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Abstract. An axisymmetric MHD model is examined analyt-objects, such as young and evolved stars, planetary nebulae, X-
ically to illustrate some key aspects of the physics of hot anay binaries and collapsed objects (for reviews see Ray 1996,
magnetized outflows which originate in the near environmeliifatos 1996, Mirabel & Rodriguez 1996, Brinkmann &iNer

of a central gravitating body. By analyzing the asymptotica998, Livio 1998). Finally, on extragalactic scales jets are ob-
behaviour of the outflows it is found that they attain a varietserved to originate in many Active Galactic Nuclei and Quasars
of shapes such as conical, paraboloidal or cylindrical. HowevéBjretta 1996, Ferrari et al. 1996).

non cylindrical asymptotics can be achieved only when the mag- Yet, despite their abundance the basic questions on the for-
netic pinching is negligible and the outflow is overpressured @fation, acceleration and propagation of nonuniform winds and
its symmetry axis. In cylindrical jet-type asymptotics, the oufets have not been fully answered. Nevertheless, observations
flowing plasma reaches an equilibrium wherein itis confined kyem to indicate that the basic ingredients for producing astro-
magnetic forces or gas pressure gradients, while it is supporiggsical outflows are some sort of heating to launch thermally
by centrifugal forces or gas pressure gradients. In which of thg wind at the axis plus a rotating central gravitating object
two regimes (with thermal or magnetic confinement) a jet can Bd/or an accretion disk threaded with magnetic fields to accel-
found depends on the efficiency of the central magnetic rotatefate magnetocentrifugally and collimate the outflow.

The radius and terminal speed of the jet are analytically given

in terms of the variation across the poloidal streamlines of the ) ]

total energy. Large radius of the jet and efficient acceleratignt- Drivers of the collimated plasma outflow

oscillations with various wavelengths, as also found by othgrj ¢rycial role (Lynden-Bell 1996) but they are probably not
analytical models. Scenarios for the evolution of outflows intg only relevant mechanism

winds and jets in the different confinement regimes are shor

. E}/rst, thermally driven models are based on tleelaval nozzle
outlined.

analogy of the solar wind (Parker 1963, Liffman & Siora 1997).

. . This requires the presence of a hot corona around the central
Key wqrds: Magnetohydrodynam|c§ (MHD) — Sun: solar W'r],doody of the YSO or the AGN. X-ray emission detected in sev-

— stars: pre-main seque.n_ce — stars: winds, outflows — ISM: JS}%I of these objects may imply that thermal effects contribute to
and outflows — galaxies: jets the general acceleration mechanism at the base of the flow but
they are probably not the only ingredient. Furthermore, if the
wind is associated to a very bright object, the flow can be effec-
tively accelerated by the photon flux (radiatively driven winds,
Cassinelli 1979). Parallely note also that collimation of bipolar
Nonuniform plasma outflows seem to be ubiquitous in astr@utflows from YSOs and Planetary Nebulae by external thermal
physics on galactic and extragalactic scales. The closest ex@hgssure gradients have been extensively studied in the frame of
ple is the solar wind itself which shows strong heliolatitudithe Generalized Wind Blown Bubble scenario (GWBB, Frank
nal velocity gradients as recently observedlysses(Lima 1998). Ithas demonstrated successfully that magnetic processes
& Tsinganos 1996, McComas et al. 1998). Further away colfay not be the only way to achieve collimated outflows.

mated outflows are observed in association with several gala&rcongdmagnetic pressure driven models are based onrhe
coiling spring analogy and have been examined by Draine
Send offprint requests 1€. Sauty (sauty@obspm.fr) (1983), Uchida & Shibata (1985) and Contopoulos (1995).

1. Introduction
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There, it is assumed that a toroidal magnetic fiBlglis cre- solutions presented in these papers prevents from considering
ated and highly amplified by the winding-up of its field lines byheir conclusions as definitive. Nevertheless, it has been shown
a radially collapsing and non-Keplerian rotating disk. Plasmatisat within the frame of self-similar disc-wind assumptions, it
then accelerated from the disk in the poloidal direction by the possible to cross all critical points thus getting meaningful
action of the resulting torsional Alén waves. solutions (Tsinganos et al. 1996, Vlahakis 1998). Moreover, the
Third, magnetocentrifugally driven outflow models are based oole of the inhomogeneity in the pressure distribution has not
the classicabead on a rotating rigid wireanalogy. There, the been taken into account until recently in these models (Ferreira
magnetized cold fluid is flung out (even to relativistic velocities)997) and a full parametric study of this extra variable is yet to
from the surface of the Keplerian accretion disk, provided thiae performed.
the poloidal field lines are inclined enough with respect to the
disk axis (Blandford & Payne 1982, Pelletier & Pudritz 199211 3
Contopoulos & Lovelace 1994, Cao 1997). This approach’is
suitable to model winds from accretion disks, but is not valiith a series of studies, solutions of the MHD equations that are
around the symmetry axis. Moreover it has been pointed adif-similar in themeridionaldirection have been also analyzed
recently (Ogilvie & Livio 1998) that, even if the lines are suffi{Tsinganos & Trussoni 1990, 1991, Tsinganos & Sauty 1992a,b,
ciently inclined, a potential barrier still exists that can be oveRapers | and |l of this series, Trussoni & Tsinganos 1993, Sauty
come only by the presence of an extra source of energy (e.@& @singanos 1994, Paper Il of this series, Trussoni et al. 1997,
hot corona). henceforth TTS97). Such a treatment allows to study the phys-
In all the above treatments the effects of tmmbination ical properties of the outflow close to its rotational axis. As in
of gas pressurandmagnetic fields in accelerating, collimatingthis region the contribution to acceleration of the magnetocen-
and confining jets have not been discussed adequately, dedpifiegal forces is small, the effect of a thermal driving force is
the fact that the role of the gas pressure has been recognizegfsential. This implies also that the structure of the gas pressure
alongtime, i.e., that jets are not moving in a vacuum (molecularthe flow is essential.
clouds around YSO's, or host galaxies in AGN) and hence they Two main classes of such self similar solutions have beenin-
must have some interaction with the external medium (Ferragstigated depending on whether the components of the pressure
et al. 1996; Frank 1998). This approach may also highlight tigeadient along the radial and meridional directions are related or
transition from fully thermally driven to fully magnetocentrifu-not. In the second case the shape of the streamlines and fieldlines
gally driven collimated winds. is prescribed ‘a priori’, and the main features of the dynamical
variables are self-consistently deduced from the integration. In
particular, it has been shown that acceptable solutions for mag-
netized flows with asymptotic superA#wic velocity exist only
As with any fully MHD approach and despite of the simplifiwhen rotationisincluded (Tsinganos & Trussoni 1991, Trussoni
cations of steadiness and axisymmetric geometry, several &pFsinganos 1993, TTS97). As a consequence of this study it
proximations are still unavoidable in order to obtain exact seeems that even pressure confined jets from slow magnetic ro-
lutions useful for an understanding of the MHD mechanism ftators need magnetic fields and rotation.
the initial acceleration and final collimation. Thus, one simple In the other case, in which the two components of the gas
analytical way out is the use of self-similarity. This hypothesressure are related, the structure of the streamlines is deduced
sis allows an analysis in a 2-D geometry of the MHD equatiols a self-consistent solution of the MHD equations. It has been
which reduce then to a system of ordinary differential equatiorshown (Papers | and 1) that hydrodynamical and nonrotat-
The basis of the self-similarity treatment is the assumption iofy magnetized winds are always radially expanding from the
a scaling law of one of the variables as function of one of tle®urce. On the other hand, rotating magnetized flows with a
coordinates. The choice of the scaling variable depends on spherically symmetric structure for the pressure gradient can
specific astrophysical problem. have final superAlfénic velocities with either radial or colli-
Several models self-similar in tmadial direction have been mated asymptotically streamlines, depending on the values of
investigated to analyze the structure of winds from accretitime parameters (Paper 1l1). This allows to deduce a criterium to
disks (Blandford & Payne 1982, Contopoulos & Lovelace 1994elect conically expanding winds from cylindrically collimated
Li et al. 1992, Li 1995, 1996, Ferreira 1997, Ostriker 1997). ljets (Sauty et al. 1996).
these models the driving force and the collimation derive from a
com_binati.on of the magnetic anq cgntrifugal force;. Moreovelr',4_ Plan of this paper
as disc-winds are associated with jets, these studies usually do
not consider under which parametric conditions full collimatioe extend here the analysis of Paper Il to the more general case
is obtained. Exceptions are given in Pelletier & Pudritz (1992f solutions for rotating magnetized winds with@nspherically
and Contopoulos & Lovelace (1994) where the collimation efymmetric gas pressure. In the present paper we concentrate
ficiency is linked to a current flowing in agreement with then the asymptotic analysis and its link to the initial boundary
Heyvaerts & Norman (1989) general analysis. However, the alsnditions: this allows us to derive a general criterion for the
sence of an exact crossing of all the existing critical points in tisellimation of winds into jets. The analysis of the properties

. Meridionally self-similar models

1.2. Radially self-similar models
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of the complete numerical solutions deserves a separate sttdy Generalized Bernoulli integral

which is postponed to a following paper. . .
Postp . g paper. .. A fourth constant of the motion expresses the conservation of
In Sect. 2 we summarize the properties of the meridional . o
_ : L . energy along streamlines. Thus, by projecting the momentum
self-similar MHD equations while in Sect. 3 we discuss the efni- ~ - ) P '
equation along a streamline, taking into account the first law of

ergetic structure of the outflow. In particular we show that a}ﬂermodynamics for energy conservation, we obtain the gener-

energy integral exists that links the asymptotic regime to th ) i
" . a |Ized classical Bernoulli integral (Paper 111},
boundary conditions at the base, allowing to formulate a genera

criterion for the collimation of the wind. The different physical 1l 5, 1., GM

conditions for asymptotic confinement (magnetic or thermali?)(A) - §Vp + §Vw T

are discussed in detail in Sect. 4, and in Sect.5 we show that Q i,

oscillating configurations can be present in cylindrically colli- _\ITAWBW +h—67,(4), (2.22)
mated jets. In Sect. 6 the equilibrium asymptotic properties of

non collimated flows are outlined, while in Sect. 7 we summ¥#{nere

rizethe result; and shortly discuss the astrophysical implicatio(g; [ q(r’, A) o 2 2b
of our analysis. o /T o, AV, (7, A) (2.2b)

h is the enthalpy of the perfect monoatomic gBs= 5/3), ¢
is the net local volumetric heating/cooling rate, &hthe grav-
2.1. Steady axisymmetric ideal MHD outflows itational constant. Thus, at a given radial distanadong the

