always remains
some asymptotic thermal content in the form of enthalpy. Con-
versely, we can define the heat content that is really used by the
flow by defining theconverted enthalpy

h̃(r, A) = h(r, A) + Θ∞
r (A) − h(∞, A) . (3.13a)

Along a fieldlineA and some radiusr, the converted enthalpỹh
is simply the sum of the enthalpy of the gas at this point and the
external heat which it will receive on its way to infinity,Θ∞

r (A)
(Eq. 2.2b), minus the enthalpy that will still remain in the gas
asymptotically. Note that in the polytropic case this converted
enthalpy is simply the variation along the flow of the effective
enthalpyh̄o − h̄∞, where the adiabatic indexΓ is replaced by
some effectiveγ < Γ, as explained in Paper III. Then we can
define a constant along each streamline

Ẽ(A) =
1
2
V 2

p +
1
2
V 2

ϕ − GM
r

− Ω
ΨA

$Bϕ + h̃ . (3.13b)

We may also redefine the variation across fieldlines of the volu-
metric energy normalized with the energy of the magnetic rota-
tor, but including the converted enthalpy which will indeed be
used by the flow, instead of the enthalpy. In other words, we may
define a new quantityε′ in the way we defined∆E in Eq. (3.7a),
but using the converted enthalpy instead of the enthalpy,

ε′

2λ2 =
ρ(R, α)Ẽ(α) − ρ(R,pole)Ẽ(pole)

ρ(R, α)L(α)Ω(α)
. (3.14a)

Thus we have at the base

ε′

2λ2 =
∆
[
ρo(EPoynt.,o + ER,o + h̃o + EG,o)

]
∆(ρEMR)o

, (3.14b)

where all the terms have the same meaning as in Eq. (3.7a)
except the transverse variation of the total converted enthalpy
of the flow which is simply

∆(ρh̃)o = ρo(α)h̃o(α) − ρo(pole)h̃o(pole) . (3.14c)

Working out this definition together with Eqs. (3.7), (3.3) and
(B.5.), we find the following relation

ε′ = ∆E − κ
Γ

Γ − 1
Π∞M2

∞ + κ

∫ ∞

Ro

Q(R)dR . (3.15)

Thusε′ is simply the difference of∆E and the total heat con-
tent of the flow at infinity. As a consequence, in our modelε′

is a constant which can be evaluateda priori at anyr using
Eq. (3.15). In the particular case of a flow which is asymptoti-
cally cylindrically collimated (F∞ = 2), this parameter can be
evaluated at infinity in a simple way (cf. Eqs. 3.3b–3.15),

ε′

2λ2 =
(M2

∞ − G2
∞)2

2G2∞(M2∞ − 1)2
+

G2
∞ − 1

M2∞ − 1
. (3.16)
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Note that now inε′ there are left only the magnetocentrifugal
terms: variation of the azimuthal kinetic energy and Poynting
flux. The important result is that this new parameter is always
positive in a cylindrical jet, if the jet is asymptotically super-
Alfv énic,M∞ > 1, and transalfv́enic so the asymptotic radius
is larger than the Alfv́en radius,G∞ > 1. In other words,a
necessary condition for achieving cylindrical collimation is that
ε′ > 0.

The criterion for cylindrical collimation is thus explicitly
equivalent to the criterion given in Paper III, except that now we
have included the thermal contributions: cylindrical collimation
can be achieved only if there is an excess of energy on a non
polar line compared to the polar one. However, it is not the
variation across the lines of the total thermal energy input that
enters in the definition of the criterion, but the variation of the
thermal energy that is effectively converted into some other form
of energy between the base and the asymptotics (Eq. 3.13).

Two contributions may arise to give a positive value forε′:
either because the energy of the magnetic rotator dominates as
in Paper III, or because the thermal contribution converted to
non thermal energy in the flow is higher outside the polar axis.
This last point may be better realized if we note that

ε′ ≡ ε + κ
V 2

∞
V 2∗

. (3.17)

Thus,ε′ splits into two parts. The first isε which is essentially
positive when the energy of the magnetic rotator dominates (see
Paper III and the previous subsection). The second corresponds
to the variation with colatitude of the thermal energy that has
been converted to kinetic energy (see Eqs. 3.5 and 3.4c).

Altogether, there are two ways to haveε′ > 0:
Either, when the outflow is magnetically dominated, which
means thatε is positive andκ may be either positive (which
adds some extra pressure confinement), or negative (which cor-
responds to pressure support of the jet) within some limits.
Or, conversely, when there is a significant contribution of the
variation of the enthalpy+heating term that is converted into
kinetic poloidal energy, thenκV 2

∞/V 2
∗ is large enough which

impliesκ > 0 whileε may be negative. This does not necessarily
implies that the flow is pressure confined as we shall see later.

4. Asymptotic confinement

We proceed now towards an asymptotic analysis of the equations
of motion, in particular in the case of cylindrical collimation.

4.1. Asymptotic equilibrium
in cylindrically collimated outflows

When the equilibrium is asymptotically cylindricalε′ > 0 as
discussed above. Taking the dominant terms in theθ-component
of the momentum equation or, equivalently by expressing force
balance across the cylindrical fieldlines, we obtain the condi-
tion of MHD equilibrium in the cylindrical radius direction̂$
expressed by the equation,

fC + fB + fP = 0 . (4.1)

In the asymptotic regime, the centrifugal (fC), magnetic (fB)
and gas pressure gradient (fP ) forces have the familiar expres-
sions,

fC =
ρV 2

ϕ

$
$̂ , (4.2a)

fB = −
[

d
d$

(
B2

ϕ

8π

)
+

B2
ϕ

4π$

]
$̂ , (4.2b)

fP = − dP

d$
$̂ . (4.2c)

In our notation, they can be written as,

fC =
ρ∗V 2

∗
r∗

λ2

G3∞M2∞

(
M2

∞ − G2
∞

M2∞ − 1

)2 √
α$̂ , (4.3a)

fB = −ρ∗V 2
∗

r∗
2λ2

G3∞

(
G2

∞ − 1
M2∞ − 1

)2 √
α$̂ , (4.3b)

fP = −ρ∗V 2
∗

r∗
κΠ∞
G∞

√
α$̂ . (4.3c)

Note that always the centrifugal force acts outwards while the
total magnetic force (pinching plus pressure) inwards. On the
other hand, the last term (not appearing in the Paper III study) is
the pressure gradient that acts outwards if the flow isoverpres-
sured(κ < 0, i.e. the pressure decreases away from the axis).
In this case the jet is necessarily magnetically confined but ei-
ther centrifugally supported or pressure supported. Conversely,
the pressure gradient acts inwards if the flow isunderpressured
(κ > 0, i.e. the pressure increases away from the axis). In this
case the flow is centrifugally supported but may be either mag-
netically confined or pressure confined.

