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AB S TRACT

The axisymmetric 3D MHD out¯ow of cold plasma from a magnetized and rotating

astrophysical object is numerically simulated with the purpose of investigating the

magnetocentrifugal acceleration and eventual collimation of the out¯ow. Gravity and

thermal pressure are neglected while a split monopole is used to describe the initial

magnetic ®eld con®guration. It is found that the stationary ®nal state depends critically on a

single parameter a expressing the ratio of the corotating speed at the AlfveÂn distance to the

initial ¯ow speed along the initial monopole-like magnetic ®eld lines. Several angular

velocity laws have been used for relativistic and non-relativistic out¯ows. The acceleration

of the ¯ow is most effective at the equatorial plane and the terminal ¯ow speed depends

linearly on a. Signi®cant ¯ow collimation is found in non-relativistic ef®cient magnetic

rotators corresponding to relatively large values of a* 1 while very weak collimation

occurs in inef®cient magnetic rotators with smaller values of a < 1. Part of the ¯ow around

the rotation and magnetic axis is cylindrically collimated while the remaining part obtains

radial asymptotics. The transverse radius of the jet is inversely proportional to a while the

density in the jet grows linearly with a. For a* 5 the magnitude of the ¯ow in the jet

remains below the fast MHD wave speed everywhere. In relativistic out¯ows, no collima-

tion is found in the supersonic region for parameters typical for radio pulsars. All the above

results verify the main conclusions of general theoretical studies on the magnetic accel-

eration and collimation of out¯ows from magnetic rotators and extend previous numerical

simulations to large stellar distances.

Key words:MHD ± plasmas ± stars: mass-loss ± pulsars: general ± ISM: jets and out¯ows ±

galaxies: jets.

1 INTRODUCTION

Plasma out¯ow from the environment of stellar or galactic objects,

in the form of collimated jets, is a widespread phenomenon in

astrophysics. The most dramatic illustration of such highly colli-

mated out¯ows may perhaps be found in relatively nearby regions

of star formation; for example, in the Orion nebula alone theHubble

Space Telescope (HST) has observed hundreds of aligned Herbig±

Haro objects (O'Dell & Wen 1994). In particular, recent HST

observations show that several jets from young stars are highly

collimated within 30±50 au from the source star with jet widths of

the order of tens of au, although their initial opening angle is rather

large, e.g., > 608 (Ray et al. 1996). There is also a long catalogue of

jets associated with active galactic nuclei (AGN) and possibly

supermassive black holes (Jones & Wehrle 1994; Biretta 1996).

To a lesser extent, jets are also associated with older mass-losing

stars and planetary nebulae (Livio 1998), symbiotic stars (Kafatos

1996), black hole X-ray transients (Mirabel & Rodriguez 1996),

supersoft X-ray sources (Kahabka & Trumper 1996), low- and

high-mass X-ray binaries and cataclysmic variables (Shahbaz

et al. 1997). Even for the two spectacular rings seen with the

HST in SN87A, it has been proposed that they may be inscribed

by two precessing jets from an object similar to SS433 on an

hourglass-shaped cavity that has been created by non-uniform

winds of the progenitor star (Burderi & King, 1995; Burrows

et al. 1995).

On the theoretical front, themorphologies of collimated out¯ows

have been studied, to a ®rst approximation, in the framework of

ideal stationary or time-dependent magnetohydrodynamics

(MHD). Of stationary studies, after the pioneering 1D (spherically

symmetric) works of Parker (1963), Weber & Davis (1967) and

Michel (1969), it was Suess (1972) and Nerney& Suess (1975) who

®rst modelled the 2D (axisymmetric) interaction of magnetic ®elds

with rotation in stellar winds, by linearization of the MHD equa-

tions in inverse Rossby numbers. Although their perturbation

expansion is not uniformly convergent but diverges at in®nity,
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they found a poleward de¯ection of the streamlines of the solar