) ] o ] streamline labeled by, the conserved enerdy( A) represents
The global dynamical properties of cosmic winds and jets &figs sum of the kinetic, gravitational, Poynting and ideal thermal
usually analyzed by assuming that they represent outflows Qfgergy flux densities per unit of mass flux density, minus the
fully ionized plasma with a bulk speeld and carrying a mag- extra heat received by the flow between the anchored footpoint

netic field B in the gravitational field of a central body of mas$; 5 pasal radial distancg and the point under consideration,
M. The familiar MHD equations are employed for a physicalr (A)

description of these phenomena. In particular, under steady and
axisymmetric conditionsd{/dt = 9/9¢ = 0), the MHD equa- o ] )
tions are known to admit certain free integrals, i.e., functiods3- Self-similarity: scaling laws for the variables
which remain constant on the magnetic surfaces generatedmi model analysed in this paper belongs to the wide class of
the revolution around the magnetic/flow symmetry axis of thgeridionally self-similar MHD equilibria (see also Trussoni et
system of a poloidal magnetic link(r, ) = constant (Tsinganos 5| 1996; Tsinganos et al. 1996; TTS97: Vlahakis & Tsinganos
1982). Specifically, on the surface of such a flux tubeconst., 1998, henceforth VT98). In the following we briefly summa-
the following physical quantities remain invariant throughoy{ze the main steps for the construction of such a model (see
the extent of these surfaces from the base to infinity: Appendix A for more technical details).
) . For convenience, first of all the variables are normalized to
— WA(A), the ratio of the magnetic and mass fluxes, their respective values at the A& surface along the axis of
— L(A), thetotal specific angular momentum carried by theyiation - — 1. In particular, we define the dimensionless ra-
flow andthe magnetic field, , dial distanceR = r/r, and the Alf\en speed’? = B2 /4xp,,
— §(4), the corotation frequency or angular velocity of eacihere g v/, and . are the poloidal magnetic field, poloidal
streamline at the base of the flow. velocity and density along the polar axis at the characteristic
radiusr,. For the magnetic flux functioA we define its dimen-
gionless form by

2. Meridionally self-similar MHD model

Furthermore, it is well known that the poloidal)(@and az-
imuthal (toroidal,p) components of the magnetic field and th
velocity can be expressed in terms of these free integrals anﬁ? P A(r,0)
the poloidal Alfven Mach number, using spherical §, ) or a(R,0)
cylindrical (ww, ¢, 2) coordinates (for details see Paper llI). In

particular, the poloidal Alfén Mach number (or Alfgn num- Note that along the polar axis(z,0) = 0. To obtain the final
ber) M is, expressions for the physical variables, we make the following

crucial assumptions:

- 2B,

[ 2

M? = 477937172 = ﬁ : () _ First, we assume that the Alén surface ispherical M =

b M(R). Then, according to Eq. (2.1), the density can be ex-
On the other hand, the two integral§ A) andQ(A) are not pressed as the product of a functionfofi.e. 1 /47 M?(R)]
independenif the flow is transalfénic. In such a case, atthe and a function ofx [i.e. ¥%(«)]. Furthermore, we Taylor
cylindrical distancew,, of the Alfvén point (4 = 1) from the expand the functio®? («) to the first order inv such that
field/flow axis of a flux tube labeled by they are related as  the variation of the density on a spherical surface of given
w2(A) = (r.sind,)? = L/ radiusR is proportional to the magnetic flux.

a
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— Secondwe assume that the magnetic flux functiois ex- roughly equal to the magnetic rotator enefg¥ if at the base
pressed as the product of a function ®fand a function the radius of the jet is much smaller than the Alfivradius
of 8. Furthermore, for the function ¢f we take a dipolar (G, < 1) and the Alf\en number there is also negligibly small
dependence with the colatitudeThis immediately implies (M, < 1),
that the Alfién cross sectional areao? of a flux surface 2
. . a . S, 1-G
is proportional to the corresponding magnetic fiwAlso,  Epgyni. o = —| = QL =
the ratioG? = w?/w? of the cross sectional area of the pVzlo 1= M,
flux tube to the Alfien cross sectional area of the same fluxet F, be the sum of the kinetic, gravitational and thermal en-
tube depends solely on the radial distafite ergies per unit mass at the base of the outflow. Then the total

— Third, we assume that the total axial currénenclosed by available energy for the outflow at the basetise E, + QL.

a flux tubea = const. is proportional to the correspondinghccordingly, we have an outflow fromRast Magnetic Rotator
magnetic flux. This assumption fixes the angular momentyMMR) whenE, < QL and an outflow from &low Magnetic
integral L (Paper IIl). Note that at once the integral of th&Rotator(SMR) in the opposite case &f, > QL.

corotation frequency? follows from its relation withZ at
the Alfvén distancel = Q2. Note also that the integrals
L and2 are chosen such thatl 4, andLQ¥? contain only
first ordera-terms, in analogy with the previous assumpin order to solve the resulting MHD equations, it is useful to

~ QL. (2.5b)

2.5. Solving the self-similar MHD equations

tions. introduce an extra functiof'(R) (Papers Il and IlI),

— Fourth, we assume that the-dependence of the gas pres- dInG(R)
sure is similar to that of the density distribution. This means(R) = 2 (1 — ) _ (2.6)
that the pressure is ultimately a function of the density along dlnR

a given magnetic surface, a situation analogous to the Of@ﬁdenﬂy, while G(R) defined in Eq. (2.3b) measures the di-
used polytropic assumption. However, this implicit relationmensijonless cylindrical radius of a flux tube at the distafice
ship between pressure and density is much more general thgir) is simply giving the expansion factor of the streamlines.
the somehow artificial polytropic assumption. Contrary the |imiting caseF (R) = 0 corresponds to conical expansion
the polytropic relation, its exact formis notimposegiriori  and radial fieldlines, while foF'(R) = 2 we have cylindrical

but is determined by the full solution. expansion parallel to the axis (collimation). In between these

. . . - two regimes the flow is paraboloidal.
Altogether, the four main assumptions of this meridionally 15 pove assumptions, Egs. (2.3), immediately give the

self-similar model can be summarized as follows, components of the velocity and magnetic fields (Eqgs. A.3 in

_ P 2 Appendix A). On the other hand, the momentum conservation
Ra) = ———(1+da), U5 =4mp.(1+da),(2.3a ) m ) ) . ,
PR, ) M?(R) ( a), Wa = dmp.( o). (2.33) law in combination with the above assumptions gives fodi-
w*(R,a) = r2G*(R)a, w(a) = ra, (2.3b) narydifferential equations for the four variablé$?(R), F(R),
LU, = ArB.a, LoV = A’ B2a, (2.3¢) II(R) andG(R) (see Appendix A for details).

1 The complete solution of these equations, from the base of
P(R,a) = —p VAII(R)(1 + k). (2.3d) the outflow to infinity, with the required crossing of all appro-
2 priate critical points, is indeed an interesting undertaking and
The introduced parametefs x and A measure the variation worth of a separate paper. Here instead, we shall concentrate
with the colatitude of the density, pressure and rotation, respee-some novel results obtained solely by solving the equations
tively. Afourth parameter enters from the momentum equatiorasymptotically far from the Alfén surface >> 1) andtaking
as the ratio, at the Al#n distance along the polar axis, of thénto account the boundary conditions on the source.
escape speed to the flow speed there,

2 26M (2.4) 3. The energy integral and collimation criterion

r V2 3.1. The generalized Bernoulli integral

A nonadiabatic flow of a monoatomic gas with ratio of specific
heatsI" = 5/3 is always heated at a net volumetric rate
Animportant physical quantity in magnetized outflows is the so vp r p
calledmagnetic rotator energyMichel 1969, Belcher & Mc- ¢ = pV - (Vh — ) , h=———. (3.1a)
Gregor 1976), p I'—=1p
With expressions (2.3a) and (2.3d) for the gas density and pres-
sure, it follows immediately that this heating can be written as
Evr = QL. (2.5a) (see Sect. 5 in Paper Il for details of the derivation),

2.4. Magnetic rotator energy

The basal Poynting energypoynt. o, defined as the ratio of the q(R, ) V21+ka
Poynting flux densitys. per unit of mass flux densityV.,is (R, a)V,(R, ) T o 1+4da

Q(R), (3.1b)
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where the dimensionless specific heating rate per unit of radi@ unbounded, although their ratio, which is the polar speed in

length along a given streamline is, units of the Alfven speed, should remain finite,
1 o dII dn? MZ%  V
QR) = 57— |M* g5 + T | - (3.1c) R (3.4c)
Hence, the generalized classical Bernoulli integral (2.2) tak@reover the terminal pressuife,, vanishes unless the integral
the simpler form ofthe heating diverges, a rather unphysical situation correspond-
ing to an infinite input of heat.

1 _,E+alAE The conservation of the polar energy simply expresses the

E(a) = 27 110 (3-2) fact that the flow along the polar axistisermally driven Fur-

_. thermore, from Egs. (3.4a,b) it becomes evident how the con-
where the twaonstants” and A& represent the polar specificyersjon of the heat content of the plasma into kinetic and grav-
energy and the variation across a streamline of the specific g8sonal energy maintains the outflow,
ergy, respectively (in Paper Ifl was denoted by, AE by F '

andQ by 9,). r 2 9 /OO
It is straightforward to show from Egs. (2.2), (2.3), (A.3)' — 1 (oMo — Moo Moo ) + R, QR)dR
and (3.1)—(3.2) that and A& have the following analytical W2 M
expressions (Paper III) == + G—f . (3.5)

4 2 R
£ = M v LHMQ _ Q(R)dR, (3.3a) Inotherwords, the decrease of the enthalpy at infinity together

G* R T-1 R, with the external heat input integrated along the polar stream-
A M* [F? o2 line, on one handifts the gas out of the gravitational potential
& = R2G2 |42 | R well andon the other gives to it a finite terminal speed. Of
\2 M2 — G212 e course, this is nothing more than the classical picture of the
+@ [1_M?] +2)2 [1 _MQ} Parker thermally driven wind.
R
+k = 1HM2 _ / Q(R)R| . (3.3b) 3.1.2. Variation of the specific energy across streamlines
R The second conserved componéxf of the specific energy

It is worth to digress for a moment and try to get some insigbives the excess or deficit of the volumetric total eneffiggt a
into the physical meaning of these two conserved componentmpolar streamline as compared to the corresponding energy
of the specific energy; andA€. at the polar axis and the same spherical distance, normalized
to the volumetric energy of the magnetic rotator. ThA§, has
five contributions which correspond to the five different terms
appearing successively in the RHS of Eq. (3.3b). Each one rep-
In the first expression, Eq. (3.3a), the polar energy fluis resents the variation — in units of the volumetric energy of the
composed of four terms which are successively the poloidabgnetic rotator — between any streamline and the polar axis
(i.e. radial here) kinetic and gravitational energies, the enthalpfy (i) the poloidal kinetic energy, (ii) the volumetric gravita-

3.1.1. Polar specific energy

and the heating along the polar axis. tional energy, (iii) the azimuthal kinetic energy (which is zero
The polar specific energycan be evaluated at both the basalong the polar axis), (iv) the Poynting flux (which is also zero
of the windR,, and far from it asR — oo, along the polar axis) and (v) the thermal content (enthalpy plus
2 r heating; see Appendix B for details).
& = & ﬁHOMO2 (3.4a) In a more compact way we may write€ as follows,
MY T ) o0 A€ p(R,a)E(a) — p(R,pole) E(pole)
= + 5 e M — /R Q(R)dR. (3.4b) 513 (R, o) L(@)2(a) - (3.6)

At the base, wherein the kinetic energy of the outflow is negvidently, A€ /2\? represents the variation across the flow of
ligible, Eq. (3.4a) shows that the polar energy has basically tiee total volumetric energy in units of the volumetric energy
terms: the gravitational energy and the initial input of thermaf the magnetic rotator. Therefore, the signf determines
energy in the form of enthalpy. On the other hand, at infinitywhether there is a deficit of energy per unit volume (and not per
Eq. (3.4b), the conserved polar specific energy is composedioft mass) along the polar streamline as compared to the other
the final kinetic energy along the polar axis and the terminsireamlines (casA& > 0) or an excess of energy in the polar
enthalpy minus the additional extra heating which the flow hatreamline as compared to the other nonpolar streamlines (case
received during its propagation froR), to infinity. AE < 0).

