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Abstract. An analytical MHD model of coronal loops with compressible flows and including heating is compared to obser-
vational data. The model is constructed via a systematic nonlinear separation of the variables method used to calculate several
classes of exact MHD equilibria in Cartesian geometry and uniform gravity. By choosing a particularly versatile solution class
with a large parameter space we are able to calculate models whose loop length, shape, plasma density, temperature and ve-
locity profiles are fitted to loops observed with TRACE, SoHO/CDS and SoHO/SUMER. Synthetic emission profiles are also
calculated and fitted to the observed emission patterns. An analytical discussion is given of the two-dimenional balance of the
Lorentz force and the gas pressure gradient, gravity and inertial forces acting along and across the loop. These models are the
first to include a fully consistent description of the magnetic field, 2D geometry, plasma density and temperature, flow velocity
and thermodynamics of loops. The consistently calculated heating profiles which are largely dominated by radiative losses and
concentrated at the footpoints are influenced by the flow and are asymmetric, being biased towards the upflow footpoint.
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1. Introduction

A significant proportion of the energy emission from the solar
corona is concentrated along loops which are believed to trace
closed lines of force of the magnetic field, which penetrates the
photosphere from below and expands to fill the whole of the
coronal volume above an active region (Bray et al. 1991). A
coronal loop is therefore an important localised structure which
connects the photosphere to the corona through the transition
region and may thus be studied to gain information about the
heating of the corona as a whole (Aschwanden 2003).

Early results from the Skylab mission emphasising that the
solar corona is not a homogeneous medium but filled with loop
structures stimulated much interest in modelling those loop
structures. The first models were one-dimensional hydrostatic
models which balanced heat conduction and radiative losses
with an imposed heating function. Rosner et al. (1978) bal-
anced radiative losses and heat conduction against heating as-
suming zero heat conduction across the foot points, a restric-
tion relaxed by Hood & Priest (1979) while they neglected
radiative losses. Vesecky et al. (1979), Serio et al. (1981) and
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Wragg & Priest (1981, 1982) added the effects of varying pres-
sure and gravity to their models, as well as the effects of a vari-
able loop cross-sectional area. Cargill & Priest (1980) were the
first to add adiabatic plasma flows and concentrated on examin-
ing the relationship between cross-sectional area and flow ve-
locity along the loops, while later Cargill & Priest (1982) intro-
duced non-adiabatic flows balancing the net heat in/out against
conduction and radiation with a heating function proportional
to the density. Further important hydrodynamic modelling of
plasma flows in solar atmospheric structures has been carried
out and applied to photospheric flux tubes by Thomas and oth-
ers, work summarised in Thomas (1996).

A similarly strong interest in loop modelling in recent years
has been motivated by the higher resolution results from the
Yohkoh, SoHO and TRACE spacecrafts. A systematic study
of a one-dimensional hydrodynamic solution class of loops
with constant cross-section has been carried out by Orlando
et al. (1995a,b), with non-adiabatic flows and balancing the net
heat in/out against conduction, radiation and a heating func-
tion. Much attention has focused on the form of the heating
function as a means of inferring the coronal heating mecha-
nism. Priest et al. (1998, 2000) suggested for the first time
that the temperature profile of a loop may contain useful
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information about the nature of the heating. They concluded
that for a large Yohkoh loop the heating was likely to be uni-
form in the high-temperature part of the loop between 1.6 MK
and 2.2 MK. Using the same data, Mackay et al. (2000) ex-
tended the temperature range modelled to transition-region val-
ues and concluded that, while uniform heating gives a bet-
ter fit in the high-temperature part of the loop, a stronger
footpoint heating is also needed at lower temperatures.
Aschwanden (2001) concluded that multi-temperature data
from broad-band filters such as Yohkoh/SXT cannot adequately
be modelled using a single uniform-heating model from corona
to footpoint and produced an alternative two-component hydro-
static model of these data with heating function concentrated
at the footpoints. Aschwanden et al. (2001) systematically ex-
plored a class of one-dimensional hydrostatic solutions with
a non-uniform heating function in exponential form and fitted
them to a large sample of EUV loops observed with TRACE.
They found that most of the sample of loops could not be mod-
elled by their hydrostatic solution class, and that those which
could were heated near the foot points. In the present paper we
use a different approach. We do not impose a priori a specific
form for the heating function, but instead we calculate it after
completing a fitted dynamical MHD model. Hence we calcu-
late a model for the observable quantities first and then find a
consistent heating function from the first law of thermodynam-
ics.

Additional loop modeling has been performed by forward-
fitting of hydrostatic solutions to multi-filter data (Winebarger
et al. 2002), multi-valued filter-ratio temperatures (Testa
et al. 2002), triple filter-ratio temperatures (Chae et al. 2002),
and with differential emission measure distributions (Schmelz
et al. 2001). Model assumptions and their specific relations to
our work are discussed in more detail in Sect. 3.

Of course some loops in the solar atmosphere are
far from equilibrium and time-dependent hydrodynamical
loop models have also been developed by e.g. Mariska &
Boris (1983), Cargill (1994), Cargill & Klimchuk (1997),
Walsh et al. (1995, 1996), Walsh & Galtier (2000),
Peres (2000), Reale et al. (2000a,b). In this paper we restrict
our modelling and observations to steady-state loops.

To date all heated loop studies have included only hydro-
static or hydrodynamic models with the exception of Priest
et al. (2000) which deals in a simple way with two-dimensional
models. These hydrostatic and hydrodynamic models are one-
dimensional in the sense that they do not model the cross-
field force balance, forces are only balanced along the loop.
However, in the highly magnetised and sparse coronal plasma
the magnetic field is likely to have a significant direct effect on
the statics or dynamics of such a curved structure as a coro-
nal loop, while plasma flow, even at such sub-Alfv´enic veloci-
ties as 20 km s−1 (Dara et al. 2002), may have an effect on the
heating balance. Moreover, the geometrical details may have
an impact on the energy profile of the loop, via the poten-
tial energy, and therefore on the heating model. The models
in this paper include two-dimensional geometry, compressible
MHD plasma flow in uniform gravity and heating in single
consistent exact solutions and thereby give a first opportunity
to investigate these effects. We fit the geometrical and

dynamical aspects of the model to a loop observed by TRACE,
a case observed with SoHO/CDS (Schmelz et al. 2001) and a
loop observed by SoHO/SUMER. We also give a model of the
energy balance of each loop, including the loop heating.

The paper is organised as follows. The solution class is de-
scribed in Sect. 2.2, and the method of constructing the models
is explained in Sect. 2.3. The observations and data analysis is
described in Sect. 3 and models fitted to data sets are presented
in Sect. 4. The paper is concluded with Sect. 5.

2. The analytical model

In this section, after an introduction of the basic equations
needed in order to establish notation, we proceed to a brief pre-
sentation of the key assumptions for the derivation of the par-
ticular solution class and an outline of the method employed
for the construction of the particular solutions.

2.1. Basic equations

Our models apply solutions obtained by using a system-
atic nonlinear separation of the variables construction method
in two dimensions and Cartesian geometry (Petrie et al.
2002, henceforth, Paper I), already seen in spherical geometry
(Vlahakis & Tsinganos 1998). The general analysis of Paper I
contains the solution class applied here, as well as the promi-
nence and loop models by Kippenhahn & Schl¨uter (1957),
Hood & Anzer (1990), Tsinganos et al. (1993) and Del Zanna
& Hood (1996). Basically, in this method and under certain as-
sumptions, the full MHD equations can be reduced to a system
of ordinary differential equations (ODE’s) which can be inte-
grated by standard methods.