wind caused by the toroidal magnetic ®eld. Blandford & Payne

(1982) subsequently demonstrated that astrophysical jets may be

accelerated magnetocentrifugally fromKeplerian accretion discs, if

the poloidal ®eld lines are inclined by an angle of 608, or less, to the

discmidplane [but see also, Contopoulos& Lovelace (1994), Shu et

al., 1994, Cao (1997), Meier et al. 1997)]. This study introduced the

`bead on a rigid wire' picture, although these solutions are limited

by the fact that they contain singularities along the axis of the

system and also terminate at ®nite heights above the disc. Sakurai

(1985) extended theWeber&Davis (1967) equatorial solution to all

space around the star by iterating numerically between the Ber-

noulli and the trans®eld equations; thus, a polewards de¯ection of

the poloidal ®eld lines was found not only in an initially radial

magnetic ®eld geometry, but also in a split-monopole one appro-

priate to disc-winds (Sakurai 1987). The methodology of meridion-

ally self-similar exact MHD solutions with a variable polytropic

index was ®rst introduced by Low & Tsinganos (1986) and

Tsinganos & Low (1989) in an effort to model the heated axisym-

metric solar wind. Heyvaerts & Norman (1989) have shown

analytically that the asymptotics of a particular ®eld line in non

isothermal polytropic out¯ows is parabolic if it does not enclose a

net current to in®nity, and, if a ®eld line exists that does enclose a

net current to in®nity, then somewhere in the ¯ow there exists a

cylindrically collimated core. Later, Bogovalov (1995) showed

analytically that there always exists a ®eld line in the out¯owing

part of a rotatingmagnetosphere that encloses a ®nite total poloidal

current and therefore the asymptotes of the out¯ow always contain a

cylindrically collimated core. Also, it has been shown in Bogovalov

(1992) that the poloidal ®eld lines are de¯ected towards the polar

axis for the split-monopole geometry and relativistic or non-

relativistic speeds of the out¯owing plasma. Sauty & Tsinganos

(1994) have self-consistently determined the shape of the ®eld lines

from the base of the out¯ow to in®nity for non-polytropic cases and

provided a simple criterion for the transition of their asymptotical

shape from conical (in inef®cient magnetic rotators) to cylindrical

(in ef®cient magnetic rotators). They have also conjectured that as a

young star spins down losing angular momentum, its collimated jet-

type out¯ow gradually becomes a conically expanding wind.

Nevertheless, the degree of the collimation of the solar wind at

large heliocentric distances still remains observationally uncon-

®rmed, since spacecraft observations offer ambiguous evidence on

this question. Another interesting property of collimated out¯ows

has emerged from studies of various self-similar solutions, namely,

that in a large portion of them, cylindrical collimation is obtained

only after some oscillations of decaying amplitude in the jet width

appear (Vlahakis & Tsinganos 1997). Radially self-similar models

with cylindrical asymptotes for self-collimated and magnetically

dominated out¯ows from accretion discs have been constructed by

Ostriker (1997). All existing cases of self-similar, jet- or wind-type

exact MHD solutions can be uni®ed by a systematic analytical

treatment wherein the available examples of exact solutions emerge

as special cases of a general formulation, while at the same time

new families with various asymptotic shapes, with (or without)

oscillatory behaviour emerge as a by-product of this systematic

method (Vlahakis & Tsinganos 1998). Altogether, some general

trends on the behaviour of stationary, analytic, axisymmetric MHD

solutions for MHD out¯ows seem to be well at hand.

However, observations seem to indicate that jets may inherently

be variable. Thus, time-dependent simulations may be useful for a

detailed comparison with the observations. Uchida & Shibata

(1985) were the ®rst to perform time-dependent simulations and

demonstrate that a vertical disc magnetic ®eld if twisted by the

rotation of the disc can launch bipolar plasma ejections through the

torsional AlfveÂn waves that it generates. However, this mechanism

applies to fully episodic plasma ejections and no ®nal stationary

state is reached that can be compared with stationary studies.

Similar numerical simulations of episodic out¯ows from Keplerian

discs driven by torsional AlfveÂn waves on an initially vertical

magnetic ®eld have been presented by Ouyed & Pudritz (1997).