Note that if the wind is cylindrically collimated{/.., G Furthermore A€ /2)? can be expressed (see Appendix B
andIl, have finite values. In all other caséd,, andG., may for more comments) in terms of the conditions at the source
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boundaryR, where the cylindrical radius is, (), the escape explicit In TTS97 the generalized Bernoulli integral has indeed

speedV,,..., the polar density,(pole) and the density at any a form similar to Eq. (3.2), but the two constaftandA¢ are

other streamling, («): not related to each other as in Eqgs. (3.3), because the spherically
symmetric part of the pressure is not related to the corresponding

QATi _A [po(Epoy“tZ +EER"° + 1o+ Bgo)] , (3.7a) nonspherical part. For this reason, it was impossible to find

(PEyR)o a relationship betwee® and p of the form of Eq. (3.9) and

whereA (pEnr ), is the variation of the energy of the magnetitherefore any convenient form of the Bernoulli integral.

rotator, A(pEpoynt.)o IS the variation of the Poynting energy,  With this in mind, we can eliminate from the expressions of

A(pER), is the variation of the rotational energy at the basé€,and A€ in (Egs. 3.3) the inconvenient enthalpy and heating

A(pEg), Is the variation of the volumetric gravitational energyerms (Paper 1ll) by defining the new constant

atthe base andl(ph), is the variation of the volumetric thermal6 — AE — kE. (3.10)

flux at the base, respectively,

Now this quantitye, in addition of being a constant fall

A(pEpoynt)o = po(a) Epoynt,o() streamlines,
= po()(QL — ), @70) oy M* (5 = k)P
A(pER)o = po(@)ER,o(a) ‘T @RrRz|2 ) "e* T R
V2 w202 2 2 2\ 2 2
= () e — () Fo 7 A2 (M2 -G 1-G
po(a) =5~ = pola) —5—, (3.7¢) +55 (1_W +2x21 e (3.11)
GM
A(pEa)o = === [po(a) = po(pole)] , (3.7d) ' can be calculated priori from the conditions at the base of the
r ¢ outflow, without a need to know the total input of heating along
A(ph), = ﬁ[Po(a) — P,(pole)], (3.7e) eachline.

Acarefullook at Eq. (3.11) shows that all the transverse vari-
AlpEyr)o = po()Enr(a) = po(a)L(e)Ua) . B0 605 of the total energy, simply reproducing, within a scaling
In this notation, A always denotes a variation across the fieldactor «, the effect of thermally driven winds along the pole
lines at a given radial distanc®, i.e. Ay = y(R,a) — (EQq.3.4), have been removed (see Eq. B.7 in Appendix B).
y(R, pole) for every functiony(R, «). In fact, comparing Eq. (3.11) to Eq.(3.3b), we see that
In Eq. (3.7a) note that (see also Egs. 2.5) contains the same terms A€ except the heat content, but with
two extra terms proportional te. Thefirst of these two terms
Epoynt..o + Fr.o = Evr = ER,o > 0. (38) (kM*/G*) represents simply the transverse variation of the heat
The Poynting flux plus the rotational energy is simply the energgntent which is converted into kinetic energy in a thermally
of the magnetic rotator minus the rotational energy. This lagtiven wind, as seen by Eq. (3.5). Theconderm (s%/R) is
form is the one used in Paper lII. In other words, and even in tHee variation with the latitude of the thermal energy which along
slow magnetic rotator limit, the rotational energy never exceelie pole supports the plasma against gravity.
the energy of the magnetic rotator. Let us assume for a mometit= « > 0, such that the
enthalpy and the temperature °/p) are spherically symmet-
ric. Since the pressure is larger on a nonpolar streamline, we
have higher heating ratg there: the extra heating converted
into kinetic energy issM*/G* (Eq. 3.5). In the total energy
At this point we inevitably note that and A€ are two incon- Vvariation budget it represents the efficiency of thermal confine-
venient constants because their absolute values depend ormthst. Therefore it must be removed from the energy variation
integration of the total heating supply and so they can be evil-order to form the constamat The same holds i < 0 except
uated only after the problem has been solved and the requitkat thisx term will tend to decollimate the outflow.
heating can be calculated. However these two constants are reNow, if x = 0 andd > 0 we see that there is an excess of
lated to each other. In fact, the last two terms in the expressiorgoévitational potentiat-d1/ R because the plasma is heavier
A¢£ in Eq. (3.3b), which correspond to the transverse variations a nonpolar streamline. In order to achieve equilibrium, part
of enthalpy and heating, are identical to the last two ternts ofof the Poynting flux and part of the centrifugal energy must com-
within a factor ofx. Evidently, this is due to the assumptions opensate this term. This reduces the energy available for magnetic
the pressure and density distribution, Egs. (2.3a,d). These wnfinement. I§ > «, we need to correct the previous argument
tial assumptions imply the existence ofiamplicit relationship because part of the weight of the plasma is supported on a non
between the latitudinally normalized pressure and density, polar streamline by an increase of the pressure gradient. This
PR R compensation is exactly? / R. Thus the term-(6—x)v? / Ris
(R, o) 140 [p( ) 1} . (3.9) the effective increase of the gravitational potential that must be
P(R,0) 0 Lp(R,0) compensated by some non thermal drivers, the magnetic driver
The situation is akin to the more familiar polytropic ansatfor instance. It reduces the efficiency of the magnetic rotator to
although there the relationship between pressure and densityalimate the flow. Similar arguments holddf< 0 or § < k.

3.2. Energetic definition
of Efficient/Inefficient Magnetic Rotators
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As in Egs. (3.7) let us expresg2)\? in terms of the condi- In a thermally driven wind, all thermal input (internal en-
tions at the source boundary(assuming again that the velocitythalpy plus external heating provided along the flow) is not
is negligible there, see Appendix B for details of the derivatiomecessarily fully converted into other forms of energy, unless

N the terminal temperature is exactly zero. There always remains
& _ Eroynt.o —;ER’O +AEG , (3.12a) some asymptotic thermal content in the form of enthalpy. Con-
MR versely, we can define the heat content that is really used by the
whereEpqy,:. andEg , have been already defineE¢, is the  flow by defining theconverted enthalpy
excess or the deficit on a nonpolar streamline compared to the
polar one of the gravitational energy (per unit mass) which hr, A) = h(r, A) + ©;°(A) — h(oo, A) . (3.139)
not compensated by the thermal driving,

Along a fieldline4 and some radius, the converted enthalpy
gM To(a) | = GM (0 —k)a 3.12b is simply the sum of the enthalpy of the gas at this point and the
[ - To(pole)] Ty, 146a (3-12b)  external heat which it will receive on its way to infinityge (A)

(Eqg. 2.2b), minus the enthalpy that will still remain in the gas
It is indeed the term proportional t@ — x)v* in Eq.(3.11) asymptotically. Note that in the polytropic case this converted
and the symbolA keeps the same meaning as previously (se@thalpy is simply the variation along the flow of the effective
Appendix B). enthalpyh, — hoo, where the adiabatic indéXis replaced by
It is worth to remark that this corrected gravitational terrgome effectivey < I', as explained in Paper Ill. Then we can

plays an important role in thermally accelerating the floyefine a constant along each streamline
(Tsinganos & Vlastou 1988; Paper I) because it is proportional

to the relative variation of the temperature. We know from preg 4) — Ly Lye GM &wa s (3.13b)
vious numerical studies th&@k — ¢) ought to be negative in 2P 27 Uy

order that we have efficient initial acceleration along the polgfie may also redefine the variation across fieldlines of the volu-
axis. This amounts to say that the temperature along the pPQlliric energy normalized with the energy of the magnetic rota-
axis must be larger than the temperature along a non polar ligg. 1yt including the converted enthalpy which will indeed be

Then, the corrected gravitational term in Eq. (3.12a) is alwaM§ed by the flow, instead of the enthalpy. In other words, we may

negative such that it must be compensated with part of the initigdfiye 3 new quantity in the way we defined\& in Eq. (3.7a)
input of the magnetocentrifugal terms (Poynting and rotationg)),; using the converted enthalpy instead of the enthalpy,
at the base of the flow.

AE} = —

To

Hence,c > 0 means that the magnetocentrifugal terms are’  p(R, a)E(a) — p(R, pole) E(pole) 314
dominating the variation of gravity and that there is some energy2 — p(R, o) L(a)Q(a) ) (3.143)
left from the magnetic rotator to collimate the wind. While:

0 means that the magnetic rotator cannot collimate the win@us we have at the base
by itself. Of course the collimating gfflClency of the magnetic ) A [po(Epoynt._o 4 Bry+ o+ B 0)}
rotator may be eventually lowered if there is further pressuré _ ’ ’ ’ (3.14b)

gradient acting outwards in the wind  0) bute/2)2 really 22 A(pEMR)o

?hueaggrllier:atlzg:gglt?lzl ;g\f/ngth of the magnetic otator to SlJppc\/)\/rtt'1ere all the terms have the same meaning as in Eq. (3.7a)

. . . , except the transverse variation of the total converted enthal
As a conclusion of this subsection, we may definéna$- P Py

ficient Magnetic Rotators (IMR) the magnetic rotators which of the flow which is simply

are not able to confine the flow through magnetic process&@l)}})o - po(a)fzo(a) _ po(pole)fzo(pole). (3.14c)
alone and have < 0. Conversely we shall caltfficient Mag-

netic Rotators (EMR) the magnetic rotators potentially able toNVorking out this definition together with Egs. (3.7), (3.3) and
magnetically confine the flow and which have- 0. We shall (B.5.), we find the following relation

further illustrate this definition at the end of the next subsec-

tion. Within this definition the classic&@low Magnetic Rota-

tors (SMR) andFast Magnetic Rotators (FMR) correspond ¢ = AE — &
respectively to (IMR) and (EMR) but only in the limit where all

other energies are distributed in a spherically symmetric manRel < / is simply the difference of\E and the total heat con-
atthe source base. tent of the flow at infinity. As a consequence, in our model

is a constant which can be evaluategriori at anyr using
3.3. Energetic criterion for cylindrical collimation Eq. (3.15). In the particular case of a flow which is asymptoti-

The collimation of an outflow can be either of magnetic, or ojsg?/u?tlggd;ﬁzp%;; lilr:n;a;?rggngf )(,C;hgqpsarsa?be_tgrlcsa)n be

thermal origin. In the following, we discuss how to measure the

distribution of the thermal content along and across the flow’ (M2 — G?%)? G% -1

before reaching some conclusions on the collimation itself. 532 — 2G2_ (M2, — 1)2 T M2 —1° (3.16)

M M2 + /1/ Q(R)dR. (3.15)
F - 1 RO
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Note that now ire’ there are left only the magnetocentrifugaln the asymptotic regime, the centrifugdl), magnetic § )
terms: variation of the azimuthal kinetic energy and Poyntirand gas pressure gradieift{) forces have the familiar expres-
flux. The important result is that this new parameter is alwagfons,
positive in a cylindrical jet, if the jet is asymptotically super-

2

Alfv énic, M., > 1, and transalf&nic so the asymptotic radiusg., — %@’ (4.2a)

is larger than the Alfén radius,G., > 1. In other wordsa w

necessary condition for achieving cylindrical collimation is tha d Bf, Bf, .