By combining the asymptotic transverse force balance
(Eqs. 4.1–4.3),

− 1
2G2∞M2∞

(
M2

∞ − G2
∞

M2∞ − 1

)2

+
1

G2∞

(
G2

∞ − 1
M2∞ − 1

)2

+
κ

2λ2 Π∞ = 0 , (4.4a)

with the expression ofε calculated at infinity (Eq. 3.11)

ε

2λ2 = − κ

2λ2

M4
∞

G4∞
+

1
(M2∞ − 1)2

×
[
(M2

∞ − G2
∞)2

2G2∞
+ (G2

∞ − 1)(M2
∞ − 1)

]
, (4.4b)

we obtain the asymptotic jet radius and Alfvén number as func-
tions of the parametersε/2λ2, κ/2λ2 and the asymptotic pres-
sureΠ∞. Plots of the resulting values ofG∞, M∞ and the axial
terminal speedV∞/V∗ vs.ε/2λ2 for four representative values
of Π∞ (0, 0.01, 0.1 and 1) are shown in Figs. 1–3. In each of
these panels the values ofG∞, M∞ andV∞ are plotted for a
range of values of the pressure parameterκ/2λ2 between−0.1
and0.1 which label the curves.

In parallel we also plot (Fig. 4)G∞, M∞ andV∞/V∗ vs.
ε′/2λ2 using Eq. (3.17) to determineε′/2λ2. Note that (see
Eqs. 4.4)G∞, M∞ and V∞/V∗ depend only onε′/2λ2 and
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Fig. 1a–d. Plots of the asymptotic cylindrical radius normalized to the cylindrical radius at the Alfvén surfaceG1 vs.ε/2λ2 for various values
of the final pressure:�1 = 0 (panela), = 0.01 (panelb), = 0.1 (panelc) and= 1 (paneld). Each curve is drawn for a constant value of
κ/2λ2 between−0.1 and0.1 which labels the curve. On the left of the dotted line is the domain of pressure confined jets while on the right of
the dashed line is the domain of pressure supported jets and in between is the domain of magnetocentrifugal jets.

κΠ∞/2λ2. So conversely to Figs. 1–3 where each curve is
drawn for given values ofΠ∞ andκ/2λ2 independently, the
curves of Fig. 4 are drawn for a constant and unique value of
κΠ∞/2λ2 which labels the curve. In Fig. 5 we make an ex-
plicit comparison of the plotG∞ vs. ε/2λ2 of Fig. 1a and the
corresponding curveG∞(ε′/2λ2) for κΠ∞/2λ2 = 0.

In these plots we may find three different regimes for the
asymptotic state of the collimated outflow according to the var-
ious confinement and support conditions across the jet.

4.2. Magnetocentrifugal jets withfC = |fB |

This is the case when the pressure gradient is exactly zerofP =
0 i.e., the pinching magnetic force is balanced by the inertial
(centrifugal) force alone. The two following cases correspond
to this situation.

4.2.1. Spherically symmetric pressure,κ = 0

The pressure is everywhere spherically symmetric. The termi-
nal value of the pressure does not affect the asymptotic equi-
librium in the jet, regardless if it is finite (Π∞ /= 0) or zero
(Π∞ = 0). This situation corresponds to the thick solid curve
labeled 0 in Figs. 1–3. This special and simplest case has been
already discussed in detail in Paper III where it was found that
the outflow collimates into a cylindrical jet only forε > 0,
because in this caseε = ε′. For a givenλ, if the flow re-
mains superAlfv́enic,M∞ > 1, an upper limit exists forε. For
ε/2λ2 −→ εmax/2λ2 = (2 − √

2) ≈ 0.586, thenM∞ −→ 1
andG2

∞ −→ 1 (see Figs. 1 and 2). Asε decreases fromεmax the
jet’s radius, Alfv́en number and terminal speed increase. Finally,
asε −→ 0, G∞ −→ ∞, M∞ −→ ∞ andV∞ −→ ∞. The
streamlines become conical and the asymptotic speed diverges.
No collimated solutions at all exist forε < 0, as is evident from
the plots.
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4.2.2. Vanishing asymptotic pressure,Π∞ = 0

The asymptotic gas pressure is zero such that we have again
fP = 0, even thoughκ /= 0. This is the case shown in Figs. 1a–
3a where, besides the collimated solutions of the Paper III case
obtained forε > 0 and κ = 0 (the thick solid branch), we
have now collimated solutions for practically all values ofε,
−∞ < ε < +∞. More specifically, collimated solutions are
found to the left of the thick solid branch forκ > 0 (mainly for
ε < 0) and to the right of the thick solid branch forκ < 0.

All branches converge for positiveε and smallG∞ towards
the thick solid line. Physically this corresponds to the limit (see
Eqs. 4.4b and 3.17) whereκV 2

∞/V 2
∗ becomes negligible and

the magnetocentrifugal collimation arises because of the central
EMR as in Paper III (ε′ ≈ ε). Thus we can compare Figs. 1a–
3a to the related curveκΠ∞/2λ2 = 0 of Figs. 4 and 5b. As
Π∞ = 0, G∞, M∞ andV∞/V∗ depend only onε′, namely

M∞ =
√

2
[
2λ2

ε′ − 1
]

, G2
∞ =

4λ2

ε′

[
2λ2/ε′ − 1
4λ2/ε′ − 1

]
. (4.5)

This is identical to Eqs. (5.13) and (5.14) in Paper III withε′

replacingε.

However, even withε < 0, we haveε′ > 0 provided
that κV 2

∞/V 2
∗ is larger than|ε|. In fact with M∞ > G∞

(⇔ V∞ > V∗), the ratioV 2
∞/V 2

∗ is large and positive and can
compensate all negative values ofε even for small values ofκ. In
this way, even asε −→ −∞, ε′ > 0 and collimated solutions are
obtained, albeit with rather large radiiG∞. In physical terms,
this corresponds to a situation where the central source is an
IMR and cannot collimate the flow through magnetic processes
alone. Nevertheless,first it is possible that the conversion of ther-
mal energy into kinetic energy is very efficientM4

∞/G4
∞ � 1.

Second, it can be more efficient on a non polar streamline than
on the polar one if there is more thermal energy in the nonpolar
streamlines than in the polar one (κ > 0). In this case then as the
flow expands it will build up pressure gradients that will force
the lines to bent towards the axis. Once the thermal energy is
converted into kinetic energy and the pressure is becoming neg-
ligible the magnetocentrifugal forces will dominate. However
the collimation is obviously less efficient (largerG∞) than that



C. Sauty et al.: Nonradial and nonpolytropic astrophysical outflows. IV 337

-3

-3
10

10

-7

-5

-7

-5

-10
-7

0.1

0.1 -0.1

-10

-3

-10

10

-10

-5

10
-5

10
-3

0.1

-0.1

-3
-10

-5-10

-10
-7

10
-5

10

10

οο

-3

0.1
-0.1

-10
-3

-10
-5

-10
-7

10
-7

10

-5

-7
10

10
-7

-10
-3

-0.1

-10

0

0 0

b)
0

a) Π  = 0 Π  = 0.01

d) Π  = 1c)

οο

οοΠ  = 0.1οο

Fig. 3a–d. Plots of the asymptotic axial velocity normalized to the polar Alfvén velocityV1/V� vs. ε/2λ2 for the same values of�1 and
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produced by a central EMR (Fig. 1a). Therefore, this excess of
thermal energy induces the collimated character of the solution
through the energy integral, even though the corresponding pres-
sure forcefP does not enter directly into the asymptotic force
balance condition. The term “magnetocentrifugal confinement”
can be used for all(ε/2λ2, κ/2λ2) values of Figs. 1a–3a.