The dynamicsof flows in solar coronal loops may be de-
scribed to zeroth order by the well known set of steady (∂/∂t =
0) ideal hydromagnetic equations:

ρ (V · ∇) V =
1
4π

(∇ × B) × B − ∇P− ρgẐ, (1)

∇ · B = 0, ∇ · (ρV) = 0, ∇ × (V × B) = 0, (2)

whereB, V, −gẐ denote the magnetic, velocity and (uniform)
external gravity fields whileρ and P are the gas density and
pressure. Theenergeticsof the flow on the other hand is gov-
erned by the first law of thermodynamics:

q = ρV ·
[
∇e+ P∇1

ρ

]
= ρV ·

[
∇h− 1

ρ
∇P

]
, (3)

whereq is the net volumetric rate of some energy input/output,
Γ = cp/cv with cp andcv the specific heats for an ideal gas, and

e=
1
Γ − 1

P
ρ

(4)

the internal energy per unit mass, withh = Γe the correspond-
ing enthalpy function.

At present, a fully three-dimensional MHD equilibrium
modelling with compressible flows is not amenable to analyti-
cal treatment and so we assume translational symmetry. Thus,
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we assume that in Cartesian coordinates (Z,X,Y), the coordi-
nateY is ignorable (∂/∂Y = 0) and the magnetic and flow fields
are confined to theZ−X plane. We model the profile of the loop
in theX−Z plane and ignore variations in theY-direction, i.e.,
we assume that the physics of theX−Z plane is independent
of what happens across the loop in theY-direction. All previ-
ous equilibrium models of coronal loops mentioned above have
been one-dimensional and non-magnetic. To begin with, we
representB by using a magnetic flux function (per unit length
in theŶ direction)

B = ∇A(Z,X) × Ŷ. (5)

Then, there exist free integrals ofA including the ratio of the
mass and magnetic fluxes on the poloidal plane (Z−X),ΨA(A),

V =
ΨA

4πρ
B, (6)

where the stream functionΨ is a function of the magnetic flux
functionA andΨA is its derivative (Tsinganos 1982). The com-
ponent of Eq. (1) along the field may be written as

ρV · ∇I = 0, (7)

where

I = I (A) =
V2

2
+ gz+

∫ s

s0

1
ρ

∂P
∂s

ds (8)

is the generalised classical Bernoulli integral, a further integral
of the flow. Equations (3) and (7) may be added to describe the
momentum balance

q = ρV · ∇E, (9)

in terms ofE, the total energy of the flow

E =
V2

2
+ gz+ h. (10)

In general, because of the heat sourceq, the total energy is not
conserved along the loop (Sauty & Tsinganos 1994). Even in
the polytropic case where the pressure takes the special form
P = Q(A)ργ the net volumetric rate of energy in/out

q =
γ − Γ
Γ − 1

P
ρ

V · ∇ρ (11)

is not generally zero (Tsinganos et al. 1993). Only in the special
polytropic case withΓ = γ is the flow adiabatic, and the total
energy coincides with the generalised Bernoulli integral and
is conserved. However, the general non-polytropic case is the
case of interest in this paper.

In the general case, the system of Eqs. (1) and (2) should be
solved simultaneously with a detailed energy balance equation
in order to yield a self-consistent calculation of the equilibrium
values ofρ, P, V and B along the loop. However, it is a fact
that the detailed forms of the several heating/cooling mecha-
nisms in the energy equation are not known, e.g., we do not
know the exact expression of the heating along coronal loops
which contributes, among others, to the various parts of the net
volumetric heating rateq in Eq. (3). Hence, a compromising
strategy is to use, for example, a polytropic equation of state

and then solve for the values ofρ, P, V andB. Then, we may
determine the volumetric rate of net heating from Eq. (3). In
such a treatment the heating sources which produce some spe-
cific solution are not known a priori; instead, they can be deter-
mined only a posteriori. In this paper we shall follow a similar
approach with our non-polytropic examples.

2.2. The solution class

In order to proceed to the analytical construction of some
classes of exact solutions for coronal loops, we make two key
assumptions:

1. that the Alfvén numberM is solely a function of the dimen-
sionless horizontal distancex = X/Z0, i.e.,

M2 =
4πρV2

B2
=
Ψ2

A

4πρ
= M2(x), (12)

and
2. that the velocity and magnetic fields have an exponential

dependence onz= Z/Z0,

A = Z0B0A (α) , α = G(x) exp (−z), (13)

for some functionG(x), whereZ0 andB0 are constants. With
this formulation the magnetic field has the form

B = B0αA′ (α)
[
X̂ + F(x)Ẑ

]
, (14)

where

F(x) =
1

G(x)
dG(x)

dx
=

(
dZ
dX

)
A

(15)

is the slope of the field line. This is the analogue in Cartesian
geometry of the “expansion factor” in the related wind mod-
els in spherical geometry (see Sauty & Tsinganos 1994). The
functionG(x) also has a physical meaning. Either by integrat-
ing Eq. (15) or by inverting Eq. (13) the equation for the field
line defined byα = α0 is found to be

z= logG(x) − logα0. (16)

This is the Cartesian analogue of the cylindrical distance of a
field line from the polar axis in spherical wind theory (see Sauty
& Tsinganos 1994). With these assumptions, the momentum-
balance equation may be broken down into a system of first-
order ODE’s for functions ofx, and a corresponding system
of ODE’s for corresponding functions of the magnetic flux
function. The methods of obtaining these ODE’s are described
in Paper I, where all existing solutions are summarised in
Table 1 therein.

The solutions used in this paper are taken from the first
family in Table 1 in Paper I. In the remainder of this section
we examine the general case, with all constants non-zero. The
corresponding expressions for the magnetic flux functionA, the
mass flux per unit magnetic fluxΨA, the densityρ, the magnetic
inductionB and the velocityV are (see Paper I)

A(α) = Z0B0

∫ √
2C1 + λC2αλ−2dα, (17)
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ΨA(α) =
B0√
gZ0

√
2D1α2 + λD2αλ, (18)

ρ(x, α) =
B2

0

4πgZ0

2D1α
2 + λD2α

λ

M2
, (19)

P(x, α) =
B2

0

4π

[
P0 + P1(x)α2 + P2(x)αλ

]
, (20)

B = B0

√
2C1α2 + λC2αλ

[
X̂ + F(x)Ẑ

]
, (21)

V =
√
gZ0

√
2C1α2 + λC2αλ

2D1α2 + λD2αλ
M2

[
X̂ + F(x)Ẑ

]
. (22)

WhereC1, C2, D1, D2 andλ are constants. Note that we may
choose the constants such thatB0 is the component of the mag-
netic field at a reference point. Also note that the general non-
polytropic case has two “scales”:Z0 and 2Z0/λ. In the expres-
sion for the pressureP0 = f0 = constant, whileP1 and P2

satisfy the following ODE’s

P1 = C1

[
FM2′ − F

′ (
1− M2

)
− F2 − 1

]
+

D1

M2
, (23)

P2 = C2

[
FM2′ − F

′ (
1− M2

)
− λ

2

(
F2 + 1

)]
+

D2

M2
· (24)

Using the above definitions for the pressure “components” to-
gether with the ODE’s from Table 1 in Paper 1, we calculate
that for the general case we have the following final system of
equations for the unknown functions ofx, including the slope
of the field linesF:

d lnG
dx

= F, (25)

M2′ (x) =
CλF/M2 − 2F

(
F2 + 1+ P1/C1

)
C/M4 + 2

, (26)

F′(x) =
FM2′ − F2 − 1+ D1/C1M2 − P1/C1

1− M2
, (27)

P′1(x) = −2D1F
M2

− 2C1

(
1+ F2

)
M2′ − 2M2FF′, (28)