/ B=—|7—|= w, (4.2b)

e > 0. dw \ 87 4o

The criterion for cylindrical collimation is thus explicitly dp

equivalent to the criterion given in Paper I, except that now wep = _d—fz . (4.2c)

(v

have included the thermal contributions: cylindrical collimation
can be achieved only if there is an excess of energy on a rdorour notation, they can be written as,
polar line compared to the polar one. However, it is not the

.. . . V2 /\2 M2 _ G2 2
variation across the lines of the total thermal energy input thfg _ Py < oo oo) Jag (4.3a)
enters in the definition of the criterion, but the variation of the re GIMZ \ MZ -1 ’
thermal energy that s effectively converted into some other form V22 (G2 1 2
of energy between the base and the asymptotics (Eq.3.13).f5 = —— — e (MOQO — 1) Vai, (4.3b)
Two contributions may arise to give a positive value dor - y e
either because the energy of the magnetic rotator dominatesgas — _%nﬂi\/&% ) (4.3¢c)
in Paper lll, or because the thermal contribution converted to re  Goo
non thermal energy in the flow is higher outside the polar axigote that always the centrifugal force acts outwards while the
This last point may be better realized if we note that total magnetic force (pinching plus pressure) inwards. On the
. V2 other hand, the last term (not appearing in the Paper Il study) is
d=ec+r v (3-17)  the pressure gradient that acts outwards if the floowirpres-

o o o _ sured(x < 0, i.e. the pressure decreases away from the axis).
Thus, €’ splits into two parts. The firstiswhich is essentially |, this case the jet is necessarily magnetically confined but ei-
positive when the energy of the magnetic rotator dominates (388 centrifugally supported or pressure supported. Conversely,
Paper Ill and the previous subsection). The second correspoggSpressure gradient acts inwards if the flowriglerpressured
to the variation With_ colgtitude of the thermal energy that h"{lg > 0, i.e. the pressure increases away from the axis). In this
been converted to kinetic energy (see Eqgs. 3.5 and 3.4¢).  age the flow is centrifugally supported but may be either mag-
Altogether, there are two ways to have> 0: netically confined or pressure confined.

Either, when the outflow is magnetically dominated, which By combining the asymptotic transverse force balance
means that is positive and< may be either positive (which (Egs. 4.1-4.3),

adds some extra pressure confinement), or negative (which cor-

responds to pressure support of the jet) within some limits. 1 M2 - G% 2 1 G% —1 2
Or, conversely, when there is a significant contribution of the o2 372 ( M2 —1 ) G2 (Mz_1>
variation of the enthalpy+heating term that is converted into o,: - OO °° -

kinetic poloidal energy, therV2 /V? is large enough which +ﬁnw =0, (4.42)
impliesx > 0whilee may be negative. This does not necessari
implies that the flow is pressure confined as we shall see lat

(l\&jth the expression of calculated at infinity (Eq. 3.11)

€ _ K M2 1
4. Asymptotic confinement 202 T 2X2 G4, + (M2 —1)?

We proceed now towards an asymptotic analysis of the equations 5 {(Mgo - G’ +(G% —1)(M2%2 —1)| , (4.4b)
of motion, in particular in the case of cylindrical collimation. 2G3, - - ’

we obtain the asymptotic jet radius and Affvnumber as func-
4.1. Asymptotic equilibrium tions of the parameterg2)?, x/2)? and the asymptotic pres-
in cylindrically collimated outflows surell,,. Plots of the resulting values 6f.,, M, and the axial

S . L terminal speed’,. / V. vs.e/2\? for four representative values
e e arpany O/ (0 001, 0. and 1) ae shown i Figs 13, each o
) 9 P these panels the values 6f,,, M., andV,, are plotted for a

of the momentum equation or, equivalently by expressing force 9
balance across the cylindrical fieldlines, we obtain the contﬁ?—nge of values of the pressure paramejex\” between-0.1

tion of MHD equilibrium in the cylindrical radius directioty andl(r)1.1 \;Vrr;ﬁgl I\?vt;e;fgg clté)rtv((asi. AP, M. and Vi /V, vs
expressed by the equation, P P 9. Hroc, Moo oo Tk

€' /2)% using Eqg.(3.17) to determin€/2)2. Note that (see
fc+fs+fpr=0. (4.1) Egs.4.4)G., M, andV,,/V. depend only on’/2)\? and
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Fig. 1a—d. Plots of the asymptotic cylindrical radius normalized to the cylindrical radius at théburfaces 1 vs.e¢/2)? for various values

of the final pressure: 1 = 0 (panela), = 0.01 (panelb), = 0.1 (panelc) and= 1 (paneld). Each curve is drawn for a constant value of
x/2)? between—0.1 and0.1 which labels the curve. On the left of the dotted line is the domain of pressure confined jets while on the right of
the dashed line is the domain of pressure supported jets and in between is the domain of magnetocentrifugal jets.

kIl /2)2. So conversely to Figs.1-3 where each curve #2.1. Spherically symmetric pressuke= 0

drawn for given values ofl,, andx/2\? independently, the

curves of Fig. 4 are drawn for a constant and unique value Jj€ Pressure is everywhere spherically symmetric. The termi-
kIl /2A2 which labels the curve. In Fig.5 we make an exdal value of the pressure does not affect the asymptotic equi-

plicit comparison of the ploG« vs. ¢/2)? of Fig. 1a and the librium in the jet, regardless if it is finitell, #+ 0) or zero
corresponding CUrVE' . (¢' /202) for kIl /2A% = 0. (I, = 0). This situation corresponds to the thick solid curve

labeled 0 in Figs. 1-3. This special and simplest case has been
In these plots we may find three different regimes for theready discussed in detail in Paper Il where it was found that

asymptotic state of the collimated outflow according to the vate outflow collimates into a cylindrical jet only far > 0,

ious confinement and support conditions across the jet. because in this case = ¢. For a given), if the flow re-
mains superAlfenic, M, > 1, an upper limit exists foe. For
€/20% — €max /202 = (2 — V/2) &~ 0.586, thenM,, — 1

4.2. Magnetocentrifugal jets witfe = | f5| andG? — 1 (see Figs. 1 and 2). Asdecreases fromy,,. the
jet'sradius, Alien number and terminal speed increase. Finally,

This is the case when the pressure gradient is exactlyfzere  @s€ — 0, Goo —> 00, Mo — 00 andVe — oco. The

0 i.e., the pinching magnetic force is balanced by the inertigireamlines become conical and the asymptotic speed diverges.

(Centrifugaj) force alone. The two f0||owing cases Corresporwp collimated solutions at all exist fer< 0, as is evident from

to this situation. the plots.
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Fig. 2a—d. Plots of the asymptotic Alfén numbeM 1 vs.¢/2)\? for the same values of 1. andx/2)? as in Fig. 1. On the left of the dotted
line is the domain of pressure confined jets while on the right of the dashed line is the domain of pressure supported jets, in between is the
domain of magnetocentrifugal jets (except for a small overlap around the dashed line dfpanel

4.2.2. Vanishing asymptotic pressurg,, = 0 This is identical to Egs. (5.13) and (5.14) in Paper Il with
replacinge.

The asymptotic gas pressure is zero such that we have again . )

fp = 0, even though: # 0. This is the case shown in Figs. 1a— However, even withe < 0, we havee’ > 0 provided

3a where, besides the collimated solutions of the Paper |1l cdgat xVZ/V? is larger thanje|. In fact with Mo, > Goo

obtained fore > 0 andx = 0 (the thick solid branch), we (& Voo > V5), the ratioV2 /V? is large and positive and can

have now collimated solutions for practically all valuesepf compensate all negative values efren for small values of. In

— 00 < € < +oo. More specifically, collimated solutions arghis way, evenas — —oo, ¢’ > 0 and collimated solutions are

found to the left of the thick solid branch far> 0 (mainly for Obtained, albeit with rather large radi. In physical terms,
¢ < 0) and to the right of the thick solid branch fer< 0. this corresponds to a situation where the central source is an
IMR and cannot collimate the flow through magnetic processes

A". branc_he_s converge for po_sm\eeand smallo tovyar_ds alone. Neverthelesgistitis possible that the conversion of ther-
the thick solid line. Physically this corresponds to the limit (see

. o . SO
Egs. 4.4b and 3.17) whereV’2 /V2 becomes negligible and mal energy into kinetic energy is very efficiehi, /G, > 1.

. C ool . §e|condit can be more efficient on a non polar streamline than
the magnetocentrifugal collimation arises because of the cenffaly o Dolar one if there is more thermal eneray in the nonpolar
EMR as in Paper lll{’ ~ €). Thus we can compare Figs. la— b 9y b

9 ; streamlines than in the polar one$ 0). In this case then as the
%a ‘{tge Gselag\e; C;r:\é??(/”(\je _er? doofnllzlgjr';l r?;r?weib. As flow expands it will build up pressure gradients that will force
eo T T e TR0 oo/ Vx UEP y o, y the lines to bent towards the axis. Once the thermal energy is

converted into kinetic energy and the pressure is becoming neg-
V3 {2)\2 } o 4)\2 [2/\2/5’ - 1] 45) ligible the magnetocentrifugal forces will dominate. However

Moo = o 1 AN [e —1 the collimation is obviously less efficient (largét.) than that

6/
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Fig. 3a—d. Plots of the asymptotic axial velocity normalized to the polar AtfwelocityV4 /V vs. ¢/2\? for the same values of 1 and
x/2)? as in Fig. 1. The domain of pressure confined jets is clearly on the left side of the dotted line and the magnetocentrifugal one in between
the dotted and dashed line. However the pressure supported domain overlaps the magnetocentrifugal one.

produced by a central EMR (Fig. 1a). Therefore, this excessaffthe branches correspond to efficient conversion of thermal
thermal energy induces the collimated character of the solutiemergy into polar acceleration but with a deficit along non po-
through the energy integral, even though the corresponding pries-ines. It induces a more drastic conversion of the Poynting
sure forcefp does not enter directly into the asymptotic forclux into acceleration along non polar lines thus reducing the
balance condition. The term “magnetocentrifugal confinemerdfficiency of the collimation (Fig. 1, larger) despite the fact
can be used for alle/2)?, k/2A?) values of Figs. la—-3a. that the central object is an EMR £ 0).

H !/
re uFi(:erzg ; 20:2 o;sggr:i(l(fﬁgsi; 0. Iargi;\slzlulis ?f :irceal This is illustrated in Fig. 5 where the asymptotic cylindrical
q ’ P pte= - phy radiusG . is plotted versus/2\? ande’ /2\? for variouss /2)?

terms this is so because now the_re isa def_|C|t of thermal ene%ﬂm _ 0. The higher value o6, corresponds to a higher
along the nonpolar streamlines in comparison to the polar one . ) . .