For κ < 0, in order to keepε′ > 0, larger values ofε are
required, in comparison to the simpleκ = 0 case. In physical
terms this is so because now there is a deficit of thermal energy
along the nonpolar streamlines in comparison to the polar one
and therefore the star has to be a more efficient magnetic rotator
(larger values ofε > 0) in order to have a collimated outflow.
This trend is shown by the grey branches to the right of the thick
solid branch corresponding toκ = 0 (Figs. 1a–3a).

Note that forκ > 0, for each value ofε/2λ2 there exists a
single value ofG∞, M∞ andV∞. On the other hand forκ < 0,
more values ofG∞, M∞ andV∞ correspond to the same value
of ε. However the lower value ofG∞ is practically coincident
with that ofκ = 0: in other words, thermal decollimation is neg-
ligible, similarly to the caseκ = 0 andε′ ≈ ε. The upper values

of the branches correspond to efficient conversion of thermal
energy into polar acceleration but with a deficit along non po-
lar lines. It induces a more drastic conversion of the Poynting
flux into acceleration along non polar lines thus reducing the
efficiency of the collimation (Fig. 1,G∞ larger) despite the fact
that the central object is an EMR (ε > 0).

This is illustrated in Fig. 5 where the asymptotic cylindrical
radiusG∞ is plotted versusε/2λ2 andε′/2λ2 for variousκ/2λ2

andΠ∞ = 0. The higher value ofG∞ corresponds to a higher
conversion of thermal energy that decollimates the wind which
is balanced by a strong EMR as we explained. For some value
of ε′ = ε + κV 2

∞/V 2
∗ , we can find the same value forG∞ for

a pair of values ofε andκ which have approximately the same
magnitude but opposite sign (see Fig. 5, points 1 and 2).

Note that a situation withΠ∞ = 0 corresponds to very
specific initial conditions of integration that may not be easily
fulfilled for a cylindrically collimated flow. In particularΠ∞ =
0 would imply T∞ = 0 and the existence of some efficient
cooling.
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Fig. 4. Plots of the asymptotic cylindrical radius (panelα), Alfv én
number (panelβ) and axial velocity (panelγ) vs.ε0/2λ2. G1 andV1
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at the Alfvén surface, respectively. Each curve is drawn for a constant
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an odd power of 10 correspond to curves drawn in panels (b) and (d)
of Figs. 1–3.

4.3. Magnetocentrifugal jets withfC ≈ |fB |
In addition to the case whereinΠ∞ = 0 shown in Figs. 1a–3a,
where we have anexactmagnetocentrifugal equilibrium every-
where, approximate magnetocentrifugal equilibrium conditions
also exist forΠ∞ /= 0. This is shown in Figs. 1b–d, 2b–d, 3b–d
and 4, in a region adjacent to the thick solid curve obtained for
κ = 0, between the dashed and the dotted lines.

4.3.1. Underpressured jets,κ > 0

Following a branch ofκ > 0 on the left side of the limiting
curveκ = 0, we see from the plots of the various forces shown
in Fig. 6, that asε/2λ2 decreases the magnetic confinement of
the jet is replaced by a pressure confinement, as expected. This
transition from magnetic confinement to pressure confinement
can be found by writingfP = fB , or equivalently,|fB | = fC/2
which gives

G2
∞ =

M2
∞ + 2M∞
1 + 2M∞

. (4.6)

By inserting this relation in Eq. (4.4b), we obtain the dot-
ted line of Figs. 1–4. Thus, for some finite value ofΠ∞, for
each positive value ofκ/2λ2, there exists a single value of
ε/2λ2 = εP−B/2λ2 located on the dotted line where there
is an equal contribution by the magnetic and gas pressure forces
in confining the jet against the outwards inertial (centrifugal)
force. On the left side of the dotted line the jet enters the regime
of gas pressure confinement, which we shall further discuss in
the next subsection.

We note that the limit between the two confinement regimes
is close to the maximum of the cylindrical radiusG∞ as a func-
tion of ε/2λ2, for each value ofκ/2λ2 (Figs. 1b–1d). The limit
is also very close to the minimum value thatε′/2λ2 can achieve
for a given value ofκ/2λ2 (Fig. 4α, thick solid lines). On the
other hand,M∞ andV∞ are monotonic functions ofε/2λ2.

This maximum radius of the jet can be calculated formally
from Eq. (4.4b),

G2
∞ = M2

∞
2M2

∞ +
√

4M6∞ − 11M4∞ + 10M2∞ − 3
4M4∞ − 3M2∞ + 1

, (4.7)

which can be combined with Eq. (4.4a) to give the radius as a
function of the parametersε/2λ2, κ/2λ2 andΠ∞.

It is interesting to note that, in the limit of large Alfvén
numbers (M∞ � 1) the two values ofG∞ given by Eqs. (4.6)
and (4.7) coincide and to first order we have

G2
∞ ≈ M∞

2
≈
(

λ2

8κΠ∞

)1/3

. (4.8a)

Then the asymptotic velocity along the polar axis is (see
Eq. 3.4c)

V∞
V∗

≈
(

8λ2

κΠ∞

)1/3

, λ =
Ω(pole)r∗

V∗
. (4.8b)

The terminal speed has the same dependence on the dimension-
less rotational speedλ with Michel’s minimum energy solu-
tion for cold magnetic rotators whereinV∞/V∗ = λ2/3. In the
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present case however, the asymptotic speed is enhanced by the
factor [8/κΠ∞]1/3. For small values ofκ andΠ∞ of the order
of 1, this is indeed a rather large enhancement. This increased
terminal speed simply reflects the transformation to asymptotic
kinetic energy of the enthalpy and added thermal energies. Note
also that whenΠ∞ −→ 0, V∞ −→ ∞. This is expected and the
situation is similar to the radial outflow studied in Tsinganos &
Trussoni (1991) where the terminal speed is

V∞
V∗

≈ 6
(
λ2 lnR

)1/3
. (4.9)

4.3.2. Overpressured jets,κ < 0

The regime of magnetocentrifugal equilibrium extends also to
the right of the thick solid lineκ = 0 and up to the dashed line
in Figs. 1 and 2. Beyond this line the jet enters in the regime of
gas pressure support which we shall discuss later.

Following a branch ofκ < 0 on the right side of the limit-
ing curveκ = 0, Fig. 7 illustrates how the centrifugal force de-
creases and is progressively dominated by the pressure gradient.
The transition from centrifugal support to pressure support can
be estimated by writingfP = fC , or equivalently,|fC | = fB/2
which gives

G2
∞ = M∞ . (4.10)

This relation can be combined with Eq. (4.4b) to give the dashed
limiting line (Figs. 1–4) whereε/2λ2 = εP−C/2λ2. ForG∞ �
1 this limit coincides also approximately with the maximum of
the velocity on an assumedκ/2λ2 branch (Fig. 3), given by

V∞
V∗

∣∣∣∣
max

=
1

2G2∞
× [G4

∞ − 4G2
∞ + 5 (4.11)

+
√

G8∞ − 8G6∞ + 26G4∞ − 40G2∞ + 21
]

,

(in this domain the curves of the jet radiusG∞ and Alfvén
numberM∞ are monotonic withε/2λ2). We remark that the
curve of maximum velocity (̃dashed line) also corresponds to
the minimum value ofε′/2λ2 for a given value ofκ/2λ2, in the
limit of large Alfvén number (see Fig. 4γ, thin solid lines).