Goodson, Winglee & Bohn (1997) have proposed a time-dependent

jet launching and collimating mechanism that produces a two-

component out¯ow: a hot, well-collimated jet around the rotation

axis and a cool but slower disc wind. Stationary MHD jet-type

out¯ows have been found in the study of Romanova et al. (1997), as

the asymptotic state of numerical simulations wherein a small

initial velocity is given in the plasma in a tapered monopole-like

magnetic ®eld. Numerical viscosity however results in non-parallel

¯ow and magnetic ®elds in the poloidal plane in the limited grid

space of integration. Washimi & Shibata (1993) modelled axisym-

metric thermo-centrifugal winds with a dipole magnetic ¯ux dis-

tribution B
2
p�v� ~ �3 cos2 v� 1� on the stellar surface (and a radial

®eld in Washimi 1990). In this case the magnetic pressure distribu-

tion varies approximately as B
2
f ~ B

2
p sin

2 v such that it has a

maximum at about cosÿ1 2vo <ÿ1=3 or vo < 558. As a result, the

¯ow and ¯ux are directed towards the pole and the equator from

the mid-latitudes around vo. The study was performed for rotation

rates that are uniform in latitude and up to 60R( in the equatorial

plane. Bogovalov (1996, 1997) modelled numerically the effects

of the Lorentz force in accelerating and collimating a cold plasma

with an initially monopole-type magnetic ®eld, in a region also

limited by computer time, i.e., the near zone to the central

spherical object.

This paper presents an extension of the previous results to large

distances from the star by using a new method for the continuation

of the small simulation box solution to very large distances. It also

examines the ef®ciency of magnetic rotators of various strengths in

transforming rotational energy to directed kinetic energy and how a

wide range of rotation rates affects the poloidal geometry of a

magnetic ®eld. In order to achieve these objectives, the rather

complicated nature of the problem requires that we start by limiting

the investigation to the simplest model of cold plasma ¯ow in a

monopole magnetic ®eld that is uniform in latitude, along which

there is an out¯ow with velocity Vo, the initial condition. This

simpli®cation allows us to better study and understand the non-

linear effects of the magnetocentrifugal forces alone in shaping the

®nal stationary con®guration. At the same time, however, it does not

allow us to perform a direct comparison of the obtained results with

observations. Clearly this is not the goal of the present paper since

for such a comparison we need to include gravity and thermal

pressure in our computations. Such a study has already been

performed in the context of the solar wind and it will be presented

elsewhere.

The paper is organized as follows. In Sections 2 and 3, the initial

con®guration used together with the method for the numerical

simulation in the nearest zone is discussed. In Sections 4 and 5

the analytical method for extending the integration to unlimited

large distances outside the near zone are brie¯y described. In

Sections 6 and 7 we discuss the results in the near zone containing

the critical surfaces and in the asymptotic regime of the collimated

out¯ow, for a uniform rotation. In Section 8 a rotation law appro-

priate for an accretion disc is used, while in Sec. 9 we brie¯y discuss

results of a relativistic modelling. A brief summary is ®nally given

in Section 9.
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2 THE MODEL OF A ROTATOR WITH A

MONOPOLE-L IKE MAGNETIC F IELD AND

THE OBJECTIVES OF THE PAPER

A general analysis of the asymptotical properties of non-relativistic

or relativistic magnetized winds has been already performed, e.g.,

Heyvaerts & Norman (1989), Chiueh et al. (1991), Bogovalov

(1995). Themain conclusions from such studies can be summarized

as follows:

(i) At large distances from the central source the poloidal

magnetic ®eld is similar (although not exactly the same) to a

split-monopole ®eld;

(ii) there exist cylindrically collimated and radially expanding

®eld lines, while the total electric current enclosed by any magnetic

surface is non-zero;

(iii) several physical quantities across the jet can be expressed by

simple formulas, under certain conditions.