P2(x) = C2

(
FM2′ − F′

(
1− M2

)
− λ

2

(
1+ F2

))
+

D2

M2
, (29)

where

C = D2/C2 − D1/C1

1− λ/2 · (30)

Finally, consider the energy balance along the loop; the net vol-
umetric rate of heating input/outputq, equals to the sum of the
net radiationLR, the heat conduction energy∇·FC, whereFC is
the heat flux due to conduction, and the (unknown) remaining
heatingEH,

q = EH + LR − ∇ · FC. (31)

The net heat in/out q is calculated from the MHD model us-
ing the first law of thermodynamics Eq. (3), while the radiative
losses from the optically thin plasmaLR are described by the
equation

LR = −(n/2)2Q(T), (32)

(Raymond & Smith 1977) with standard solar atmospheric
abundances as in Rosner et al. (1978), wheren is the par-
ticle number density (we assume that the plasma is fully
ionised) andQ(T) is a piecewise function ofT described in
Rosner et al. (1978). The thermal conduction energy is calcu-
lated assuming that conduction is mainly along the field, using
the expression

−∇ · FC =
∂

∂s

(
κ||
∂T
∂s

)
− κ||

B
∂B
∂s
∂T
∂s
, (33)

(Spitzer 1962) where subscripts|| indicate values and deriva-
tives along the field line, and the variation of the magnetic field
strength along the field line is taken into account (Priest 1982,
p. 86).

We present the physical parameters of each loop as func-
tions of arc lengths. The arc-length along a loop is given by

ds2 = dx2 + dz2 =
(
1+ F(x)2

)
dx2 (34)

and the (x, α)-dependent physical parameters of a loop can be
understood as functions along the loop by holdingα constant
(the definition of a field line sinceα is a flux function) and
integrating Eq. (34) fors from the left foot point to the right
foot point.

2.3. Construction of solutions

We generate loop-like solutions as follows. We begin by cal-
culating the right half of the loop, beginning from the loop
apex atx = 0. The symmetry properties of Eqs. (25)–(29) en-
sure that on integrating fromx = 0 in the negative direction
the other half of a symmetric loop-like solution is obtained. In
the sub-Alfvénic case the equations have no critical points and
can be integrated without difficulty. In the trans-Alfvénic case
a shooting algorithm is required to integrate through the critical
Alfv én point (Vlahakis & Tsinganos 1998; Paper I) but since
steady super-Alfv´enic flows have not been observed in the so-
lar atmosphere we will concentrate on sub-Alfv´enic examples
here. In this paper we use a similar shooting algorithm to fix
the foot point separation of each sub-Alfv´enic loop. The solu-
tion class allows us to fix all physical quantities at the apex: the
height, magnetic field strength, velocity, density and tempera-
ture. Having chosen values for these quantities at the apex we
begin the integration. As the solution approaches the solar sur-
face atz= 0 it will be clear whether the foot point separation is
greater or less than the desired (observed) value and a remain-
ing free parameter can be adjusted accordingly. This process
is repeated until the solution is fitted to the desired (observed)
configuration.

In this paper we present models fitted to data, where avail-
able, in five ways: we fit the loop height and foot point sep-
aration as described above, the plasma density and tempera-
ture, the line-of-sight velocity or velocities of proper motions
whose components perpendicular to the line of sight can be
measured, and we forward-fit synthetic emission models to ob-
served emission patterns.

It can be seen from the equation for a magnetic field line,
Eq. (16), that two field lines defined byα = α1 andα = α2
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differ from each other only by a vertical translation, and that
for any point (Z1,X) on the first field line, the corresponding
point on the second field line (Z2,X) can be found from it by
moving vertically a distance

Z2 − Z1 = log
α1

α2
· (35)

We may model the cross-sectional width of a loop by taking
two such field lines and by considering the area between these
lines to constitute the loop model. Then the loop necessarily
has maximum cross-sectional width at the apex, the remainder
of the width profile being uniquely defined by the geometry of
a field line. Thus the loop widthW is not a free function to be
imposed as in one-dimensional studies, e.g., Cargill & Priest
(1982); Aschwanden & Schrijver (2002), but is related to the
slope of the loopF by

W(s) = log
α1

α2

/ √
1+ F2. (36)

If a loop is observed to be tilted with respect to the vertical
direction then we may still model the loop in thex−z plane by
tilting our coordinate system accordingly. We must take into
account the effect of this tilt on the physics of the loop. The
gravitational force acts at an angle to thez-axis and the loop
cuts through the stratified atmosphere at an angle. Therefore
in the model the gravitational force must be multiplied by the
cosine of the angle of tilt and vertical scale heights must be
divided by this cosine.

It is well-known that plasma flow is generally present in
loops (e.g. Dara et al. 2002). However, only limited informa-
tion about the magnitude of the loop plasma velocities is avail-
able today from satellite data: line-of-sight measurements from
Dopplergrams in the case of the CDS and SUMER data sets,
and high-resolution movie measurements of velocities of inho-
mogeneities, or proper motions, in the plasma flow in the case
of the TRACE example. We model these measurements by tak-
ing the two-dimensional velocity field from our MHD solution
and, taking the geometry of the loop and the viewing angles of
the instrument relative to the loop into account, we calculate
model line-of-sight and perpendicular velocity components to
be compared to the observations. Thus, taking the planar loop
to be confined to thex−zplane and centred at the origin, we de-
fine byθ the angle in thex−y plane between thex axis and the
line from the origin to the instrument, and byφ the angle be-
tween the line from the origin to the instrument and the plane
z = 0. Then, assuming that the distance from the instrument
to the loop is much larger than the size of the loop, the line-
of-sight velocityVLOS as observed by the instrument and the
velocities in the two directions of the image perpendicular to
the line of sight,V⊥x andV⊥y, are given by


V⊥x

V⊥y
VLOS

 =


cosθ cosφ sinθ cosφ − sinφ
− sinθ cosθ 0

cosθ sinφ sinθ sinφ − cosφ




Vx

Vy = 0
Vz

 .
The velocity perpendicular to the line-of-sight has magnitude

V⊥ =
√

V2⊥x + V2⊥y, so thatV2 = V2⊥ + V2
LOS.