ForG∞ � 1 we have from Eqs. (4.10):

V∞
V∗

∣∣∣∣
Max

≈
(

2λ2

|κ|Π∞

)1/3

, (4.12)

i.e. the same scaling law with|κ|/2λ2 andΠ∞ holds for the
maximum velocity as for the asymptotic velocity at maximum
radius forκ > 0 (Eq. 4.8b).

4.3.3.εP−B < ε < εP−C

In the intermediate region bounded by the two curvesεP−B

andεP−C , the jet is magnetocentrifugal. Solutions very close
to the thick solid line correspond to an efficient collimation by
the EMR with negligible thermal contributions, as we already
discussed. For small values ofΠ∞ (e.g., Figs. 1b–3b) this area
is surrounded by solutions with important thermal energy con-
version but small asymptotic pressure gradients similar to the
extended branches of Figs. 1a–3a. However, for largerΠ∞ the
jets can be in magnetocentrifugal regime only for a narrow range
of values ofε/2λ2, around the lineκ = 0 (see Figs. 1c–3c and
1d–3d: the region between the dotted and dashed lines shrinks
by increasingΠ∞).

4.4. Pressure confined jetsfC ≈ |fP |
The more negativeε/2λ2 becomes, the weaker are the magnetic
pinching forces (the less efficient is the magnetic rotator). Thus,
for ε < εP−B (left of the dotted line on Figs. 1b–1d, 2b–2d, 3b-
3d and 4α) the magnetic pinching force has dropped to very
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small values in comparison to the gas pressure forcefP , such
that nowfP alone confines the jet against the inertial force
(Fig. 6). The situation is similar to the case of the prescribed
streamlines studied in TTS97 (q > 0, in the upper branch of
curves in the right panel of Fig. 1 in this paper).

The asymptotic radius of the jet and its Alfvén number are
sensitive to the nature of the asymptotic confinement. They
strongly depend on the value ofΠ∞ (e.g., Figs. 1–2). At the
same time, the terminal speedV∞/V∗ is almost independent
of the value of the terminal gas pressureΠ∞ (e.g., Fig. 3) for
strongly negative values ofε/2λ2. This can be understood from
Eq. (4.4b) where we see that in the limit of negativeε/2λ2 the
first term of the right hand side dominates and thus the square
of the terminal speed is roughly given by the ratio|ε|/κ.

For ε � εP−B we are basically entering the hydrodynamic
regime studied in Paper I. In the limit ofε → −∞ and finite
asymptotic pressure, the jet is strongly pressure confined such
thatG∞(ε → −∞) < 1 (cf. Figs. 1b–1d, 2b–2d, 3b–3d), i.e.,
the solution becomes unphysical. As in Paper I we find that
the most physically interesting hydrodynamic solution is ob-

tained for vanishing terminal pressure with conical asymptotics
whereinG∞(ε → −∞) → ∞ (e.g., Fig. 1a – 3a).

We may see the hydrodynamical limit as the most extreme
one. Nevertheless, even with a non vanishing magnetic field, we
note that the more efficient is the pressure confinement of the
jet (the more negative isε/2λ2) the larger is the gap between
the value of the jet radiusG∞ obtained forΠ∞ = 0 and the one
obtained forΠ∞>∼0 (Figs. 1a and 1b), for a given value ofκ/2λ2.
The difference is even larger whenκ/2λ2 takes small values.
In such a case the magnetocentrifugal forces are very weak
(Fig. 6) and the equilibrium is very sensitive to small changes
in the pressure gradient.

4.5. Pressure supported jets withfP ≈ |fB |

This last case occurs when the centrifugal forces are negligible
i.e., the jet is confined by magnetic forces and is supported by
the gas pressure gradient (forε > εP−C , right side of dashed
line, but only in Figs. 1b–d, 2b–d and 4α).
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Now the inertial force has dropped to very small values in
comparison to the gas pressure gradient force such thatfP alone
supports the jet against the magnetic pinching force (see Fig. 7).
In this domain, for a given value ofκ/2λ2, the centrifugal force
exactly vanishes forM∞ = G∞ (Eq. 4.3a), whenV∞ = V∗. It
simply states that a jet with zero asymptotic centrifugal force
has no net acceleration between the Alfvén surface and infinity.
At this particular pointε/2λ2 = (ε/2λ2)0 where the asymptotic
centrifugal force is exactly zero andV∞ = V?, we obtain from
Eq. (4.4b),( ε

2λ2

)
0

+
κ

2λ2 = 1 . (4.13)

Sinceκ/2λ2 is usually rather small, it follows that(ε/2λ2)0 ≈
1. There, we can say that the jet is exactly supported by the pres-
sure gas gradient alone. If we start at(ε/2λ2)0 and move toward
larger values ofε/2λ2, along the branchκ/2λ2 = const < 0,
M∞ andG∞ increase, rotation changes sign (See Eq. A.3f) and
the asymptotic velocity is less than the velocity at the Alfvén
point (Fig. 3) which means that the outflow is decelerated though

it remains superAlfv́enic (we do not consider in the present anal-
ysis “breeze” solutions that are always subAlfvénic).

By starting at(ε/2λ2)0 and moving in the opposite direc-
tion toward smaller values ofM∞ andG∞ along the branch
κ/2λ2 = const < 0, the inertial force remains negligible in
comparison to the gas pressure gradient, up to the dashed line
wherein we enter the magnetocentrifugal domain.

5. Oscillations in the jet’s width

The previous analysis giving the asymptotic equilibrium for
confined jets can be pushed one step further to the first or-
der terms in the bending of the lines (Paper III, Vlahakis &
Tsinganos 1997, henceforth VT97). We also assume there that
the jet becomes asymptotically cylindrical. An expansion ofG
andM can be made then to get an idea of the fluctuations that
exist far from the region of the initial acceleration of the wind,

G2 = G2
∞(1 + ϑ) , (5.1a)

M2 = M2
∞(1 + µ) , (5.1b)
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whereϑ, µ � 1. Conversely to Paper III, we must also expand
the pressure as

Π = Π∞(1 + p) . (5.2)

Thus we obtain the harmonic oscillator equation for the per-
turbed jet radius (see Appendix C for details):

ϑ̈ + (2πr∗/Λosc.)
2
ϑ = 0 , (5.3)

whereΛosc. is the wavelength of the oscillations. We can write
the wavelength of the oscillations in the form of VT97, Eq. (28),
namely

(
2πr∗
Λosc.

)2

=
2λ2

(1 − M2∞)2

×
[
2 +

µ

ϑ

(2M2
∞ − 1)G4

∞ − M4
∞

M2∞(1 − M2∞)

]
(5.4)

with in the present case

µ

ϑ
=

κ

λ2 − G2
∞

M4∞

M4
∞ + G4

∞(1 − 2M2
∞)

2(1 − M2∞)2

κ

λ2 − G2
∞

(1 − G2
∞)2

(1 − M2∞)3

. (5.5)

Plots of the asymptotic wavelengthΛosc. vs. ε/2λ2 for four
representative values ofΠ∞ are shown in Fig. 8. In each of
these plots, the values ofΛosc. are plotted for the range of the
pressure parameterκ/2λ2 as in Figs. 1 to 3.