- . onversion of thermal energy that decollimates the wind which
and therefore the star has to be a more efficient magnetic rota

r .
(larger values ot > 0) in order to have a collimated outflow.'qualanced by a strong EMR as we explained. For some value

! 2 2 T
This trend is shown by the grey branches to the right of the thigli Gair_o: \;Iﬁ‘e/? (/) Z*a;]\éve ;ﬁ?cﬂnhi\t/:easa?;exi\ﬁ;;fﬁrﬁoe z)a:me
solid branch corresponding to= 0 (Figs. 1a—3a). P " PP y

magnitude but opposite sign (see Fig. 5, points 1 and 2).
Note that forx > 0, for each value of/2)? there exists a

single value of7., M., andV,,. On the other hand fot < 0, Note that a situation witil,, = 0 corresponds to very
more values o7, M, andV,, correspond to the same valuespecific initial conditions of integration that may not be easily
of e. However the lower value af7 . is practically coincident fulfilled for a cylindrically collimated flow. In particulall.,, =
with that ofx = 0: in other words, thermal decollimation is neg9 would imply 7., = 0 and the existence of some efficient
ligible, similarly to the case = 0 ande’ ~ ¢. The upper values cooling.
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'19;?,'7 % 4.3. Magnetocentrifugal jets witf ~ | fz|

100
b
'
=
Q

10° a) In addition to the case wherelil,, = 0 shown in Figs. 1a—3a,
where we have aexactmagnetocentrifugal equilibrium every-
where, approximate magnetocentrifugal equilibrium conditions
also exist foll., #+ 0. This is shown in Figs. 1b—d, 2b—d, 3b—d
and 4, in a region adjacent to the thick solid curve obtained for
k = 0, between the dashed and the dotted lines.

10"

00
10

4.3.1. Underpressured jets,> 0

Following a branch of > 0 on the left side of the limiting
curvex = 0, we see from the plots of the various forces shown
in Fig. 6, that as;/2)\? decreases the magnetic confinement of
the jet is replaced by a pressure confinement, as expected. This
transition from magnetic confinement to pressure confinement
can be found by writingp = f5, orequivalently| fg| = fc /2
which gives
9 M2 +2My

G2, = Ty (4.6)
By inserting this relation in Eq. (4.4b), we obtain the dot-
ted line of Figs. 1-4. Thus, for some finite valueldf,, for
each positive value of/2)?, there exists a single value of
€/2)\? = ep_p/2)\? located on the dotted line where there
is an equal contribution by the magnetic and gas pressure forces
in confining the jet against the outwards inertial (centrifugal)
force. On the left side of the dotted line the jet enters the regime
of gas pressure confinement, which we shall further discuss in
the next subsection.

We note that the limit between the two confinement regimes
is close to the maximum of the cylindrical radids,, as a func-
tion of ¢/2)2, for each value of/2)\? (Figs. 1b—1d). The limit
is also very close to the minimum value th§t2\? can achieve
for a given value ofc/2\? (Fig. 4o, thick solid lines). On the
other hand )/, andV,, are monotonic functions @f/2)2.

This maximum radius of the jet can be calculated formally

104 10°
T

1000

oo

00

1

10

10*

1000

i* _ from Eq. (4.4b),
8 2M? 4MS — 11MA +10M2, — 3
- G2 2Ma+ VA B S
AMA —3M2 +1
°F which can be combined with Eq. (4.4a) to give the radius as a
function of the parameterg2)?, r/2A? andIl..
It is interesting to note that, in the limit of large An
- numbers {/., > 1) the two values o7, given by Egs. (4.6)
. and (4.7) coincide and to first order we have
. o . . M A2\ V8
Fig. 4. Plots of the asymptotic cylindrical radius (pane), Alfvén (2 o, 2= ( ) ) (4.8a)
number (paneB) and axial velocity (panef) vs.€'/2A%. G4 andVa. 2 8klloo

are normalized to the cylindrical radius and the polar Aifwelocity Then the asymptotic velocity along the polar axis is (see
at the Alfvén surface, respectively. Each curve is drawn for a const@a 3.4c)

value ofs 1 /2% (andnot x/2)?) between-0.1 and0.1 which la-

bels the curve. Curves labeled witlcorrespond to all curves of panelsy/ 82 1/3 Q(pole)r,
(a) in Figs. 1-3, curves labeled with an even power of 10 correspo ~ ( I ) ;A= v,

: X . e Kklloo #
to curves drawn in panels (c) of Figs. 1-3, while curves labeled with . ] )
an odd power of 10 correspond to curves drawn in panels (b) and {d)e terminal speed has the same dependence on the dimension-
of Figs. 1-3. less rotational speed with Michel's minimum energy solu-
tion for cold magnetic rotators whereif,, /V, = \?/3. In the

(4.8b)
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Fig. 5a and b. Comparison of the plots of the asymptotic cylindrical radius normalized to the cylindrical radius at tiée Alfrface 1 vs.
€/2)% (panela) and vs.<'/2)? (panel b). Each curves on the left paaeire drawn for a constant value 2% which labels the curve. Al
these curves correspond to a unique curve on the right pavedause they all have the same vatues /2)% = 0. We see that for each value
of €/2)?, we can find the same value f6f1 for a pair of values of/2)\? andx/2X? which have approximately the same magnitude but
opposite sign (points 1 and 2).

present case however, the asymptotic speed is enhanced byith¢éhis domain the curves of the jet radigs,, and Alfvén
factor[8/xT1.,]'/3. For small values of andIl,,, of the order numberM,,, are monotonic withe/2X?). We remark that the
of 1, this is indeed a rather large enhancement. This increasadve of maximum velocitydashed line) also corresponds to
terminal speed simply reflects the transformation to asymptotie minimum value o’ /2)\? for a given value of;/2)?, in the
kinetic energy of the enthalpy and added thermal energies. Nieit of large Alfvén number (see Figa4thin solid lines).

also thatwhenl,, — 0, Voo — oo. Thisis expected andthe  For G, > 1 we have from Egs. (4.10):

situation is similar to the radial outflow studied in Tsinganos &

3
Trussoni (1991) where the terminal speed is Voo o (2 Y (4.12)
V. V* Max |I€|H°° 7 .
oo 2 1/3
v. 6 (A R) " (4.9) i.e. the same scaling law with|/2A? andIl,, holds for the

maximum velocity as for the asymptotic velocity at maximum
4.3.2. Overpressured jets,< 0 radius forx > 0 (Eq. 4.8D).

The regime of magnetocentrifugal equilibrium extends also &03 3

the right of the thick solid lines = 0 and up to the dashed line™>"2-¢P—B < € < €P—C

in Figs. 1 and 2. Beyond this line the jet enters in the regime pf the intermediate region bounded by the two curvgs g

gas pressure support which we shall discuss later. andep_c, the jet is magnetocentrifugal. Solutions very close
Following a branch of < 0 on the right side of the limit- to the thick solid line correspond to an efficient collimation by

ing curvex = 0, Fig. 7 illustrates how the centrifugal force dethe EMR with negligible thermal contributions, as we already

creases and is progressively dominated by the pressure gradiistussed. For small values@f,, (e.g., Figs. 1b—3b) this area

The transition from centrifugal support to pressure support carsurrounded by solutions with important thermal energy con-

be estimated by writingr = fc, or equivalently| fc| = fg/2 version but small asymptotic pressure gradients similar to the

which gives extended branches of Figs. 1a—3a. However, for larhgrthe

jets can be in magnetocentrifugal regime only for a narrow range

of values ofe/2)2, around the line: = 0 (see Figs. 1c-3c and

This relation can be combined with Eq. (4.4b) to give the dash18_3d: the region between the dotted and dashed lines shrinks

limiting line (Figs. 1-4) where/2)2 = ¢p_c /2)2. FOrGo > by increasingl.).
1 this limit coincides also approximately with the maximum of
the velocity on an assumed2)\? branch (Fig. 3), given by  4.4. Pressure confined jefs = | fp|

G2, = M. (4.10)

The more negative/2)\? becomes, the weaker are the magnetic
pinching forces (the less efficient is the magnetic rotator). Thus,
for e < ep_p (left of the dotted line on Figs. 1b—1d, 2b-2d, 3b-
+/G8, —8GS_ + 26G4, — 40G2 + 21| , 3d and 4) the magnetic pinching force has dropped to very

- 1
“// = 5z % (G4, —4G% +5 (4.11)

max




340 C. Sauty et al.: Nonradial and nonpolytropic astrophysical outflows. IV

'b) M= 0.01 1
1 Sb k/2%=0001

0.01

Forces / (aép*v*z/r*)
1073

107*
3 2
Forces / (oo, V,%/1,)

1078

—4 -3 -2 -1 0 1 2 1 2
s
cn,=0.1 ]
SE 2 3 E
K/2\"=0.001
1 £t
> f
_NQ
3 7
I 4
NG
[9]
(4]
. (] -
- o of - E
f E s ﬁ;/,/////‘////
AN : It

107°
—
Il

107°

¢/ 2\ €/ 22
Fig. 6a—d.Asymptotic transversal forces wg/2)? for a positive value of, x/2X? = 0.001: centrifugal force fc, solid line), magnetic force
(fB, dashed line) and pressure gradiefi,(dotted line). The asymptotic pressure is = 0 (panela), = 0.01 (panelb), = 0.1 (panelc) and
= 1 (paneld). The bullet marks the value of the centrifugal forfee for which fr = f5.

small values in comparison to the gas pressure f@ggesuch tained for vanishing terminal pressure with conical asymptotics
that now fp alone confines the jet against the inertial forcehereinG (¢ — —o0) — o (e.g., Fig. 1a — 3a).

(Fig. 6)._ The situgtioh is similar to the case of the prescribed \y,o may see the hydrodynamical limit as the most extreme
streamlines studied in TTS97 (> 0, in the upper branch of o Nevertheless, even with a non vanishing magnetic field, we
curves in the right panel of Fig. 1 in this paper). note that the more efficient is the pressure confinement of the
The asymptotic radius of the jet and its Ativ number are et (the more negative is/2)2) the larger is the gap between

sensitive to the nature of the asymptotic confinement. Thgy ya1ue of the jet radius ., obtained foil.. = 0 and the one
strongly depend on the value df., (e.g., Figs. 1-2). At the gptained foilT., >0 (Figs. Laand 1b), for agiven valuef2A2.
same time, the terminal spedd. /V. is almost independent r,q gitference is even larger when2)? takes small values.

of the value of the terminal gas pressife (€.9., Fig. 3) for |, g0y 3 case the magnetocentrifugal forces are very weak

. 5
strongly negative values ef 2\ . This can be understood from(Fig. 6) and the equilibrium is very sensitive to small changes
Eq. (4.4b) where we see that in the limit of negatiy@\? the in the pressure gradient

first term of the right hand side dominates and thus the square
of the terminal speed is roughly given by the rgtip'x.