3. Observations, data reduction and loop
diagnostics

There is some controversy surrounding the issue of extract-
ing measurements of coronal densities and temperatures from
emission data. Judge & McIntosh (1999) contrast the probable
multi-thermal nature of loops consisting of strands with inef-
ficient cross-field thermal conduction (Litwin & Rosner 1993)
with the evidence from TRACE that loops in significantly dif-
ferent temperature filters are never co-spatial, and stress the
ill-posedness and non-uniqueness of inverse modelling tech-
niques applied to the transition region and corona. In this
work, densities and temperatures have been calculated for the
TRACE example using the the narrowband 171 Å and 195 Å
two-filter fluxes (e.g., Aschwanden et al. 2000; Winebarger
et al. 2002). Forward-fitting of our model to two-filter fluxes,
F171(s) and F195(s), does not suffer from the ambiguity of
filter-ratio temperature fits,R = F195/F171, which has been
shown to have, besides theT ≈ 1.0 MK solution, also a high-
temperature solution atT ≈ 5.0 MK (Testa et al. 2002). But
Winebarger et al. (2002) demonstrated that theT = 5.0 MK
solution of Testa et al. (2002) is generally not consistent with
combined TRACE and Yohkoh/SXT data, and similarly, Chae
et al. (2002) demonstrated that theT = 5.0 MK solution is not
consistent with TRACE triple-filter data. An additional confu-
sion in the temperature analysis of multi-filter data was raised
by Schmelz et al. (2001), who showed that the emission mea-
sure distribution of a loop structure observed with CDS over a
temperature range of logT = 5.4−6.4 displays a rather broad
temperature distribution with the mean temperature increasing
towards the loop top, and thus concluded that the analysed CDS
loop structure has at every location a broad temperature distri-
bution and heating occurs at the loop top. Martens et al. (2002)
characterised the smoothed DEM of Schmelz et al. (2001) as
a flat plateau and pointed out that any filter-ratio method is in-
adequate to determine the temperature of such a loop system
(see also Schmelz 2002). However, the CDS observations of
Schmelz et al. (2001) can easily be understood if the follow-
ing facts are taken into account: (1) The effective spatial reso-
lution of CDS is≈10′′−15′′, compared with≈1′′ of TRACE,
(2) TRACE 171 Å images reveal for every loop structure ob-
served with CDS atT ≈ 1.0 MK at least≈10 loop threads,
(3) the broad DEM distribution of a CDS loop structure is
not smooth but consists of multiple temperature peaks which
clearly indicate multiple loop threads with different temper-
atures (Aschwanden 2002), (4) the centroid position of the
CDS loop structure was found to exhibit displacements in each
CDS line (as presented by Trae Winter at the “Coronal Loop
Workshop” in Paris, November 2002), which confirms that the
CDS loop structure consists of multiple, non-cospatial loop
threads, and (5) the combined emission measure distribution
of many loop threads over a broad temperature range bears a
hydrostatic temperature bias that yields an average temperature
increasing with height (Aschwanden & Nitta 2000). From these
facts there is clear evidence that a loop structure seen by CDS
consists of multiple loop threads with different spatial positions
and different temperatures although Martens et al. (2002)
argue that, because the high-temperature edge as well as the
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Fig. 1. An MHD model of a loop observed by TRACE fitted to observational data: shown are the TRACE image of the loop system with the
loop of interest contained within crosses (left picture) and the model field line (solid line) fitted to the observed line, represented by diamonds
(right picture) in theX−Z plane.

low-temperature edge of their DEM plateau moves towards
higher temperatures approaching the loop top, high tempera-
tures must exist near the loop top which are not found lower
down the structure and so individual loop strands are un-
likely to be exactly isothermal (see also Schmelz 2002, Fig. 3).
Although it is possible that even TRACE loops are not resolved
(Judge & McIntosh 1999; Priest et al. 2002), TRACE resolves
a subset of these CDS loop threads that coincides in the tem-
perature sensitivity range of a TRACE narrow-band filter. It
is therefore imperative to apply a model only to a resolved
loop thread, rather than to a multi-temperature bundle of loop
threads that make up a CDS loop structure. Since we analyse
the same loop structure as described in Schmelz et al. (2001),
we apply our MHD model only to a single CDS temperature
1 MK, corresponding to the spectral line Mg (368 Å), be-
ing aware that even the loop structure seen in this single fil-
ter still consists of multiple threads, given the poor CDS res-
olution, and thus expect only to extract average density and
velocity parameters for this loop system at the given temper-
ature range of the Mg ion formation (T = 1 MK). Also,
we apply a forward-fitting technique to the observed emis-
sion, as recommended by Judge & McIntosh (1999), to avoid
the non-uniqueness and reduce the ill-posedness of filter-ratio
techniques. In the three cases we model here, we use in our
forward-modeling only a single image (CDS, SUMER) or an
image pair of similar temperature (TRACE) to avoid confusion
between loop strands of different temperatures.

We use observations from TRACE in the 195 Å and 171 Å
bands taken on 24–26 October 1999, SoHO CDS observa-
tions used by Schmelz et al. (2001) taken on 20 April 1998
and SUMER observations from March 25, 1996. The TRACE
instrument was pointing on a well-defined isolated loop sys-
tem at−426′′,−275′′ (see Fig. 1). The field of view is of
768×768 pixels whereas the pixel size is 0.5′′. The corrections
that we applied are the following: we subtracted the readout
pedestal and the dark current, we cleaned out the pixels dam-
aged due to cosmic-rays and we extracted the CCD readout
noise.

In order to derive the geometry of the loop as well as the
physical parameters we followed Aschwanden et al. (1999). We
used the package (Aschwanden et al. 1999), which is
part of the solar software (SSW) in order to reproduce the ge-
ometry of the loops.

As the lines used are optically thin, when we measured
the loop emitted intensity, we took great precautions to extract
the background emission. We select the proper background for
each data point along the loop. We sampled only half of the
loop starting from the left footpoint as, the other part is to faint
and cannot safely be separated from the background. We fitted
with a Gaussian function the intensity profile across the loop
at selected positions. The full width at half maximum of the
Gaussians functions resulting from the fit is taken as the width
of the loop at these positions. We also computed the tempera-
ture and the emission measure using the TRACETEEM rou-
tine which applies a filter ratio technique with the 171 A and
the 195 A filters. We derived the mean electron densityne at
each point along the loop using Eq. (37),

ne =

√
EM
w

(37)

wherew is the average of the loop width.
We tried to measure the proper motions, if any, of the loop

plasma. We first centered very carefully the 171 Å every 30 s.
images and made a movie with them. Figure 2 shows frames
from this movie of proper motions along the loop. We show a
part of the loop in three 171 Å images close in sequence, show-
ing the displacement of two blobs of material indicated by ar-
rows. The dashed lines in the second and third pannel show
the initial positions of the two blobs. We believe that the ma-
terial is moving – or the excitation is moving – from the left
to the right foot point. Since half a pixel is the minimum dis-
placement and it corresponds to a velocity of 17 km s−1, we
consider this as the error of the measurements. As “points” we
select bright features within the loop, which can be followed in
at least two images. The various points measured were located
in only two images, with the exception of three points which
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Fig. 2. Proper motions along the loop shown in Fig. 1. We show in the top three pictures a part of the loop in three 171 Å images close in
sequence, showing the displacement of two blobs of material indicated by arrows. The dashed lines in the second and third pictures show the
initial positions of the two blobs. The mean velocity we calculate is of the order of 30 km s−1. We show in the bottom picture the evolution of
the intensity along another segment of the loop (horizontal axis) versus time (vertical axis). Black represents unenhanced loop emission and
shades of grey represent enhanced emission. This variation of intensity travelling toward the right footpoint of the loop may be associated with
a flow along the loop. We can estimate roughly from this figure a velocity of 40–50 km s−1.

are each found in three images. The measurement is very sub-
jective, but since quite some points are measured, especially
near the top, and most of their velocities are within the range
of 30–40 km s−1 we believe that this value is close to the real
velocity. The mean velocity that we calculate is of the order of
30 km s−1. We show in the bottom picture of Fig. 2 the evolu-
tion of the intensity along another segment of the loop plotted
against time. This variation of intensity travelling toward the
right footpoint of the loop may be associated with a flow along
the loop. We can estimate roughly from this figure a velocity
of 40–50 km s−1. It is unlikely that the observed “proper mo-
tions” are wave disturbances since 30–50 km s−1 is below the
smallest possible wave speed, the tube speed, which is approx-
imately equal to the sound speed at around 120 km s−1.

As for the CDS data, we applied the usual CDS procedures
to treat the geometrical corrections and to calibrate them. The
Doppler shifts along the loop, are computed in the Mg 368 Å
(1 MK) line. For each selected point along the loop, we took the
sum of the 4 nearest individual spectral profiles (corresponding
to 4 spatial pixels). Thus, for each selected point we applied to
that less noisy spectral profile a double Gaussian fit to take into
account the blend due to the Mg line at 367 Å. Before the

fitting, we subtracted from each spectral profile a background
one, selected from dark regions near the loop. In order to es-
timate what should be the zero velocity, at the surface of Sun,
we selected an area on the Mg Dopplergam, on the disk, but
very close to the limb. The wavelength calibration was based
on the assumption that the average Doppler shift near the limb
is very close to zero, as is suggested in works such as Peter &
Judge (1999).