The model of an axisymmetric rotator with a monopole-like

magnetic ®eld was ®rst used by Michel (1969) for the investigation

of the cold plasma ¯ow in the absence of gravity in a prescribed

poloidal magnetic ®eld. Later this model was used by Sakurai

(1985) in an attempt to solve self-consistently the problem of the

non-relativistic plasma out¯ow from a stellar object. This model

may be used to the study of plasma out¯ow from the magneto-

spheres of various cosmic objects under the following conditions:

(i) We are interested in the plasma ¯ow at large distances where

all magnetic ®eld lines are open. In this case, the ®eld of any

axisymmetric rotator, no matter what the nature of the central

object, becomes the ®eld of the so-called split monopole in the

far zone. In other words, the condition that should be ful®lled is that

the distance to the central source should be much larger than all the

dimensions of the central source (see also Heyvaerts & Norman

1989; Bogovalov 1995). The solution for the split-monopole ®eld

can be easily obtained from a monopole-like solution by a simple

reverse of the magnetic ®eld in one of the hemispheres.

(ii) In considering the plasma ¯ow at such large distances it is

natural to neglect gravity. Thermal pressure however may play an

important role even at large distances from the central object

(Bogovalov 1995). But in this paper we are interested in isolating

the effects arising purely from themagnetic ®eld. Thus, to make our

analysis as simple as possible, in this paper we neglect thermal

pressure too.

(iii) We are also interested in studying the magnetocentrifugal

acceleration of the plasma. This acceleration process can be studied

with a monopole-like magnetic ®eld regarded as a ®rst approxima-

tion to the more realistic acceleration in a dipole-like magnetic ®eld

with open ®eld lines. Gravity and thermal pressure can be neglected

in this case (Michel 1969).

The previous claims (i)±(iii) are the result of a rather general

analysis. Among the main goals of the present work is to verify

these general conclusions in the context of the split-monopole

model and assumptions (i)±(iii).

3 THE PROBLEM IN THE NEAREST ZONE

To obtain a stationary solution of the problem in the nearest zone of

the star containing the critical surfaces, it is necessary to solve the

complete system of the time-dependent MHD equations and look

for an asymptotic stationary state. In order to isolate the effects of

the magnetic ®eld in determining the shape of the streamlines, we

shall neglect gravity and thermal pressure gradients, as discussed

above. With these simpli®cations, the ¯ow of the non-relativistic

plasma is described by the set of familiar MHD equations,

Bp �
=w ´ ÃJJ

r
; �1�

¶w

¶t
� ÿVr

¶w

¶r
ÿ Vz

¶w

¶z
; �2�

¶r

¶t
� ÿ

1

r

¶

¶r
�rrVr� ÿ

¶

¶z
�rVz� ; �3�

¶BJ

¶t
�

¶

¶z
�VJBz ÿ VzBJ� ÿ

¶

¶r
�VrBJ ÿ VJBr� ; �4�

¶VJ

¶t
� ÿ

Vr

r

¶

¶r
�rVJ� ÿ Vz

¶VJ

¶z
�

1

4pr
Br

¶

r¶r
�rBJ� � Bz

¶BJ

¶z

� �

;

�5�

¶Vz

¶t
� ÿVr

¶Vz

¶r
ÿ Vz

¶Vz

¶z
ÿ

1

8prr2
¶

¶z
�rBJ�

2
ÿ

Br

4pr

¶Br

¶z
ÿ

¶Bz

¶r

� �

;

�6�

¶Vr

¶t
�ÿ Vr

¶Vr

¶r
ÿ Vz

¶Vr

¶z
ÿ

1

8prr2
¶

¶r
�rBJ�

2

�
V

2
J

r
�

Bz

4pr

¶Br

¶z
ÿ

¶Bz

¶r

� �

; �7�

wherewe have used cylindrical coordinates �z; r;J�, r is the density,

V the ¯ow ®eld and B the magnetic ®eld with a poloidal magnetic

¯ux denoted by w�z; r�.

A correct solution of the problem requires a speci®cation of the

appropriate boundary conditions at some spherical boundary

R � Ro of the integration.