Fore < ep_p we are basically entering the hydrodynamia@.5. Pressure supported jets wif ~ | /5|
regime studied in Paper I. In the limit ef — —oo and finite
asymptotic pressure, the jet is strongly pressure confined sitfis last case occurs when the centrifugal forces are negligible
thatG..(e — —o0) < 1 (cf. Figs. 1b-1d, 2b-2d, 3b—3d), i.e.j.e., the jet is confined by magnetic forces and is supported by
the solution becomes unphysical. As in Paper | we find thidie gas pressure gradient (for> ¢p_ ¢, right side of dashed
the most physically interesting hydrodynamic solution is olline, but only in Figs. 1b—d, 2b—d and
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Fig. 7a—d. The same as Fig. 6, for a negative valuexpfic/2)? = —0.001 but the magnetic forcefg) corresponds to the solid line, the

centrifugal force {¢) to the dashed one and the pressure gradignk o the dotted one. The bullet marks the value of the magnetic ffxce

for which fp = fc.

Now the inertial force has dropped to very small values itremains superAlfénic (we do not consider in the present anal-
comparison to the gas pressure gradient force suclfthalbne ysis “breeze” solutions that are always sub/&ifc).
supports the jet against the magnetic pinching force (see Fig. 7). By starting at(e/2\?), and moving in the opposite direc-
In this domain, for a given value @f/2)\2, the centrifugal force tion toward smaller values af/., and G, along the branch

exactly vanishes fol/,, = G (EQ.4.3a), wheV,, = V.. It k/2)\? = const < 0, the inertial force remains negligible in
simply states that a jet with zero asymptotic centrifugal forammparison to the gas pressure gradient, up to the dashed line
has no net acceleration between the &ff\surface and infinity. wherein we enter the magnetocentrifugal domain.
Atthis particular point /2)% = (¢/2)?), where the asymptotic
céentrn‘ugal force is exactly zero and, = V,, we obtain from 5. Oscillations in the jet's width
g. (4.4b),
¢ K The previous analysis giving the asymptotic equilibrium for
(QTQ)O toe =1 (4.13) confined jets can be pushed one step further to the first or-
der terms in the bending of the lines (Paper Ill, Vlahakis &
Sincer/2)\? is usually rather small, it follows thdt/2)\2?), ~ Tsinganos 1997, henceforth VT97). We also assume there that
1. There, we can say that the jet is exactly supported by the prie jet becomes asymptotically cylindrical. An expansiodzof
sure gas gradient alone. If we start@t2\?), and move toward andM can be made then to get an idea of the fluctuations that
larger values ot /2)?, along the branch /2)\? = const < 0, exist far from the region of the initial acceleration of the wind,
M, andG, increase, rotation changes sign (See Eq. A.3f) and2 )
the asymptotic velocity is less than the velocity at the aiiv G~ = Go.(1+7),
point (Fig. 3) which means thatthe outflow is decelerated though® = M2 (1 + u),

(5.1a)
(5.1b)
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Fig. 8a—d.Plots of the wavelength of the oscillations... in units ofr /X vs.e¢/2)? for the same values of 1 andx/2)? as in Figs. 1-3. On
the left of the dotted line is the domain of pressure confined jets while on the right of the dashed line is the domain of pressure supported jets
and in between is the domain of magnetocentrifugal jets.

whered, 1 < 1. Conversely to Paper Ill, we mustalso expand G2 M3 + G2 (1 —2M2)

the pressure as B A2 MY 2(1 - MZ)?
- = S ) (5.5)
9 K o2 (1-G%)
MI=M.(1+p). (5.2) N2 T (I M)
Thus we obtain the harmonic oscillator equation for the pdri0ts of the asymptotic wavelengtiy,.. vs. ,6/2)‘2 for four
turbed jet radius (see Appendix C for details): representative values @f., are shown in Fig.8. In each of
these plots, the values df,.. are plotted for the range of the
U+ (277, [Aose )29 = 0, (5.3) Pressure parametey2\? as in Figs. 1 to 3.

In the domain of magnetocentrifugal jets the wavelength be-
whereA,.. is the wavelength of the oscillations. We can writ@aviouris very similar to the one found in Paper Il as expedted.
the wavelength of the oscillations in the form of VT97, Eq. (28Jn the case ok = 0 studied in Paper Ill, Eq. (5.4) takes the very

namely simple form (Vlahakis, private communication)
2 4\
27Ty 2 _ L 277y [Nose.)” = m (5.6)
Aosc. (1-MZ)?

1 In Fig. 3 of Paper lIl, the plot of the wavelength in the region
(5.4) whereM 4 is close to one has to be corrected, due to the presence of
a M3 at the denominator of Eq. (5.23) that should be replaced by a
M2 . Fortunately this change does not affect the curve in the region of
with in the present case astrophysical interest, mainly fa 1 > 1.

2 4 s
¥ MZ(1-M2)
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In the domain of pressure confined jets (which corresponds aheref, is a constant (TTS97, Paper Il1). By substituting these
ways to underpressured jets, > 0), the wavelength of the expressions in the definition of the integeadf Eq. (3.11) and
oscillations behaves like the A number despite of the dekeeping the dominant terms we get
crease of the cylindrical radius. In particular, as the rotator slows 9 o

5 X ) € 1 Vi —F5 /4 Vi
down (/2)\* decreasing) the wavelength increases very slow% = +

s |h e | e
Nevertheless in the limit/2\? — —oo where we enter the 2V R5> foo ln (R) Voo
hydrodynamic regime the wavelength must eventually diverge. foIn®(R) (0 Vi 6.3)
The similarity of the curves of Figs.2 and 8 on logarithmic 2R2—Foo V) '

scales, which reflects the similar behaviouridf, and Ay, .
. : o Assumingx # 0, Eq. (6.3) shows clearly a rather general re-
can be easily understood in the limit of large valued/ff and ) : . : AR . .
sult: a diverging asymptotic velocity is inconsistent with the

Voo /V.e. In this limit — which is by the way expected to be theconstancy ot. The cylindrical radius and Alen number may

case for most observed jets — we get that the wavelength is Jt'i'étunbounded but the terminal flow speed cannot, no matter
H ~ 2 ] l
proportional to the square of the A#m numberAs. ~ M, . what is the exact value df,.. This is also in agreement with

Note also that, if the wavelength of the (.)SC'”atlonS can be rt(:f'fe fact that the fraction of the heating term converted to kinetic
lated to the observed morphology of the jets, we may have here

an indirect estimate of the magnitude of the poloidal Alv energy and>_< x cannot diverge (see Secft. 3.1). _
number. Further insight in the general behaviour of the asymptotics

. . . can be gained by considering the dominant terms in the trans-
For overpressured jets (< 0), the behaviour of\.. is g y 9

- . ; verse momentum ion which giv relation for the pres-
similarly following the increase of the Alen number as the erse momentum equatio ch gives a relation for the pres

) . r Eqg. A.4c in Appendix A
pressure becomes more important, but as it enters the domsalljlne (see Eq ¢ ppendix A),

of pressure supported jets after the maximum velocity, the os- kKII(R — c0) V2 In°(R)
cillations disappear. In fact in this last case we can see thatthe ~ 2)2 - TP V2 R Fe

pressure gradient supporting the jet cannot restore equ"ibm’l‘ﬁe first conclusion from this relation is that the asymptotic

against the confining magnetic pinch. This could imply that t'beressure must vanish because the r.h.s. term (due to the magne-

solutions of thls_clas_s are unstablg. . . . . tocentrifugal terms) always vanishes for non cylindrically col-
We must notice finally that oscillations in collimated wind$,ated outflows.

are quite ageneral result, not restricted to our class of meridional 5 secondconclusion is thatindependently of the value of

self-similar solutions. In fact oscillating structures have be%p underpressured flows:(> 0) must be cylindrically colli-

found not only in other self-similar flows (Chan & Henrikseny, 5te4 as found in Sect. 4. This can be explained taking into
1980, Bacciotti & Chiuderi 1992, Del Zanna & Chiuderi 1996, nt that, when the streamlines try to expand, then pinching

Contopoulos & Lovelace 1994, Contopoulos 1995, VT98), by, 14t magnetic forces and pressure gradient will dominate

alsoin more general analyses of axisymmetric outflows (see ey 4|l other forces (Eq. 6.4). To maintain the forces equilib-

Pelletier & Pudritz 1992). rium a strong bending of the lines towards the axis is required,
RdF/dR > 0, such that the system must relax towards a colli-
mated configuration. Then only overpressured outflows (0)

may be non collimated.

(6.4)

6. Asymptotic equilibrium for non collimated flows
6.1. Existence of asymptotically non collimated flows

If the flow is not cylindrical asymptotically, thefi,, musttake a 6.2. Asymptotically paraboloidal
value in the interval) < Fo < 2, with Fo = 0 corresponding or radial overpressured flows

to conical a;ymptotlcs. Assuming that this valuggf and the Assumingx < 0, we discuss separately the case of paraboloidal
corresponding shape may be achieved rather slowly, at Ia@e > 0) and radial asymptotics,, — 0)
distancesR from the central object the analytic expression of ~ '
F(R) can be written as
6.2.1. Paraboloidal asymptotics,, > 0

n—oo
F(R—o0)=Fo + —— + Z Ln (6.1) Independently on the value of Eq. (6.3) further simplifies as
InR R»
n=1 follows
2
wherec andc,, are constants. AR — oo the dominant term LQ — ﬁLL@; + Vi , (6.5)
is the logarithmic one and thus we may keep only this term 700 202V Voo

the expansion, such that from Egs. (2.6) and (3.4c) we obtaiwhich implies thaparaboloidal shapes can exist only for> 0.

R2F In other words, only overpressured outflows from an efficient

G2(R — 00) = N (6.2a) Magnetic rotator may eventually achieve a paraboloidal shape.
foo In(R) This can be physically understood because such a structure im-

2—Feo lies some collimation that can be achieved only through mag-

M2(R - o0) = 0~ Voo 6.20) © yHhrotigh mag

fooIn“(R) V, ’ netic forces in the present case.
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We remark that in the case= ¢ = 0 Eq. (6.5) can be ful-
filled only for diverging asymptotic velocity (Paper Il1). How-
ever, as we have seen before, such a case would require
infinite heating rate, so that such kind of solutions should |

considered as unphysical.

6.2.2. Radial asymptotic$,,, = 0

K/ 2\

Pressure confined Magnetically Confined

]

under-pressured——

If ¢ # 0, Eq. (6.5) and the previous remarks still hold. Eet 0,
Eq. (6.3) becomes

. 1 V2 1 V. IMR EMR
e = oy (M 7)o (¢ ’ i’
and radial asymptotics can exsfpriori for both negative and
positive values o¢.

This simple analysis shows that overpressured flaws ()
can attain only radial streamlines if they are IMR( 0), while E
they can have cylindrical, paraboloidal or radial asymptotics if
they are associated with an EMR* 0).

We point out finally a common feature for winds with No confinement
parabolic or radial asymptotics. From Eq. (6.4) we see that tem-
perature goes to a constant value along each fieldline

P 1,1+ ka ( 2)\2> V., = CYLINDRICAL Asymptotics

T — == 6.7
(B 00, a) o p QV* 1+ da Voo (6.7) E = RADIAL (i.e. CONICAL) Asymptotics

i.e. all uncollimated solutions are isothermal asymptotically.
This is consistent with the results of Tsinganos & Trussoni

(1991), who analyzed s_olutlons with prescribed radial 'strea,n_]@. 9. A sketch of the various confinement regimes and asymptotical
lines [F'(R) = 0]. More in general, we can expect that in NORhapes of the flow in the plane,[2X2, ¢/2)?]. The pressure confined
collimated outflows some heating is always necessary in gime corresponds to the area filled with dark grey while the magnet-
asymptotic regions. Conversely in a cylindrical jet, where theally confined regime corresponds to the light grey filled area. In the
pressure and density are constant, the temperature is also camaining area only uncollimated solutions are found.

stant but the heating rate in the flow vanishes (Eq. 3.1b,c).