The SUMER data we used were obtained during a raster
that took place on March 25, 1996. The instrument recorded
the Ne 770, 780 Å and the C 1548 Å spectral lines. We
applied the usual SUMER data reduction and geometrical cor-
rections. We calculated the Doppler shifts along the loop in the
Ne  770 Å line following the same method as with CDS.
The background spectral profile was also subtracted before the
fitting procedure. As we couldn’t use a reference spectrum to
calibrate the measured Doppler shifts (as is done in e.g. Teriaca
et al. 1999) we selected a quiet Sun area away from the active
region and we supposed that there should be a blue shift of
2 km s−1, which is the mean measured Doppler shift for the
Ne  770 Å line (Peter 1999; Dammash et al. 1999). The
method used to calibrate the Doppler shift has already been
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used for active regions in other spectral lines (e.g. Klimchuk
1986). The width and the geometry of the CDS and SUMER
loops where calculated in a similar way as for the TRACE
example.

4. The models

We describe in this section details of the three loops as ob-
served and modelled. The models are fitted to the observations
in many different ways: by geometry (loop height, foot point
separation and, less precisely, loop width), emission measure,
density, temperature and velocity. The resulting momentum
balance, energy profile and heating profile are then described.

4.1. The observable quantities: Loop geometry,
emission measure, density, temperature
and velocity

Figures 1, 6 and 9 show pictures of the image containing each
loop and plots of solution field lines fitted to the observed loop
shape in the plane of the loop. Figures 3, 7 and 10 show plots
of the density, temperature, together with the absolute and line-
of-sight velocities of the models and comparisons of forward-
modelled synthetic emission patterns compared to the observed
emission. Where available the observed values are also plot-
ted. It must be noted that there are ambiguities in some as-
pects of the fitting of the models to the data. Coronal mag-
netic field observations are not sufficiently advanced at present
for a detailed model fit and so we impose typical coronal field
strengths in our models of 2−5 G at the apex to 50−100 G,
depending on field line geometry and inclination. Although the
ODE’s Eqs. (25)–(29) depend on the magnetic field strength|B|
via M we find that the value of|B| does not significantly affect
the physical properties of the fluid. We integrated Eqs. (25)–
(29) with various start values of|B| up to a factor of 10 greater
and smaller than those in the examples presented, keeping the
start values of the other parameters fixed. The only parts of
the model changing significantly are the magnetic forces them-
selves in Figs. 5, 8 and 11a–d, while the other plots change
very little. An exception to this rule is the case where the mag-
netic field is too weak for the magnetic forces to be able to
balance the other forces as seen in these pictures, in which case
the integration simply fails indicating that an equilibrium is not
possible. The effect on the system of varying|B| can be seen
explicitly in Eqs. (25)–(29). The strong coronal magnetic field
combined with the slow flow velocities observed in the corona
together cause the flow to be very sub-Alfv´enic (M � 1).
Hence varying|B| by a factor of 10 has little effect on the size
of M compared to the other variables, whose sizes are fixed by
the observations. It is for this reason that the response of the
plasma parameters to such variations in|B| is small.

There is some ambiguity in the fitting of the temperature,
density and velocity models, as well as the widths, due both
to difficulties in measuring quantities along entire loop lengths
precisely and to limits in the versatility of the solutions.
In the TRACE example Figs. 1 and 3 observations of the 171 Å
an 195 Å emission and filter ratio calculations of the den-
sity and temperature are available along about half of the loop

length. Elsewhere the emission is mixed with that of neigh-
bouring loops and so reliable measurements are not possible. A
measure of the shape of the entire loop is available (see Fig. 1).
The filter ratio measurements describe a near-isothermal loop
whose density decreases with height. We are able to fit the den-
sity and temperature and emission patterns of this loop reason-
ably for much of the region where observations are available.
In the CDS example, the DEM temperature and density mea-
surements from Schmelz et al. (2001) are multi-thermal while
our emission data are extracted from a single Mg image.
Since the emission data and the density and temperature data
are inconsistent with each other our approach is to concen-
trate on forward-fitting our MHD model to the emission data.
The Mg  368 Å spectral line emissivity has a sharp peak at
logT = 6.00 due to the ionization fraction of the Mg ion
(Arnaud & Rotherflung 1985). From this we expect that ev-
ery bright loop seen in this line has to have a temperature near
T = 1.0 MK. If the temperature were outside the full width
at half maximum (FWHM) of the emissivity function, (typi-
cally T = 1.0 ± 0.2 MK), its brightness would be compara-
ble with the background. Hence, we expect the loop plasma
we see in Mg IX 368A, to be of orderT = 0.8−1.2 MK. On
fitting the emission model to the observations while keeping
the temperature model within the expected temperature range,
we find a reasonable fit to the CDS Mg velocity data. The
velocity measurements derive from a Dopplergram from this
same Mg image and, taking the angles of the loop geome-
try and tilt into account as described in Sect. 2.3, we are able
to model these measurements to reasonable accuracy. Filter ra-
tio or DEM measurements of the density and temperature for
the SUMER example are not possible, and so density mea-
surements are calculated from a single Ne image using
the line emissivity function and taking the temperature to be
0.7 MK. The emissivity as a function ofT for the Ne 770 Å
spectral line as well as that of the Mg 368 Å line used for
the CDS dataset, were calculated using the CHIANTI database
(Dere et al. 1997), including the abundances of Feldman (1992)
and the ionization fractions of Arnauld & Rothenflug (1985).
Velocity measurements are also extracted from this same im-
age. While these measurements are more scattered than those
of the TRACE and CDS examples, approximate fits of the
MHD model to the intensity, density and velocity measure-
ments with a near-isothermal temperature model at around
0.7 MK are given.

A measure of the width of the loop is made difficult by
the mixing of emission with neighbouring loops in all three
examples and low resolution of the instruments in the CDS
and SUMER examples. Therefore there is much uncertainty in
these measurements. Furthermore, because of the self-similar
structure of the solution class (see Sect. 2) the profile of the
width of a model loop is defined by the shape of the loop so
that a solution fitting both the observed field line shape and
the observed loop width is not generally possible within our
models. The expanding cross-sections derive directly from the
self-similar structure of the solutions as described in Sect. 2.3
which for the moment we cannot avoid, since the self-similar
assumption embodied by Eqs. (12) and (13) is crucial for us to
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Fig. 3.An MHD model of a loop observed by TRACE fitted to observational data: shown area) the particle number density,b) the temperature,
c) the flow velocity,d) the loop width ande) the 171 Å andf) the 195 Å emission patterns compared with the synthetic forward-modelled
emission from the MHD model. The forward-modelled emission patterns are computed using the TRACE response functions. All are graphed
against arc length along the fieldline of the loop shown in Fig. 1. In these plots, the observed values are represented byx symbols and the model
by the lines. In the velocity plot the modulus|V| is graphed with a dashed line while a simulated perpendicular velocity profile is represented
by a dotted line.
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solve the MHD equations. The model widths are compared to
the observed widths in Figs. 3, 7 and 10.