(1) A constant plasma density ro at R � Ro.

(2) A constant total plasma speed Vo in the corotating frame of

reference at R � Ro, V
2
�r;o� � V

2
�z;o� � �V�J;o� ÿ Qro�

2
� V

2
o .

(3) A constant and uniform-in-latitude distribution of the mag-

netic ¯ux function w � wo at R � Ro.

(4) Finally, the continuity of the tangential component of the

electric ®eld across the stellar surface in the corotating frame,

�V�J;o� ÿ Qro�B�p;o� ÿ V�p;o�B�J;o� � 0.

We shall also use dimensionless variables, Z � z=Ra, X � r=Ra,

t � tV0=Ra, where Ra is the AlfveÂn spherical radius of an initially

radial, monopole-like, nonrotating magnetic ®eld, and de®ne the

dimensionless parameter

a �
QRa

Vo

:

This parameter a characterizes the in¯uence of the magnetic ®eld

and rotation on the acceleration and collimation of the plasma. It is

proportional to the time the plasma spends in the subAlfveÂnic

region in each period of rotation. Note that although the governing

equations (1)±(7) do not depend on a, the ®nal solution does

depend on a through the boundary conditions at the base of the

integration R � Ro (condition 4).

As we shall see, the solution in the nearest zone will relax after

suf®cient time to a stationary state. This stationary state will be next

used as the input for specifying the boundary conditions in the

superfast magnetosonic region. In this way we shall be able to
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obtain a complete solution of the stationary problem, from the base

up to large distances downstream.

4 THE STATIONARY PROBLEM

Below, we shall consider that the plasma may be relativistic or non-

relativistic and as before we shall neglect gravity and thermal

pressure. By Up � gVp=c and UJ � gVJ=c, we denote the poloidal

and azimuthal 4-speeds, where VJ is the azimuthal and Vp the

poloidal components of the velocity while g is the Lorentz factor of

the plasma. In the following subsection we review the basic

quantities that remain invariant along a poloidal streamline

w � const and express momentum balance along such a poloidal

streamline. In the next subsectionwe adopt a new coordinate system

for dealing with the trans®eld equation expressing momentum

balance across the poloidal streamlines.

4.1 MHD integrals

As is well known, the stationary MHD equations involve four

integrals (Tsinganas 1982). They are:

(i) The ratio of the poloidal magnetic and mass ¯uxes, cF�w�,

cF�w� �
Bp

4prVp

: �8�

(ii) The total angular momentum per unit mass L�w�,

rcUJ ÿ cFrBJ � L�w� : �9�

(iii) The corotation frequency Q�w� in the frozen-in condition

cUJBp ÿ cUpBJ � rgBpQ�w� : �10�

(iv) The total energy c
2
W�w� in the equation for total energy

conservation,

gc2 ÿ cF�w�rQ�w�BJ � c
2
W�w� : �11�

4.2 The trans®eld equation in the coordinates �w; hh�

Momentum balance across the poloidal ®eld lines is expressed by

the trans®eld equation, which determines their shape. This is a

rather complicated non-linear partial differential equation of mixed

elliptic/hyperbolic type. For analysing the behaviour of the plasma

at large distances, it occurred to us that it is convenient to work with

this trans®eld equation in an orthogonal curvilinear coordinate

system (w; h) formed by the tangent to the poloidal magnetic ®eld

line Ãhh � Ãp and the ®rst normal towards the centre of curvature of the

poloidal lines, Ãw � =w=j=wj (Sakurai 1990). A geometrical interval

in these coordinates can be expressed as

�dr�2 � g2wdw
2
� g2hdh

2
� r2dJ2

; �12�

where gw; gh are the corresponding line elements or components of

the metric tensor.

If T
ij
is the energy±momentum tensor of the plasma ¯ow (rV)

and electromagnetic ®eld (E;B) (Landau & Lifshitz 1975), the

equation ¶Twk
=¶x

k
� 0 (with covariant derivatives), has the follow-

ing form in the coordinates (w; h),

¶

¶w

B
2
ÿ E

2

8p

� �

ÿ
1

r

¶r

¶w
rV2

J ÿ
B
2
J ÿ E

2

4p

 !