[Rlerfp] el

-— over-pressured

K

E = PARABOLOIDAL Asymptotics

The absolute criterion for cylindrical collimation is given
by the sign of a combination of the two parametefa\? and
7.1. Summary of the main results €/2\2. This new parameter

We have presented here the asymptotic properties of supe‘f’_/%? is related to the variation across the streamlines of the
Alfv énic outflows which are self-similar in the meridional divarious energy contributions which govern the flow dynamics
rection. The terminal Alfén number)/.., the dimensionless (magnetocentrifugal, thermal, etc). Thus, a positive value of
asymptotic radius of the je§ ., and velocity,V,,/V, depend ¢ provides cylindrical asymptotics while negative values are
only on three parameters (see Egs. 4.4). Besides the termfgguired for having uncollimated flows.

pressurdl.., the two other crucial parameters are: Despite this simple criterion, the asymptotic behaviour of
« /22, connecting the radial and longitudinal components §f€ outflow still depends on the value of each parameter taken
the gradient of the gas pressure. Thus, the outflow can be eiffgparately as shown in Fig. 9 [see also Figs. (1-3)].
overpressuredk( < 0), or underpressured: (> 0) with respect eUnderpressured outflow&or x > 0 the wind always obtains

to the rotational axis. cylindrical asymptotics. The jet is supported by the centrifugal
e ¢/2)2, which measures the magnetic contribution to the cdrce, while collimation can be provided either by the magnetic
limation of the outflow. Thus, we may divide the sources dfinching or the gas pressure, depending and the value of the
outflows into two broad classeEfficient Magnetic Rotators asymptotic gas pressure,,. We repeat however that for IMR
(EMR) corresponding to positive values©dnd a strong mag- the state of asymptotic magnetic confinement can be achieved
netic contribution to collimation, anbhefficient Magnetic Ro- only through the strong pressure gradients occurring between
tators(IMR) which have negative and can collimate outflows
only with the help of the gas press@e.

7. Discussion and astrophysical implications

if the terminal pressure 4 is very small. However in such jets the gas
pressuralwaysplays a crucial role in the achievement of the final col-

2 This does not imply that collimated jets from IMR are asymptotiimation through strong pinching gradients in the intermediate region
cally pressure confined. They may be magnetically confined at infinligtween the base and infinity.
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the base of the flow and infinity. I, does not vanish, the jetof the IMR a gradual widening of its radius is expected. This
radius has a maximum when moving from the magnetic to thedening may reach a maximum value, wherein the magnetic
thermal regime (by reducing/2)?). and thermal contributions to the confinement are comparable.

eOverpressured outflowsVhenr < 0 the jet can be confined At this stage it is reasonable to expect a decrease of the asymp-
by the magnetic pinch only, and is supported either by the cdftic pressure because of this widening. At the same time, we
trifugal force or by the thermal pressure gradienttlif doesnot May have a more homogeneous flow, i.e., effectively a decrease
vanish, the jet terminal velocity has a maximum when movirff =- Thus, in the subsequent evolution of the central young star,
from the centrifugal to the thermal regime. Moreover, in ovelVe expect that the jet continues increasing its radius. Accord-
pressured outflows, cylindrical configurations are attained o} to this scenario, we can imagine an evolutionary track of
for values of /2A2 higher than some threshold depending on tige outflow along the maxima from Figs. 1d to Fig. 1b, wherein
pressure parameteﬂﬁm andx. Below this positive threshold thereisan equal contribution by the thermal and magnetiC forces
value the outflow reaches conical or paraboloidal asymptot@nfining the plasma. In this sequence, the terminal velocity al-
if ¢ > 0 (EMR) or only purely conical asymptotics if < 0 Ways increases, Figs. 3d to 3b,saand the asymptotic pressure
(IMR). IT., get lower and lower values. Finally, the outflow becomes a
Cylindrical collimation seems to be quite a natural end sta@osely collimated wind.
for superAlfienic outflows with non vanishing asymptotic pres-  In the above scenario, it is essential to have a decrease of
sure, as also found by other studies based on the radial seffdIlw during the evolution. Because, otherwise, we see that
similar approach (Li 1995, 1996, Ferreira 1997, Ostriker 19980 IMR (e < 0) together with a strongly underpressured plasma
or on the full asymptotic treatment of the MHD equations (Heyhigh xI1.) have the result to over collimate the wind with
vaerts & Norman 1989). However in the present case the c8i asymptotic radius comparable to its Afvradius. This re-
limation can be provided not only by the magnetic pinch, b§t!lt would be somehow in contradiction with the observed radii
also by the thermal pressure gradient. This is consistent w@ghoutflows from YSOs which are expected to be much larger
our self-similar scenario, suitable to model winds close to thélan the Alfién radius. Instead, we propose that both thermal
rotational axis, where the thermal effects are essential to dried magnetic confinement decrease simultaneously during the
the outflow. We also point out that our results are consistegiolution of the central source.
with those of TTS97, where again different collimation regimes However, jets from planetary nebulae (PN) may present a
can be found. Finally, we remark that cylindrically collimategotally different situation where the primary source of confine-
streamlines most of times undergo oscillations with differeftent is a strong pressure gradieril, > 0, associated with
wavelengths. a source which is a very inefficient magnetic rotator, although
with a non zero magnetic field. The terminal radii of jets from
PN are indeed observed to be rather small after some huge initial
widening (Frank 1998). We also note that our analysis favours a
As in Paper Il and TTS97, the present results could be partitydrodynamical origin of jets from PN similarly to the GWBB
ularly suitable to model the physical properties of collimategodel (cf. Mellema & Frank 1997, Frank 1998) and contrarily
outflows associated with Young Stellar Objects (YSO). Howe a pure magnetic origin of the refocusing of the wind.
ever, since here we have analyzed only the asymptotic propertiesThe analysis of overpressured jets is more complex at first
of winds, we will shortly discuss only a simple possible scenar@iiance as different regimes are possible for the sarhet us
based on the physical difference between EMR and IMR. first consider that the jet is initially quite narrow, centrifugally
Let us consider a rapidly rotating magnetized protostar at tépported and originates from an EMR,; i.e., it is on the lower
beginning of its evolution. In such conditions this object couldranches of the thin grey lines (< 0) of Figs. 1-3. As in the
be considered as an EMR, with a well collimated, magneticalyevious case, the rotation slows dowdécreases), the outflow
confined jet. At the same time the pressure inhomogenmejty rapidly opens and the velocity rises. However, below a threshold
and the asymptotic pressure may take rather high values dugabie ofe/2\? the flow becomes uncollimated (see Fig. 9).
the inhomogeneous and anisotropic environment in which the If, conversely, at the beginning the jet is pressure supported
jet is found. In the early phases of stellar evolution the outflofive., on the upper branches of the dotted lines in Figs. 1b—d, 2b—
extracts quite efficiently angular momentum from the protostat), the behaviour is quite ambiguous: a reduction or an increase
reducing its spinning rate. From the point of view of our modeif the jet radius and velocity critically depends on the initial
this means that the system moves from the state of an EMRctinditions (x|, asymptotic pressure, jet radius) when the star
that of an IMR as it lowers the value ef Of course the details starts slowing down its rotational rate. Then it is difficult to
of the evolution may be more complicated due to the feedingodel the possible evolution of a pressure supported jet. But,
of the wind by the surrounding accretion disk. Nevertheless tae we said previously, the absence of oscillations in this region
net end result should be a decrease of the spinning rate amay indicate that such equilibria are in fact unstable and never
subsequently of the efficiency of the magnetic rotator (Bouviattained practically.
etal. 1997). Itis evident from the above that the possible outflow evolu-
If the jet is initially underpressured, for example being emntion is critically related to its physical conditions, namely if it
bedded in a dense molecular cloud, as it approaches the regisnenderpressured or overpressured. In which of these regimes

7.2. Astrophysical application
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the outflow can be found depends on the detailed history of tie the Physics Department of the University of Crete for hospitality,
wind. We remind that the thermodynamic conditions across thed the Agenzia Spaziale Italiana for financial support.

jetin its asymptotic regime depend also on the assumed struc-

ture of density §) and the intensity of the gravitational field)( Appendix A

These two parameters do not enter in the present analysis, but

are essential for the thermal acceleration of the wind (see PapBg classical equations of ideal MHD steady flows are

_III and TTS97). Therefore th(_a next step in the pre_sent anqu%s. B=V-(pV)=Vx(VxB)=0, (A.1a)

is to make a careful parametric study of the numerical solutions
solving the set of Egs. (A.4). This is also demanded in orderﬁ?&v V)V —(B-V)B/4r

make a detailed compgrison with observational data and impIi'es: ~V(p+ B?/81) — g%er : (A.1b)
that we construct solutions that connect the base of the flow with r

the superAlfenic region fulfilling the regularity conditions at -, VPN

the critical points (Sauty et al., in preparation). In particular, ’|0V Vh o ) 4 (A.1c)

will be crucial to see whethgr or not all the asymptotic regimes o is the enthalpy of the perfect gasis the local volu-
presented here can be attained.

metric heating rate including true heating and coolifids the
gravitational constantM is the mass of the central object and
7.3. Future directions of study the other symbols have their usual meaning.

The present results have been obtained in the framework of Under the assumption of steady state and axisymmetry, the

a self-similar treatment of the axisymmetric MHD equation?.X'Stence of free integrals as defined in the main text gives the
sual forms for the poloidapj components of the magnetic field

This implies some ‘a priori’ constraints on the structure of th% and the velocityV”, using sphericali( 0, ) or cylindrical
) y P

solutions, that we summarize in the following. . ; i
The surfaces with the same A#fmic number are spherical(w’ . 2) coordinates (for details see Tsinganos 1982)

[M(R,0) = M(R)], with the velocity vanishing on the equato- VA Uy
rial plane. Furthermore the- andr— components of the gradi- =7 — o X €p, Vy= EP‘BP’ (A.2a)
ent of the gas pressure are linearly related. These assumptigAge the toroidal components are

are not too constraining if we consider our model as suitable L(A)YUA4 1 — w2 Q(A)/L(A)

to describe the physical properties of the flow around the rot&; = — , (A.2b)
. X ; : . w 1— M2
tional axis. We remind also that our results are consistent with
; L(A) @?Q(A)/L(A) — M?
those found in TTS97, where the two component¥ éf were V, = (A.2¢)

unrelated in a wind with prescribed cylindrical asymptotics. w 1—M? ’
Such limits of the present treatment could anyway be ovethere M is the poloidal Alfien Mach number as defined in

come by a different scaling of the physical variables with theg. (2.1).

colatitude. It has been shown in VT98 that the assumptions of Considering our assumptions, Egs. (2.3), we get that the