In the domain of magnetocentrifugal jets the wavelength be-
haviour is very similar to the one found in Paper III as expected.1

In the case ofκ = 0 studied in Paper III, Eq. (5.4) takes the very
simple form (Vlahakis, private communication)

(2πr∗/Λosc.)
2 =

4λ2

M2∞(M2∞ − 1)
(5.6)

1 In Fig. 3 of Paper III, the plot of the wavelength in the region
whereM1 is close to one has to be corrected, due to the presence of
a M4

1 at the denominator of Eq. (5.23) that should be replaced by a
M2

1. Fortunately this change does not affect the curve in the region of
astrophysical interest, mainly forM1 � 1.
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In the domain of pressure confined jets (which corresponds al-
ways to underpressured jets,κ > 0), the wavelength of the
oscillations behaves like the Alfvén number despite of the de-
crease of the cylindrical radius. In particular, as the rotator slows
down (ε/2λ2 decreasing) the wavelength increases very slowly.
Nevertheless in the limitε/2λ2 → −∞ where we enter the
hydrodynamic regime the wavelength must eventually diverge.
The similarity of the curves of Figs. 2 and 8 on logarithmic
scales, which reflects the similar behaviour ofM∞ andΛosc,
can be easily understood in the limit of large values ofM∞ and
V∞/V∗. In this limit – which is by the way expected to be the
case for most observed jets – we get that the wavelength is just
proportional to the square of the Alfvén number,Λosc ∼ M2

∞ .
Note also that, if the wavelength of the oscillations can be re-
lated to the observed morphology of the jets, we may have here
an indirect estimate of the magnitude of the poloidal Alfvén
number.

For overpressured jets (κ < 0), the behaviour ofΛosc. is
similarly following the increase of the Alfv́en number as the
pressure becomes more important, but as it enters the domain
of pressure supported jets after the maximum velocity, the os-
cillations disappear. In fact in this last case we can see that the
pressure gradient supporting the jet cannot restore equilibrium
against the confining magnetic pinch. This could imply that the
solutions of this class are unstable.

We must notice finally that oscillations in collimated winds
are quite a general result, not restricted to our class of meridional
self-similar solutions. In fact oscillating structures have been
found not only in other self-similar flows (Chan & Henriksen
1980, Bacciotti & Chiuderi 1992, Del Zanna & Chiuderi 1996,
Contopoulos & Lovelace 1994, Contopoulos 1995, VT98), but
also in more general analyses of axisymmetric outflows (see e.g.
Pelletier & Pudritz 1992).

6. Asymptotic equilibrium for non collimated flows

6.1. Existence of asymptotically non collimated flows

If the flow is not cylindrical asymptotically, thenF∞ must take a
value in the interval0 ≤ F∞ < 2, with F∞ = 0 corresponding
to conical asymptotics. Assuming that this value ofF∞ and the
corresponding shape may be achieved rather slowly, at large
distancesR from the central object the analytic expression of
F (R) can be written as

F (R → ∞) = F∞ +
c

lnR
+

n→∞∑
n=1

cn

Rn
, (6.1)

wherec andcn are constants. AsR −→ ∞ the dominant term
is the logarithmic one and thus we may keep only this term in
the expansion, such that from Eqs. (2.6) and (3.4c) we obtain

G2(R → ∞) =
R2−F∞

f∞ lnc(R)
, (6.2a)

M2(R → ∞) =
R2−F∞

f∞ lnc(R)
V∞
V∗

, (6.2b)

wheref∞ is a constant (TTS97, Paper III). By substituting these
expressions in the definition of the integralε of Eq. (3.11) and
keeping the dominant terms we get

ε

2λ2 = − 1
2λ2

V 2
∞

V 2∗

[
κ +

1 − F 2
∞/4

RF∞f∞ lnc(R)

]
+

V∗
V∞

+
f∞ lnc(R)
2R2−F∞

(
1 − V?

V∞

)2

. (6.3)

Assumingκ /= 0, Eq. (6.3) shows clearly a rather general re-
sult: a diverging asymptotic velocity is inconsistent with the
constancy ofε. The cylindrical radius and Alfv́en number may
be unbounded, but the terminal flow speed cannot, no matter
what is the exact value ofF∞. This is also in agreement with
the fact that the fraction of the heating term converted to kinetic
energy and∝ κ cannot diverge (see Sect. 3.1).

Further insight in the general behaviour of the asymptotics
can be gained by considering the dominant terms in the trans-
verse momentum equation which gives a relation for the pres-
sure (see Eq. A.4c in Appendix A),

− κΠ(R → ∞)
2λ2 = f∞

V 2
∗

V 2∞

lnc(R)
R2−F∞

. (6.4)

The first conclusion from this relation is that the asymptotic
pressure must vanish because the r.h.s. term (due to the magne-
tocentrifugal terms) always vanishes for non cylindrically col-
limated outflows.

A secondconclusion is that,independently of the value of
ε, underpressured flows (κ > 0) must be cylindrically colli-
mated, as found in Sect. 4. This can be explained taking into
account that, when the streamlines try to expand, then pinching
by both magnetic forces and pressure gradient will dominate
over all other forces (Eq. 6.4). To maintain the forces equilib-
rium a strong bending of the lines towards the axis is required,
RdF/dR > 0, such that the system must relax towards a colli-
mated configuration. Then only overpressured outflows (κ < 0)
may be non collimated.

6.2. Asymptotically paraboloidal
or radial overpressured flows

Assumingκ < 0, we discuss separately the case of paraboloidal
(F∞ > 0) and radial asymptotics (F∞ = 0).

6.2.1. Paraboloidal asymptotics,F∞ > 0

Independently on the value ofc, Eq. (6.3) further simplifies as
follows

ε

2λ2 = +
|κ|
2λ2

V 2
∞

V 2∗
+

V∗
V∞

, (6.5)

which implies thatparaboloidal shapes can exist only forε > 0.
In other words, only overpressured outflows from an efficient
magnetic rotator may eventually achieve a paraboloidal shape.
This can be physically understood because such a structure im-
plies some collimation that can be achieved only through mag-
netic forces in the present case.
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We remark that in the caseκ = ε = 0 Eq. (6.5) can be ful-
filled only for diverging asymptotic velocity (Paper III). How-
ever, as we have seen before, such a case would require an
infinite heating rate, so that such kind of solutions should be
considered as unphysical.

6.2.2. Radial asymptotics,F∞ = 0

If c /= 0, Eq. (6.5) and the previous remarks still hold. Forc = 0,
Eq. (6.3) becomes

ε

2λ2 =
1

2λ2

V 2
∞

V 2∗

(
|κ| − 1

f∞

)
+

V∗
V∞

, (6.6)

and radial asymptotics can exista priori for both negative and
positive values ofε.

This simple analysis shows that overpressured flows (κ < 0)
can attain only radial streamlines if they are IMR (ε < 0), while
they can have cylindrical, paraboloidal or radial asymptotics if
they are associated with an EMR (ε > 0).