The flow in our examples is unidirectional from one foot
point to the other as in the models by Cargill & Priest (1980,
1982) and Orlando et al. (1995a, 1995b). However, unlike those
models the flow in our examples is not sustained by a pres-
sure difference between the loop foot points, the siphon mech-
anism. This mechanism is included in the models by Cargill
& Priest (1980, 1982) and Orlando et al. (1995a, 1995b) be-
cause the only force which can initiate in these models a uni-
directional loop-aligned flow along the field lines is a suitable
pressure gradient. However the physical details of the initia-
tion of flow in the corona are not well known. The flow may
not have been initiated in a pre-existing loop, but may have
been caused during the loop’s formation by the interaction of
several forces. Moreover in the steady state such a pressure dif-
ference is not necessary to maintain the flow. A symmetric pro-
file for the plasma inertia (signifying e.g. acceleration up one
loop leg and deceleration down the other, or vice versa) may
easily be balanced in a symmetric plasma model by gravity,
the pressure gradient and, in two dimensions, by the Lorentz
force. Because we are interested in modelling steady states, for
simplicity we choose to model symmetric loops which have
pressure profiles symmetric over the loop length. Although the
flow is unidirectional, we are not describing siphon flows. We
remark that the well-known “siphon flow” models of isolated
flux tubes by e.g. Thomas (1988) and Montesinos & Thomas
(1989) do not include pressure differences despite their use of
the term “siphon flow”.

4.2. Momentum balance

Although coronal loops are well known to be magnetic struc-
tures, the component of force balance along the loop excludes
the Lorentz force, and so it has become common to model them
as approximately one-dimensional structures imposing hydro-
static (Rosner et al. 1978; Serio et al. 1981; Aschwanden et al.
2001; Aschwanden & Schrijver 2002) or steady hydrodynamic
(Cargill & Priest 1980, 1982; Orlando et al. 1995a,b) equilib-
rium along the loop. The inclusion of a second cross-field di-
mension in our modelling allows the Lorentz force to inter-
act with the other forces across the loop and self-consistently
to determine its shape and cross-section. Our models are the
first loop models to include these cross-field effects fully and
consistently. Given the highly magnetised nature of the solar
corona, inclusion of the magnetic field is important in describ-
ing the loop dynamics. Of particular importance is the fact that
on a curved loop in two dimensions the inertial term is not field-
aligned and so the plasma velocity may be greatly influenced
by the magnetic field as well as the other forces, unlike the
one-dimensional case. Furthermore, in the siphon flow mod-
els of Cargill & Priest (1980, 1982) and Orlando et al. (1995a,
1995b) the flow velocity is determined by the density for a
given loop cross-sectional area which these authors impose
as a free function, while in our models the magnetic field
selconsistently imposes the cross-sectional area of the loop,

thereby having a further direct influence on the plasma
dynamics.

Figure 4 is an illustration of the breakdown of the momen-
tum balance along and across a coronal loop into the five con-
stituent forces: inertia of the plasma, magnetic tension, mag-
netic and gas pressure gradients and the gravitational force,
as well as components of these forces resolved in directions
tangent and normal to the field. This diagram corresponds to
the example momentum plots in Figs. 5, 8 and 11 as described
later in this subsection. Note that the magnetic forces cancel
in the tangential direction because the Lorentz force is per-
pendicular to the field. In the direction normal to the field, the
Lorentz force is non-zero and it is coupled with the remaining
forces. The magnetic tension force acts vertically downwards
because of the curvature of the loop. The magnetic pressure
gradient force has an upward vertical component because of
the vertically stratified structure of the magnetic field strength
which decreases with height. On the other hand, the magnetic
field strength increases with slope because in an active re-
gion neighbouring field lines are generally bunched close to-
gether near their foot points, generally located at a strong flux
source/sink, and their separation increases with distance from
the source/sink. Hence, the horizontal magnetic pressure gradi-
ent force points towards the interior of the loop. The gas pres-
sure gradient force has an upward vertical component because
of the stratification. On the other hand, the horizontal compo-
nent of the gas pressure gradient force points towards the cen-
ter of the loop as the corresponding magnetic pressure gradient
force does because emission is generally found to be signif-
icantly higher in the region of active region loop foot points
than close to an apex; in such near-isothermal structures, this
implies that the gas pressure is higher at the loop foot points
in comparison to the interior of the loop at the same horizontal
distance. The normal component of the inertia points inside the
loop towards the loop’s centre of curvature, as expected, while
the tangential component is non-zero because the loop is not
circular and the curvature varies along the loop. In particular,
it is negative (i.e., it points towards the footpoints) because the
curvature is increasing from the left foot point to its maximum
value at the apex. The inertia on the right leg would be a mirror
image of this, with a positive tangential component indicating
that the curvature is decreasing away from the apex towards the
right foot point.

Figures 5, 8 and 11 show the breakdown of the momentum
balance along the field and across the field, the volumetric en-
ergy profile along the loop and the volumetric energy rate per
unit mass along the loop for the three models.

As sketched in Fig. 4, in Figs. 5, 8 and 11 the two compo-
nents of the magnetic force, the magnetic pressure gradient and
tension oppose each other along and across each loop and they
are significantly larger than the other forces acting along the
loop, as is to be expected in a coronal model. They are larger
along the loop than across. The strength of the magnetic ten-
sion is greatest at the foot points, both along and across the
field. This is despite the fact that the field is straightest at the
footpoints and is due to the stratification. In the CDS model of
Fig. 8 the magnetic pressure gradient is maximum at the foot
points. This may be surprising in the cross-field case, where
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Fig. 4. The breakdown of momentum balance along and across a steady coronal loop. Shown are the magnetic pressure gradientPm, the
magnetic tension forceT, the gas pressureP, the gravitational forceg and the inertial forceI . Also shown are the components of these forces
resolved in the direction tangent (normal) to the field, with subscripts (n). This diagram corresponds to the example momentum plots in Figs. 5,
8 and 11 as described in the text.

a magnetic pressure gradient might be expected to be almost
field-aligned at a near-vertical foot point. However the pictures
show that the increase in field strength towards the foot points
overcomes this effect to give a maximum magnetic pressure
gradient across as well as along the field at the foot points. In
the SUMER example of 11 the cross-field magnetic pressure
gradient decreases towards the foot points where the magnetic
pressure gradient is more nearly field-aligned than elsewhere.
In the TRACE example shown in Fig. 5, the magnetic pressure
gradient is weaker than the gas pressure gradient everywhere
across the loop. Along the loop the magnetic forces cancel ex-
actly since the Lorentz force must be perpendicular to the loop.
Across the loop the magnetic forces are not exactly balanced
but they are the largest forces. A large difference in thermal
pressure inside and outside a fluxtube can be balanced by a
very small change in magnetic field (e.g. by flux tube expan-
sion) in the low-β corona, which we cannot measure. We cannot
measure these slight imbalances in magnetic forces but we can
model them. With a positive force in the cross field direction in-
dicating a force away from the loop center of curvature, on the
field-aligned plots in Figs. 5, 8 and 11 the upward/downward
forces are positive/negative on the left half of the loop and neg-
ative/positive on the right half.

In a one-dimensional stratified hydrostatic atmosphere the
gas pressure gradient would point vertically upwards and de-
crease with height. Along and across a loop standing in such an
atmosphere the gas pressure gradient would appear in Figs. 5, 8

and 11’s field-aligned pictures as an odd function of arc length
about the apex with a magnitude increasing with distance from
the apex, as also happens in our model. In the cross-field pic-
tures it would be represented by a positive even function. The
location of the maximum pressure gradient across the field
would depend on both the pressure scale height and the shape
of the loop, since the size of this component at a point on the
loop depends on both the size of the total pressure gradient and
the slope of the loop at that point. For example, a vertical loop
foot point would have no pressure gradient across it in a one-
dimensional stratified atmosphere even though the total pres-
sure gradient may have its maximum there. Similar comments
apply to the gravitational force. The gravitational force would
behave as the pressure gradient but with the opposite sign as
the two forces would balance in the one-dimensional stratified
hydrostatic case.