Egs. (2.3) are just a particular case of a more general clasg@fponents of the velocity and magnetic field reduce in our

solutions, with no vanishing velocity on the equator and witihodel to

a more complex expression for the pressure (another particular 1
case is the one studied in Lima et al. 1996; see also Vlahal#s = B*m cos b, (A.3a)
1998). In such a case the set of the MHD equations lead to a
closed system whose treatment does not require any furthergg — _ p, 1 F(R) siné, (A.3b)
priori’ assumption as the relation between the components of G*(R) 2
the pressure gradient (as in Paper Il and in the present stu%y) _ _B A 1-G*R) Rsing A3
or the prescription of the streamline shape (as in TT97). ¢ = T7*G2(R)1- M2(R) sinG, (A-3¢)
Finally, we point out once more that, contrary to the radial M2(R) cos 0

self-similar studies, the role of the thermal structure of the flowl, = V. (R , (A.3d)
which is related to the details of processes of input/output of ) V1+ba(R,0)
heating in the gas, is essential in our model and notonly ip M?(R) F(R) sin @ (A3e)
accelerating the flow but also in constructing its global shape’ “GZ(R) 2 V1+6a(R,0) ’ '
;hzi?freorz;etmaggge hene_rgetlc behaviour of astrophysical plasmas - A GX(R) - M2(R) Rsinf

physical contexts (solar and stellar coronag, = V. 2B 1 (R . (A3f)
YSO, AGN) is however still open. (R) (B) 1+ 0a(R,0)

Acknowledgementsie are indebted to Dr.N.VlahakisforstimulatingThese last equations, together with Egs. (2.3), can be com-

discussions on the course of this work and Dr. F.P. Pijpers for carefdi{n€d with the poloidal components of the momentum equa-
reading and commenting the manuscript. C.S. and K.T. acknowledifh, EQ. (A.1b), to give three independent equations for four
financial support from the French Foreign office and the Greek MinighknownsII(R), F(R), G(R) and M?(R). The system is
tery of Research and Technology. E.T. thanks the Observatoire de Peldsed with Eg. (2.6) fot5. Two of these equations arise from
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momentum-balance in the radial direction, while the third or{&r) the Poynting flux € 0 along the polar axis),
from momentum-balance in the meridional direction. Thus, we

obtain 2)2 [1_6'22}
1-M
dIl 2 [dM? M? V2
i - R — _ = 2
dR+ o [ dR + B (F 2)] + 2 R? 0, (A.4a) _ 2\ Q(«) wB.(R.a)
2dH 2 dM2 (51/2 p(R,a)L(a)Q(a) \I/A(O‘) v ’
—kFRI - kR*— + == 922
drR T G2 drR PGP _ A L(0)(a) —w?(R. 0)2%(e] , (B.4)
F [RdF g 2} N M? [FQ N 4} p(R, a)L(a)(a)
2RG* | dR RG? | 2 (v) the thermal content,
2 2 232 2 2
2\2R (M?-G?)? 2)°R 1-G (F — 26?) - i
G*M? (1-M2)2 G? (11— M?)? K M2 — / Q(R)dR
2 P2 _(2)\2 2 r-1 R,
C22R? (1-G%)? dM 0. (Adb)
o TR £y (R,)[h(R.) - OF (o)
FodM® o, o 1L dF (R, a)L{@)Qa) | 7 T PR AG
_§RdR +/@RGH+2[RdR+F —F—Q}
M? [ _dF F? —p(R, pole)[h(R, pole) — OF (pole)]}. (B.5)
—— |R==+——F o
2 dR 2
A2 R? (M? — G?)? o1 —c? —0. (A4 In order to write Egs. (3.7), we simply calculate the previous
(1= M?)? M2 —2(1-G%)7| =0. (Adc) terms (B.1-B.5) at the base of the flaw
In Sect.5 (oscillations of cylindrical jets), the first order ex- Sv2 A2 [M2 - G212
pansion scheme of the previous momentum equations amouhés = "R + e [I_MQO]

to saying that we have the following expression for the force

2
balance across the fieldlines 2 [1-G3 r 9
12 [1_M3} +/€[F_1HOMO . (B.6)

p(V, V)V, — i(V x B,) x B, ] o ] o
dr There the poloidal kinetic energy is negligible and consequently

_ By, ij the term in Eq. (B.1) is zero. Moreover the thermal content re-
N 47er(WB“’) @ Ve = VP, (A.5) duces to the enthalpy such that in Eq. (B.5) only the enthalpic
terms remain. Combining Egs. (B.2) to (B.6), we get Egs. (3.7).
Appendix B
B.1. On the variation of the specific energy B.2. On the Energetic definition of EMR and IMR

In Eq. (3.3b), we find successively five terms which correspoibw using Egs. (3.2) and (3.10) we may write
to thevariation, in units of the volumetric energy, of the mag-

netic rotator between any streamling @nd the polar axis (pole) F(«) = lvfw , (B.7)
of 2 1+da
(i) the poloidal kinetic energy, where we see, as stated in the main text, ¢hathe transverse
variation of the volumetric energy once we have removed the
M4 F2 2)\2 . .
s [ — 1} = X thermal terms that linearly scale with facter Moreover note
R2G? | 4 p(R, ) L(a)Q(a) that from Eq. (3.4a) we get
1 1
X [2;)(}%7 a)VpQ(R, a) — §p(R, pole)VpQ(R7 pole)| ,(B.1) ¢ ~ po(pole)[h,(pole) + Eg o] .8)

222 o) EnRr
which is the pending expression to Eq. (3.7a). Noting that

(ii) the gravitational energy,

Lo a2 gM

R p(R,a)L(a)Q(a) R o A(ph) AP (B.9)

x [p(R,a) — p(R,pole)] , (B.2) p(pole)h(pole)  P(pole)’ '
(i) the azimuthal kinetic energy= 0 along the polar axis), = we combine Egs. (3.7a), (B.8) and (3.10) to get
ﬁ M2 - G2 ? _ 2>\2 L _ A [po(EPoynt.,o + ER,O)]
G? | 1—-M? (R, @) L(a)Q(a) 202 Po(a) EMR
1 9 Ec.o po(pole) Ap, B AP,
X {Qp(R, )V (R, a)| (B.3) +EMR 0@ |papole) ~ Pypole) | (B.10)
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The first term of the r.h.s. of this last equation simplifies to th@at can be integrated to giy@s a function off andu, assuming
two first terms in the numerator of Eq. (3.12a) as the Poyntiagvanishing constant of integration

flux and the rotational energy vanish along the pole. The second 5

term of the r.h.s. of Eq. (B.10) can be rewritten to giv&7, in - 4 2 iwoo (p—1)=0. (C.4b)
Eq. (3.12a). In the form presented in Eg. (B.10) it appears how solloo

the relative increase pf the W_eight of the plasma can be parti_a@y eliminatingy andp in Eq. (C.2) using Egs. (C.3)-(C.4b), we
compensated by the increasing of the thermal pressure gradigptgin Egs. (5.3) and (5.4) in Sect. 5.

In this form there is no contradiction with the use of the symbol

A. Conversely, the equivalent expression used in Eq.(3.12b)

may appear confusing if one does not remember that this is3gferences

fact the variation across the lines of the gravitational energy thgdcciotti F., Chiuderi C., 1992, Phys. Fluids 4(1), 35

is not compensated by some thermal driving. Nevertheless, Bgicher J.W., McGregor K.B., 1976, ApJ 210, 498

prefer this last form for its compactness and because it empBaetta T., 1996, In: K. Tsinganos (ed.) Solar and Astrophysical MHD
sizes the role of the temperature. Flows. Kluwer Academic Publishers, p. 357

Blandford R.D., Payne D.G., 1982, MNRAS 199, 883

Bouvier J., Forestini M., Allain S., 1997, A&A 326, 1023

Appendix C Brinkmann W., Miller E., 1998, In: Massaglia S., Bodo G. (eds.) As-
From Egs. (5.1) and (5.2) we may expafdto first order in trophysical jets: Open problems. Gordon & Breach Science Pub-
E lishers, p. 211

. Cao X., 1997, MNRAS 291, 145
F=2-RY, (C.1a) CassinelliJ.P., 1979, ARA&A 17, 275

. . Chan K.L., Henriksen R.H., 1980, ApJ 241, 534
while the derivative ofF' can be also expanded at larBeas Contopoulos J., Lovelace R.V.E., 1994, ApJ 429, 139
dr . .. o Contopoulos J., 1995, ApJ 450, 616
R = V- RIr R (C.1b) Dpel zanna L., Chiuderi C., 1996, A&A 310, 341

Draine B.T., 1983, ApJ 270, 519

= h . dth FerrariA.,Massaglia S.,Bodo G., Rossi P., 1996, In: Tsinganos K. (ed.)
rom these equations we can expand the momentum equationgsg 5, gng Astrophysical MHD Flows. Kluwer Academic Publish-

given in Appendix A (Egs. A.4) replacing the second one by the g p. 607

definition of e. We still assume in this section that the flow igerreira J., 1997, A&A 319, 340

asymptotically cylindrically collimated. Thus we already havgrank A., 1998, New Astronomy Review, in press (astro-ph/9805275)
calculated the zeroth order equilibrium in Sect. 4. We know thigeyvaerts J., Norman C.A., 1989, ApJ 347, 1055

the asymptotic quantities in the flow are uniquely determind@fatos M., 1996, In: Tsinganos K. (ed.) Solar and Astrophysical MHD
by the values ot/2)2, k/2)? andIl,.. The first order terms  Flows. Kluwer Academic Publishers, p. 585

in the transverse momentum equation (see also Eq. A.5) givil &-Y-» Chiueh T., Begelman M.C., 1992, ApJ 394, 459

relation between, ¥ and. ::' §$ iggg' ﬁpj jgg" ggg
iZ-Y., , ApJ 465,

Liffman K., Siora A., 1997, MNRAS 290, 629

3 — okl G2, 9 M2, Lima J., Tsinganos K., 1996, Geophys. Res. Letts. 23(2), 117

= 2lloo Mz |P TV mz Lima J., Tsinganos K., Priest E., 1996, Astrophys. Lett. & Comm. 34,
281
2 2 2
—92)2 [ 2G5, ( 1-6G% 4 G ) 9 Livio M., 1998, Physics Reports, in press (STScl, Prep. 1261)
(1—=MZ)? \1- Mz, ~ M Lynden-Bell D., 1996, MNRAS 279, 389
ML — G4 McComas D.J., Riley P., Gosling J.T., Balogh A., Forsyth R., 1998,
_ Moo "Moo C.2)
oozt ( JGR 103(A2), 1955
(o] o0

Mellema G., Frank A., 1997, MNRAS 292, 795
This can be combined with Eq. (3.11) that we also expaMichel F.C., 1969, ApJ 158, 727 _
to first order — where again the zeroth order is Eq (44b) _%rabd I.F., Rodriguez L.F., 1996, In: Tsinganos K. (ed.) Solar and

get a second relation betwegrand, Astrophysical MHD Flows. Kluwer Academic Publishers, p. 683
Ogilvie G.I., Livio M., 1998, ApJ 499, 329
L (1-G2%)? Ostriker E., 1997, ApJ 486, 291
K T2 + 65 (1—M2)3 Parker E.N., 1963, Interplanetary Dynamical Processes. Interscience
2 4 " 5 Publishers, New York
49 {“ _ G My + Goo(l _ QMOO)} =0, (C.3) Pelletier G., Pudritz R.E., 1992, ApJ 394, 117
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