We point out finally a common feature for winds with
parabolic or radial asymptotics. From Eq. (6.4) we see that tem-
perature goes to a constant value along each fieldline

T (R → ∞, α) ∝ P

ρ
=

1
2
V 2

∗
1 + κα

1 + δα

(
−2λ2

κ

)
V∗
V∞

, (6.7)

i.e. all uncollimated solutions are isothermal asymptotically.
This is consistent with the results of Tsinganos & Trussoni
(1991), who analyzed solutions with prescribed radial stream-
lines [F (R) = 0]. More in general, we can expect that in non
collimated outflows some heating is always necessary in the
asymptotic regions. Conversely in a cylindrical jet, where the
pressure and density are constant, the temperature is also con-
stant but the heating rate in the flow vanishes (Eq. 3.1b,c).

7. Discussion and astrophysical implications

7.1. Summary of the main results

We have presented here the asymptotic properties of super-
Alfv énic outflows which are self-similar in the meridional di-
rection. The terminal Alfv́en number,M∞, the dimensionless
asymptotic radius of the jet,G∞ and velocity,V∞/V∗ depend
only on three parameters (see Eqs. 4.4). Besides the terminal
pressureΠ∞, the two other crucial parameters are:

• κ/2λ2, connecting the radial and longitudinal components of
the gradient of the gas pressure. Thus, the outflow can be either
overpressured (κ < 0), or underpressured (κ > 0) with respect
to the rotational axis.

• ε/2λ2, which measures the magnetic contribution to the col-
limation of the outflow. Thus, we may divide the sources of
outflows into two broad classes:Efficient Magnetic Rotators
(EMR) corresponding to positive values ofε and a strong mag-
netic contribution to collimation, andInefficient Magnetic Ro-
tators(IMR) which have negativeε and can collimate outflows
only with the help of the gas pressure.2

2 This does not imply that collimated jets from IMR are asymptoti-
cally pressure confined. They may be magnetically confined at infinity
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Fig. 9. A sketch of the various confinement regimes and asymptotical
shapes of the flow in the plane [κ/2λ2, ε/2λ2]. The pressure confined
regime corresponds to the area filled with dark grey while the magnet-
ically confined regime corresponds to the light grey filled area. In the
remaining area only uncollimated solutions are found.

The absolute criterion for cylindrical collimation is given
by the sign of a combination of the two parametersκ/2λ2 and
ε/2λ2. This new parameter

• ε′/2λ2 is related to the variation across the streamlines of the
various energy contributions which govern the flow dynamics
(magnetocentrifugal, thermal, etc). Thus, a positive value of
ε′ provides cylindrical asymptotics while negative values are
required for having uncollimated flows.

Despite this simple criterion, the asymptotic behaviour of
the outflow still depends on the value of each parameter taken
separately as shown in Fig. 9 [see also Figs. (1–3)].

•Underpressured outflows. Forκ > 0 the wind always obtains
cylindrical asymptotics. The jet is supported by the centrifugal
force, while collimation can be provided either by the magnetic
pinching or the gas pressure, depending onε and the value of the
asymptotic gas pressureΠ∞. We repeat however that for IMR
the state of asymptotic magnetic confinement can be achieved
only through the strong pressure gradients occurring between

if the terminal pressure�1 is very small. However in such jets the gas
pressurealwaysplays a crucial role in the achievement of the final col-
limation through strong pinching gradients in the intermediate region
between the base and infinity.
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the base of the flow and infinity. IfΠ∞ does not vanish, the jet
radius has a maximum when moving from the magnetic to the
thermal regime (by reducingε/2λ2).

•Overpressured outflows. Whenκ < 0 the jet can be confined
by the magnetic pinch only, and is supported either by the cen-
trifugal force or by the thermal pressure gradient. IfΠ∞ does not
vanish, the jet terminal velocity has a maximum when moving
from the centrifugal to the thermal regime. Moreover, in over-
pressured outflows, cylindrical configurations are attained only
for values ofε/2λ2 higher than some threshold depending on the
pressure parameters,Π∞ andκ. Below this positive threshold
value the outflow reaches conical or paraboloidal asymptotics
if ε > 0 (EMR) or only purely conical asymptotics ifε < 0
(IMR).

Cylindrical collimation seems to be quite a natural end state
for superAlfv́enic outflows with non vanishing asymptotic pres-
sure, as also found by other studies based on the radial self-
similar approach (Li 1995, 1996, Ferreira 1997, Ostriker 1997),
or on the full asymptotic treatment of the MHD equations (Hey-
vaerts & Norman 1989). However in the present case the col-
limation can be provided not only by the magnetic pinch, but
also by the thermal pressure gradient. This is consistent with
our self-similar scenario, suitable to model winds close to their
rotational axis, where the thermal effects are essential to drive
the outflow. We also point out that our results are consistent
with those of TTS97, where again different collimation regimes
can be found. Finally, we remark that cylindrically collimated
streamlines most of times undergo oscillations with different
wavelengths.

7.2. Astrophysical application

As in Paper III and TTS97, the present results could be partic-
ularly suitable to model the physical properties of collimated
outflows associated with Young Stellar Objects (YSO). How-
ever, since here we have analyzed only the asymptotic properties
of winds, we will shortly discuss only a simple possible scenario
based on the physical difference between EMR and IMR.

Let us consider a rapidly rotating magnetized protostar at the
beginning of its evolution. In such conditions this object could
be considered as an EMR, with a well collimated, magnetically
confined jet. At the same time the pressure inhomogeneity|κ|
and the asymptotic pressure may take rather high values due to
the inhomogeneous and anisotropic environment in which the
jet is found. In the early phases of stellar evolution the outflow
extracts quite efficiently angular momentum from the protostar,
reducing its spinning rate. From the point of view of our model
this means that the system moves from the state of an EMR to
that of an IMR as it lowers the value ofε. Of course the details
of the evolution may be more complicated due to the feeding
of the wind by the surrounding accretion disk. Nevertheless the
net end result should be a decrease of the spinning rate and
subsequently of the efficiency of the magnetic rotator (Bouvier
et al. 1997).

If the jet is initially underpressured, for example being em-
bedded in a dense molecular cloud, as it approaches the regime

of the IMR a gradual widening of its radius is expected. This
widening may reach a maximum value, wherein the magnetic
and thermal contributions to the confinement are comparable.
At this stage it is reasonable to expect a decrease of the asymp-
totic pressure because of this widening. At the same time, we
may have a more homogeneous flow, i.e., effectively a decrease
of κ. Thus, in the subsequent evolution of the central young star,
we expect that the jet continues increasing its radius. Accord-
ing to this scenario, we can imagine an evolutionary track of
the outflow along the maxima from Figs. 1d to Fig. 1b, wherein
there is an equal contribution by the thermal and magnetic forces
confining the plasma. In this sequence, the terminal velocity al-
ways increases, Figs. 3d to 3b, asκ and the asymptotic pressure
Π∞ get lower and lower values. Finally, the outflow becomes a
loosely collimated wind.

In the above scenario, it is essential to have a decrease ofκ
andΠ∞ during the evolution. Because, otherwise, we see that
an IMR (ε < 0) together with a strongly underpressured plasma
(high κΠ∞) have the result to over collimate the wind with
an asymptotic radius comparable to its Alfvén radius. This re-
sult would be somehow in contradiction with the observed radii
of outflows from YSOs which are expected to be much larger
than the Alfv́en radius. Instead, we propose that both thermal
and magnetic confinement decrease simultaneously during the
evolution of the central source.