Our 2D MHD model represents a significant departure from
this situation as can be seen from Figs. 5, 8 and 11. In the field-
aligned pictures the two components of the magnetic force, ex-
actly balancing each other, do not interact with the other forces.
The pressure gradient and gravitational forces are more or less
as in the hydrostatic case, with a small contribution from the
inertial force completing the force balance. However in the
cross-field pictures of Figs. 5, 8 and 11 there are significant
differences from the one-dimensional hydrostatic case. The in-
fluence of the magnetic forces on the other forces can be clearly
seen: the two components of the magnetic forces are not
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Fig. 5.An MHD model of a loop observed by TRACE fitted to observational data: shown are the breakdown of the momentum balancea) along
andb), c) across the loop,d) the energy integral along the loop ande) the volumetric energy rate along the loop all graphed against arc length
along the loop. In the momentum-along pictures, positive momentum means momentum directed from the left foot point to the right, while
in the momentum-across pictures, positive momentum means momentum directed from inside the loop outwards. In the heating plot, the net
heat in/out is represented by the dashed line, the radiative losses by the dot-dashed line, the losses due to conduction by the dotted line, and the
remaining heating by the thick solid line. Except for a small region near the apex, radiative losses are larger than conductive losses. The heating
profile is largely dominated by radiative losses but, influenced by the flow, it is not symmetrical, but is concentrated at the inflow foot point.

balanced across the loop and the net magnetic force across
the loop is negative. For example close to the footpoints of
the loop, in Figs. 5 and 11 it is the gas pressure gradient that
is balancing the magnetic tension and only in Fig. 8 does the
magnetic pressure balance the tension close to the footpoints.
The gas pressure gradient, the only non-magnetic force posi-
tive across the loop, is significantly larger than the gravitational

and inertial forces, and the shape of the gas pressure curve may
look very different from the gravitational force curve in the full
MHD case. An important difference in this model compared to
one-dimensional hydrodynamic models is apparent in the dis-
tribution of inertia along and across the flow field line. Along
the field the inertia is maximum near the foot points where the
loop is straightest, and is zero at the apex where it changes
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Fig. 6. An MHD model of a loop observed with SoHO/CDS (Schmelz et al. 2001), fitted to observational data: the plots are organised as in
Fig. 1. The CDS image of the loop is in Mg 520.66 Å (left picture), and shows the points used for the loop fitting, as well as the fitted loop
of the right picture projected onto the image. The fitted field line of the model is shown in theX−Z plane along with these points (diamonds)
for further comparison.

sign. Across the field the inertia is significant over most of
the loop length and is larger than the field-aligned component
around the apex where the field is most curved. In 1D hydro-
dynamics the Bernoulli force is identical to the inertia while
the centrifugal force is zero. In a 1D model forces across the
loop such as the centrifugal force are not taken into account. In
these 2D MHD examples the Bernoulli and centrifugal forces
are consistently taken into account and are both different from
the inertial force. The Bernoulli force has components along
and across the field. The field-aligned Bernoulli force is identi-
cally equal to the parallel component of the inertia. Across the
field, the velocity magnitude increases with height and so the
cross-field Bernoulli force acts towards the centre of the loop.
The vorticity is confined to theY-direction so that the centrifu-
gal force is in theX−Z plane. It has a cross-field component
only, pointing outwards from the centre of the loop, almost
balancing the perpendicular Bernoulli force. Both Bernoulli
and centrifugal forces have maxima at the footpoints where the
density and velocity magnitude are greatest. The Bernoulli and
centrifugal forces are larger across the loop than the resulting
inertial force because the velocity varies faster across the field
line than along.

4.3. Energy and heating

The energy profile along the loop is dominated by the ther-
mal energy or enthalpy. There are smaller contributions from
the potential and kinetic energies. The thermal energy is di-
rectly proportional to the temperature of the loop, so that an
isothermal loop would have a flat thermal energy distribution
and hence a flatter total energy profile than an equivalent non-
isothermal loop with temperature maximum at the apex would
have. The potential energy is proportional to the loop height as
a function of arc length and so the total energy clearly depends

on the loop’s shape. Because of its small size, the kinetic en-
ergy has little influence on the total energy curve. Over most
of the loop length in each case the kinetic energy is insignifi-
cant. While the kinetic energy seems not to play a major role in
the momentum balance of the loop, the plot of the volumetric
heating rate along the loop shows that the velocity can have an
important influence on the heating profile of the loop. This may
be surprising, but dimensional analysis shows that it is likely to
be possible.

If we take typical coronal values for the number density
ne = 5 × 108 cm−3 (giving a typical densityρc = 4.0 ×
10−16 g cm−3) and the temperatureTc = 106 K, and a conser-
vative estimate for the velocityVc = 106 cm s−1, and if we take
as a length scale the hydrostatic scale heightZc = 6.0× 109 cm
then we find that the corresponding typical potential energy per
unit mass isgZc = 1.65×1014 erg/g, the kinetic energy per unit
mass isV2

c/2 = 5.0×1011 erg/g and the enthalpy per unit mass
is hc = 4.13× 1014 erg/g. Thus the kinetic energy is not signif-
icant compared to the other energies. Meanwhile the radiative
loss function isLr = 6.62× 10−6 erg cm−3 s−1, the conduction
is∇· Fc = 6.42×10−5 erg cm−3 s−1 and the volumetric net heat
in/out is qc = 1.10× 10−5 erg cm−3 s−1. In fact heat conduc-
tion plays a much smaller role in our models than these num-
bers indicate because our temperature models are close to be-
ing isothermal. Other deviations from the order-of-magnitude
calculations occur in our models for similar reasons, but the
difference between the roles of the flow in the energy and heat-
ing profiles is clear in both modelling (compare relative impor-
tance of the kinetic energy in Figs. 5e, 8e, 11e and the net heat
in/out of flow q in Figs. 5f, 8f, 11f) and order-of-magnitude
calculations.

Returning now to the models, the net heat in/out of the loop,
being the field-directed derivative of the total energy, is an odd
function which is positive on one half of the loop and
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Fig. 7. An MHD model of a loop observed with SoHO/CDS (Schmelz et al. 2001), fitted to observational data: the plots are organised as in
Fig. 3. The temperature bounds within which a loop temperature must lie in order to be bright in Mg are indicated by dotted lines. The
observational data in the velocity plot were calculated from Dopplergrams computed from the same Mg image in Fig. 6 using Gaussian
fitting techniques. Error bars are omitted from the width plot because the errors are too large.

negative on the other. In the TRACE example of Figs. 1 and 5
and the SUMER example of Figs. 9 and 11 it is compara-
ble in size to the radiative loss function, the dominant part of
the energy rate balance, over most of the length of the loop.

In the CDS example of Figs. 6 and 8 the influence of
the flow is clearest close to the apex. The radiative losses
are symmetric and are concentrated near the footpoints
where the density is greatest. Heat conduction is negative
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Fig. 8. An MHD model of a loop observed with SoHO/CDS, fitted to observational data: the plots are organised as in Fig. 5. Note that here, as
in Fig. 5, the radiative losses dominate the energy balance, but an asymmetric heating function results because of the influence of the flow.

at the location of temperature maxima and positive at the
temperature minima. For loops with temperature maxima at
the apex, the conduction is peaked there but is still smaller than
the minimum of the radiation. The heating profile is mostly a
combination of the radiative losses and the net heat in/out of
the flow. The asymmetry of the heating function shows the in-
fluence of the flow. The flow’s effect on the heating function is
to distribute the remaining heating function towards the upflow
foot points, not to alter the total heating across the loop as a
whole. Because the net heat in/out of the flow is an odd func-
tion which integrates to zero along the loop length, a static loop

which is otherwise identical to this one would have a sym-
metric heating function with the same total heating. Note,
however, that a static solution is a degenerate subcase of this
solution class and that setting the variableM to zero would
remove much of the freedom in the system of ODE’s. An ab-
solutely static model of a given loop is not generally possible
although the velocity magnitude can be varied. This com-
bination of asymmetric heating functions and symmetric in-
tensity profiles has already been seen in the numerical hy-
drodynamic studies of Mariska & Boris (1983) and Reale
et al. (2000b). In studies of impulsive heating giving qualitative
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Fig. 9. An MHD model of a half-loop observed by SUMER fitted to observational data: shown are the SUMER image of the loop system
with the loop of interest indicated by a dotted line left picture, and the model field line (solid line) fitted to the observed line, represented by
diamonds (right picture) in thex−z plane.

agreement with observed brightness evolution in TRACE im-
ages, Reale et al. (2000a,b) and Peres (2000) find that heat-
ing one foot point causes the other to brighten first because of
plasma compression there, and they caution against straightfor-
ward interpretation of the observations to infer the location of
heating.

5. Conclusions

The use of a two-dimensional compressible equilibrium solu-
tion of the full ideal steady MHD equations with consistent
heating model has presented us with an opportunity to study
the magnetic field’s influence on the plasma dynamics and en-
ergetics and the flow’s influence on the heating profile self-
consistently for the first time. Previous loop models have been
one-dimensional and have ignored the influence of the Lorentz
force on the dynamics and of the magnetic field configura-
tion on the loop cross-sectional width, resulting in hydrostatic
or hydrodynamic models where the loop cross-sectional width
is a free function imposed by the modeller. We find through
fully consistent modelling that the magnetic field governs the
width of a loop and that there is much interaction between the
Lorentz force and the plasma inertia across the loop, as well
as among the inertia and all other forces along and across the
loop. There is a significant component of inertia across curved
structures in two dimensions, not taken into account in one-
dimensional models, which has a bearing on the velocity pro-
file and therefore the heating function of a loop. While the ve-
locity plays a minor role in the energy profile of each loop, as
is to be expected in such sub-Alfv´enic flow models, the inclu-
sion of such flows is found to influence the heating functions of
the loops significantly. Where equivalent static models would
have symmetric heating functions dominated by balancing ra-
diative losses concentrated near the foot points, the inclusion of
even very sub-Alfv´enic flows alters this picture by introducing
an anti-symmetric component to the heating profile, resulting
in an asymmetric heating function, biased towards the upflow
foot point. These are the conclusions to be drawn for the ob-
servations studied and the solution class used to study them.
There is some observational evidence of a relationship between

unidirectional flow and asymmetric heating. In a study of
active region loops observed with SUMER in transition region
and coronal lines Spadaro et al. (2000) measured the doppler-
shift and the non-thermal broadering at the footpoints of the
loops. They identify unidirectional flows and, in two cases,
the upflow foot-point was related to a larger value of the non-
thermal broadering compared to the downflow foot-point. The
non-thermal broadening, which includes the non-resolved mo-
tions due to waves or turbulance, is a signature of heating of the
plasma (Peter 2000). This seems to be related to the computed
heating function which is higher at the upflow foot-point in all
of our examples.

We have tried to fit the models to the data sets as far as pos-
sible but some ambiguity remains. In particular, the accuracy
of the loop width fits is compromised by difficulties in mea-
suring quantities along entire loop length and by limits on the
versatility of the solutions whose structure imposes loop widths
on the models which may be incompatible with observations.
Our cross-sectional width model is defined by the loop height
and foot point separation and cannot be freely chosen. This in-
troduces significant uncertainty into the fit of the model width
to the data and some of this uncertainty is passed on to other
components of the model, qualifying some of the conclusions
drawn. The loop width profile affects the velocityV of the flow,
the net heat in/out of the flowq and the heat conduction−∇·FC.
Compared to a loop with expanding cross-sectional area as in
our models, a loop with constant cross-section whose physical
properties are otherwise the same would have smaller veloci-
ties close to the foot points. This would carry over to the net
heat in/out q so that the heating function’s asymmetry would
be reduced in a model with constant cross-section, by a fac-
tor of between 2 and 6 compared to our models. The width
affects the heat conduction as shown by Eq. (33), where the
second term describes the effect of expanding/converging field
lines. In models with maximum temperature at the apex such
as ours, field lines which converge towards the foot points in-
hibit heat conduction from the apex to cooler regions lower
down. The non-constant cross-section changes the conduction
function significantly compared to a model with constant cross-
section, but since the conduction plays a small role in the
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Fig. 10.An MHD model of a half-loop observed by SUMER fitted to observational data: the plots are organised as in Fig. 1.

heating model this difference does not change the heating
function significantly. It is not known if the observed loops
have constant or expanding cross-sections. Even if some or
all have constant cross-sections, we have demonstrated that
plasma flow can have a visible effect on the heating distribu-
tion. This and other smaller uncertainties do not affect the broad
conclusions drawn from the models and are a small price to pay

for a full MHD treatment and the physical insight that this af-
fords. In the future we intend to establish more general patterns
by modelling more data sets and by applying more solution
classes from Table 1 of Paper I.

Of course some loops in the solar atmosphere are not in
equilibrium and the heating mechanism may be highly non-
steady. A full time-dependent MHD treatment of the evolution
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Fig. 11. An MHD model of the half-loop observed by SUMER fitted to observational data: the plots are organised as in Fig. 5. Note that in
these plots the loop profiles resemble the profiles of the downflow (right) leg of the TRACE and CDS examples in Figs. 5 and 8.

of a coronal loop is not possible at present due to theoretical
difficulties. In the meantime it is important to clarify the more
basic steady states.

Equilibrium solutions of the MHD equations have been
applied in modelling coronal and chromospheric structures in
one or two dimensions in the past (see Paper I). One criticism
of such models is that, although they model well the homo-
geneous macroscopic structure of the coronal magnetic field,
the corresponding homogeneity of the plasma parameters in
these models does not explain the well-defined and localised

plasma emission patterns familiar from observations1. Models
of flows in isolated magnetic flux tubes has been carried out
with full force-balance in a hydrostatic medium by Thomas &
Montesinos (1990) and Degenhardt (1989). There has also been
some effort to model the effect of an external magnetic field on

1 See Petrie & Neukirch (1999) for 3D MHD flow equilibria where
localising velocity and density along chosen field lines is possible,
although these solutions have other physical disadvantages. See also
Surlantzis et al. (1994) for approximate low-β barotropic flow solu-
tions modelling dense loops in a sparse medium.
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a magnetic flux tube (with no flow) by balancing the magnetic
tension of the tube against buoyancy forces deriving from the
ambient magnetic and gas pressures (Parker 1981; Browning &
Priest 1984, 1986). However, in the corona plasma loop struc-
tures trace out magnetic field lines whose field strength and
configuration are representative of the volume as a whole (Bray
et al. 1991). Such flux tubes are referred to by Thomas (1988)
as “embedded” as opposed to the “isolated” category of in-
terest to these authors and their models cannot describe the
full equilibrium force balance for the corona. It seems, then,
that full equilibrium solutions of the MHD equations are the
most appropriate approach to modelling steady coronal struc-
tures. Furthermore, judging from the widespread application of
global equilibrium models, in particular the routine use of po-
tential and linear force-free field models, that this weakness is
a small price to pay for the benefits of equilibrium models. We
have demonstrated the importance of a full treatment of the mo-
mentum balance as well as the energy balance in determining
the plasma dynamics and thermodynamics of a coronal loop.
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