However, jets from planetary nebulae (PN) may present a
totally different situation where the primary source of confine-
ment is a strong pressure gradient,κΠ∞ � 0, associated with
a source which is a very inefficient magnetic rotator, although
with a non zero magnetic field. The terminal radii of jets from
PN are indeed observed to be rather small after some huge initial
widening (Frank 1998). We also note that our analysis favours a
hydrodynamical origin of jets from PN similarly to the GWBB
model (cf. Mellema & Frank 1997, Frank 1998) and contrarily
to a pure magnetic origin of the refocusing of the wind.

The analysis of overpressured jets is more complex at first
glance as different regimes are possible for the sameε. Let us
first consider that the jet is initially quite narrow, centrifugally
supported and originates from an EMR; i.e., it is on the lower
branches of the thin grey lines (κ < 0) of Figs. 1–3. As in the
previous case, the rotation slows down (ε decreases), the outflow
rapidly opens and the velocity rises. However, below a threshold
value ofε/2λ2 the flow becomes uncollimated (see Fig. 9).

If, conversely, at the beginning the jet is pressure supported
(i.e., on the upper branches of the dotted lines in Figs. 1b–d, 2b–
d), the behaviour is quite ambiguous: a reduction or an increase
of the jet radius and velocity critically depends on the initial
conditions (|κ|, asymptotic pressure, jet radius) when the star
starts slowing down its rotational rate. Then it is difficult to
model the possible evolution of a pressure supported jet. But,
as we said previously, the absence of oscillations in this region
may indicate that such equilibria are in fact unstable and never
attained practically.

It is evident from the above that the possible outflow evolu-
tion is critically related to its physical conditions, namely if it
is underpressured or overpressured. In which of these regimes
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the outflow can be found depends on the detailed history of the
wind. We remind that the thermodynamic conditions across the
jet in its asymptotic regime depend also on the assumed struc-
ture of density (δ) and the intensity of the gravitational field (ν).
These two parameters do not enter in the present analysis, but
are essential for the thermal acceleration of the wind (see Paper
III and TTS97). Therefore the next step in the present analysis
is to make a careful parametric study of the numerical solutions,
solving the set of Eqs. (A.4). This is also demanded in order to
make a detailed comparison with observational data and implies
that we construct solutions that connect the base of the flow with
the superAlfv́enic region fulfilling the regularity conditions at
the critical points (Sauty et al., in preparation). In particular, it
will be crucial to see whether or not all the asymptotic regimes
presented here can be attained.

7.3. Future directions of study

The present results have been obtained in the framework of
a self-similar treatment of the axisymmetric MHD equations.
This implies some ‘a priori’ constraints on the structure of the
solutions, that we summarize in the following.

The surfaces with the same Alfvénic number are spherical
[M(R, θ) ≡ M(R)], with the velocity vanishing on the equato-
rial plane. Furthermore theθ− andr− components of the gradi-
ent of the gas pressure are linearly related. These assumptions
are not too constraining if we consider our model as suitable
to describe the physical properties of the flow around the rota-
tional axis. We remind also that our results are consistent with
those found in TTS97, where the two components of∇P were
unrelated in a wind with prescribed cylindrical asymptotics.

Such limits of the present treatment could anyway be over-
come by a different scaling of the physical variables with the
colatitude. It has been shown in VT98 that the assumptions of
Eqs. (2.3) are just a particular case of a more general class of
solutions, with no vanishing velocity on the equator and with
a more complex expression for the pressure (another particular
case is the one studied in Lima et al. 1996; see also Vlahakis
1998). In such a case the set of the MHD equations lead to a
closed system whose treatment does not require any further ‘a
priori’ assumption as the relation between the components of
the pressure gradient (as in Paper III and in the present study)
or the prescription of the streamline shape (as in TT97).

Finally, we point out once more that, contrary to the radial
self-similar studies, the role of the thermal structure of the flow,
which is related to the details of processes of input/output of
heating in the gas, is essential in our model and not only in
accelerating the flow but also in constructing its global shape.
The problem of the energetic behaviour of astrophysical plasmas
in different astrophysical contexts (solar and stellar coronae,
YSO, AGN) is however still open.
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Appendix A

The classical equations of ideal MHD steady flows are

∇ · B = ∇ · (ρV ) = ∇ × (V × B) = 0 , (A.1a)

ρ(V · ∇)V − (B · ∇)B/4π

= −∇(p + B2/8π) − G ρM
r2 er , (A.1b)

ρV ·
(

∇h − ∇P

ρ

)
= q , (A.1c)

whereh is the enthalpy of the perfect gas,q is the local volu-
metric heating rate including true heating and cooling,G is the
gravitational constant,M is the mass of the central object and
the other symbols have their usual meaning.

Under the assumption of steady state and axisymmetry, the
existence of free integrals as defined in the main text gives the
usual forms for the poloidal (p) components of the magnetic field
B and the velocityV , using spherical (r, θ, ϕ) or cylindrical
($, ϕ, z) coordinates (for details see Tsinganos 1982)

Bp =
∇A

$
× eϕ , V p =

ΨA

4πρ
Bp , (A.2a)

while the toroidal components are

Bϕ = −L(A)ΨA

$

1 − $2 Ω(A)/L(A)
1 − M2 , (A.2b)

Vϕ =
L(A)

$

$2 Ω(A)/L(A) − M2

1 − M2 , (A.2c)

whereM is the poloidal Alfv́en Mach number as defined in
Eq. (2.1).

Considering our assumptions, Eqs. (2.3), we get that the
components of the velocity and magnetic field reduce in our
model to

Br = B∗
1

G2(R)
cos θ , (A.3a)

Bθ = −B∗
1

G2(R)
F (R)

2
sin θ , (A.3b)

Bϕ = −B∗
λ

G2(R)
1 − G2(R)
1 − M2(R)

R sin θ , (A.3c)

Vr = V∗
M2(R)
G2(R)

cos θ√
1 + δα(R, θ)

, (A.3d)

Vθ = −V∗
M2(R)
G2(R)

F (R)
2

sin θ√
1 + δα(R, θ)

, (A.3e)

Vϕ = V∗
λ

G2(R)
G2(R) − M2(R)

1 − M2(R)
R sin θ√

1 + δα(R, θ)
. (A.3f)

These last equations, together with Eqs. (2.3), can be com-
bined with the poloidal components of the momentum equa-
tion, Eq. (A.1b), to give three independent equations for four
unknownsΠ(R), F (R), G(R) and M2(R). The system is
closed with Eq. (2.6) forG. Two of these equations arise from
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momentum-balance in the radial direction, while the third one
from momentum-balance in the meridional direction. Thus, we
obtain

dΠ
dR

+
2

G4

[
dM2

dR
+

M2

R2 (F − 2)
]

+
ν2

M2R2 = 0 , (A.4a)

−κFRΠ − κR2 dΠ
dR

+
2

G2

dM2

dR
− δν2

M2G2

− F

2RG2

[
R

dF

dR
+ F 2 − F − 2

]
+

M2

RG2

[
F 2

2
+ F − 4

]

+
2λ2R

G2M2

(M2 − G2)2

(1 − M2)2
− 2λ2R

G2

1 − G2

(1 − M2)2
(F − 2G2)

−2λ2R2

G2

(1 − G2)2

(1 − M2)3
dM2

dR
= 0 , (A.4b)

−F

2
R

dM2

dR
+ κR2G2Π +

1
2

[
R

dF

dR
+ F 2 − F − 2

]

−M2

2

[
R

dF

dR
+

F 2

2
− F

]

− λ2R2

(1 − M2)2

[
(M2 − G2)2

M2 − 2(1 − G2)2
]

= 0 . (A.4c)

In Sect. 5 (oscillations of cylindrical jets), the first order ex-
pansion scheme of the previous momentum equations amounts
to saying that we have the following expression for the force
balance across the fieldlines

ρ(V p.∇)V p − 1
4π

(∇ × Bp) × Bp

=
Bϕ

4π$
∇($Bϕ) − ρV 2

ϕ

$
∇$ − ∇P . (A.5)

Appendix B

B.1. On the variation of the specific energy

In Eq. (3.3b), we find successively five terms which correspond
to thevariation , in units of the volumetric energy, of the mag-
netic rotator between any streamline (α) and the polar axis (pole)
of

(i) the poloidal kinetic energy,

M4

R2G2

[
F 2

4
− 1
]

=
2λ2

ρ(R, α)L(α)Ω(α)
×

×
[
1
2
ρ(R, α)V 2

p (R, α) − 1
2
ρ(R,pole)V 2

p (R,pole)
]

, (B.1)

(ii) the gravitational energy,

− δ ν2

R
= − 2λ2

ρ(R, α)L(α)Ω(α)
GM
R

× [ρ(R, α) − ρ(R,pole)] , (B.2)

(iii) the azimuthal kinetic energy (≡ 0 along the polar axis),

λ2

G2

[
M2 − G2

1 − M2

]2
=

2λ2

ρ(R, α)L(α)Ω(α)

×
[
1
2
ρ(R, α)V 2

ϕ (R, α)
]

, (B.3)

(iv) the Poynting flux (≡ 0 along the polar axis),

2λ2
[

1 − G2

1 − M2

]

= − 2λ2

ρ(R, α)L(α)Ω(α)

[
Ω(α)
ΨA(α)

$Bϕ(R, α)
]

=
2λ2

ρ(R, α)L(α)Ω(α)
[
L(α)Ω(α)−$2(R, α)Ω2(α)

]
, (B.4)

(v) the thermal content,

κ

[
Γ

Γ − 1
ΠM2 −

∫ R

Ro

Q(R)dR

]

=
2λ2

ρ(R, α)L(α)Ω(α)

{
ρ(R, α)[h(R, α) − ΘR

Ro
(α)]

−ρ(R,pole)[h(R,pole) − ΘR
Ro

(pole)]

}
. (B.5)

In order to write Eqs. (3.7), we simply calculate the previous
terms (B.1-B.5) at the base of the flowro

∆E = −δ ν2

Ro
+

λ2

G2
o

[
M2

o − G2
o

1 − M2
o

]2

+2λ2
[

1 − G2
o

1 − M2
o

]
+ κ

[
Γ

Γ − 1
ΠoM

2
o

]
. (B.6)

There the poloidal kinetic energy is negligible and consequently
the term in Eq. (B.1) is zero. Moreover the thermal content re-
duces to the enthalpy such that in Eq. (B.5) only the enthalpic
terms remain. Combining Eqs. (B.2) to (B.6), we get Eqs. (3.7).

B.2. On the Energetic definition of EMR and IMR

Now using Eqs. (3.2) and (3.10) we may write

E(α) =
1
2
V 2

∗
E(1 + κα) + αε

1 + δα
, (B.7)

where we see, as stated in the main text, thatε is the transverse
variation of the volumetric energy once we have removed the
thermal terms that linearly scale with factorκ. Moreover note
that from Eq. (3.4a) we get

E
2λ2 =

ρo(pole)[ho(pole) + EG,o]
ρo(α)EMR

, (B.8)

which is the pending expression to Eq. (3.7a). Noting that

κ =
∆(ρh)

ρ(pole)h(pole)
=

∆P

P (pole)
, (B.9)

we combine Eqs. (3.7a), (B.8) and (3.10) to get

ε

2λ2 =
∆ [ρo(EPoynt.,o + ER,o)]

ρo(α)EMR

+
EG,o

EMR

ρo(pole)
ρo(α)

[
∆ρo

ρo(pole)
− ∆Po

Po(pole)

]
. (B.10)
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The first term of the r.h.s. of this last equation simplifies to the
two first terms in the numerator of Eq. (3.12a) as the Poynting
flux and the rotational energy vanish along the pole. The second
term of the r.h.s. of Eq. (B.10) can be rewritten to give∆E∗

G in
Eq. (3.12a). In the form presented in Eq. (B.10) it appears how
the relative increase of the weight of the plasma can be partially
compensated by the increasing of the thermal pressure gradient.
In this form there is no contradiction with the use of the symbol
∆. Conversely, the equivalent expression used in Eq. (3.12b)
may appear confusing if one does not remember that this is in
fact the variation across the lines of the gravitational energy that
is not compensated by some thermal driving. Nevertheless, we
prefer this last form for its compactness and because it empha-
sizes the role of the temperature.

Appendix C

From Eqs. (5.1) and (5.2) we may expandF to first order in
Eq. (2.6),

F = 2 − Rϑ̇ , (C.1a)

while the derivative ofF can be also expanded at largeR as

dF

dR
= −ϑ̇ − Rϑ̈ ≈ −R2ϑ̈ . (C.1b)

From these equations we can expand the momentum equations
given in Appendix A (Eqs. A.4) replacing the second one by the
definition of ε. We still assume in this section that the flow is
asymptotically cylindrically collimated. Thus we already have
calculated the zeroth order equilibrium in Sect. 4. We know that
the asymptotic quantities in the flow are uniquely determined
by the values ofε/2λ2, κ/2λ2 andΠ∞. The first order terms
in the transverse momentum equation (see also Eq. A.5) give a
relation between̈ϑ, ϑ andµ

ϑ̈ = 2κΠ∞
G2

∞
1 − M2∞

[
p + ϑ − 2M2

∞
1 − M2∞

µ

]

−2λ2
[

2G2
∞

(1 − M2∞)2

(
1 − G2

∞
1 − M2∞

+
G2

∞
M2∞

)
ϑ

+
M4

∞ − G4
∞

(1 − M2∞)3M2∞
µ

]
. (C.2)

This can be combined with Eq. (3.11) that we also expand
to first order – where again the zeroth order is Eq. (4.4b) – to
get a second relation betweenµ andϑ,

µ

[
− κ

λ2 + G2
∞

(1 − G2
∞)2

(1 − M2∞)3

]

+ϑ

[
κ

λ2 − G2
∞

M4∞

M4
∞ + G4

∞(1 − 2M2
∞)

2(1 − M2∞)2

]
= 0 , (C.3)

which is identical to Eq. (5.5). Expanding Eq. (A.4a) we have a
relation between the derivatives ofθ, µ andp,

ṗ + 2
M2

∞
G4∞Π∞

(µ̇ − ϑ̇) = 0 , (C.4a)

that can be integrated to givep as a function ofθ andµ, assuming
a vanishing constant of integration

p + 2
M2

∞
G4∞Π∞

(µ − ϑ) = 0 . (C.4b)

By eliminatingµ andp in Eq. (C.2) using Eqs. (C.3)-(C.4b), we
obtain Eqs. (5.3) and (5.4) in Sect. 5.
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