ÿ
1

gh

¶gh

¶w
rV2

p ÿ
B
2
p ÿ E

2

4p

 !

� 0 : �13�

The ®rst term in this equation is the gradient of the pressure of the

electromagnetic ®eld, while the second is the sum of the inertial

terms due to the motion of the plasma in the azimuthal direction and

also due to the tension of the toroidal magnetic ®eld. To better

understand the physical meaning of the last term, note that since Ãhh is

perpendicular to Ãw we have,

1

gh

¶gh

¶w
�

1

rRcBp

; �14�

where Rc is the radius of curvature of the poloidal magnetic ®eld

lines, with Rc positive if the centre of curvature is in the domain

between the line and the axis of rotation and negative in the opposite

case.

With this expression, equation (13) becomes,

¶

¶w

B
2
p

8p

 !

�
1

8pr2
¶

¶w
r
2
�B

2
J ÿ E

2
�

� �

ÿ
1

4pr

¶r

¶w

� �

U
2
JBp

UpF�w�

ÿ
fUp ÿ F�w��1ÿ �rQ=c�2�Bpg

4prRcF�w�
� 0: �15�

From this equation, it may be seen that the last term is the sum of the

inertia of plasma and ®elds, connected with the motion of the

plasma and Poynting ¯ux along the poloidal ®eld line and tension of

the poloidal ®eld line.

4.3 The trans®eld equation for non-relativistic plasmas with

gravity and thermal pressure included

For completeness of the picture we present brie¯y here the trans-

®eld equation for a non-relativistic plasma ¯ow to demonstrate that

our method of solution of the stationary problem in the hyperbolic

region can be applied directly to this case too. The energy±

momentum conservation equation in the presence of gravity in

the non-relativistic limit is modi®ed as ¶T
wk
=¶x

k
� ÿr¶F=¶xw,

where T
wk

is again the energy±momentum tensor, F � ÿGM=R is

the gravitational potential of the star with mass M, and G is the

gravitational constant. This equation has the following form in our

curvilinear coordinates if some thermal pressure P is also included,

¶

¶w
P�

B
2

8p

� �

ÿ
1

r

¶r

¶w
rV2

J ÿ
B
2
J

4p

 !

ÿ
1

gh

¶gh

¶w
rV2

p ÿ
B
2
p

4p

 !

� ÿr
¶F

¶w
: �16�

All other equations describing the ¯ow of plasma along ®eld lines

will be the same, except the energy conservation equation that is

modi®ed as follows

V
2

2
�

d

dÿ 1

P

r
� Fÿ cF�w�rQ�w�BJ � W�w�c2; �17�

where d is the polytropic index of the plasma.

5 THE SOLUTION IN THE FAR ZONE

It is convenient to solve the trans®eld equation in the system of the

curvilinear coordinates introduced above. The unknown variables

are z�h;w� and r�h;w�. Therefore, we need to know the quantities gh,

gw, rw, zw, rh, zh, where rh � ¶r=¶h, zh � ¶z=¶h, rw � ¶r=¶w,

zw � ¶z=¶w.
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First, the metric coef®cient gh is obtained from the trans®eld

equation (13),

gh � exp

�w

0

G�h;w�dw

� �

; �18�

where

G�h;w� �

¶

¶w

1

8p
�B

2
ÿ E

2
�

� �

ÿ
1

r

¶r

¶w
rV2

J ÿ
1

4p
�B

2
J ÿ E

2
�

� �

rV2
p ÿ

1

4p
�B

2
p ÿ E

2
�

� � ;

�19�

for a cold plasma. For a non-relativistic ¯ow with ®nite thermal

pressure and gravity, the function G will have the form

G�h;w� �

¶

¶w

1

8p
B
2
� P

� �

�
¶

¶w
Fÿ

1

r

¶r

¶w
rV2

J ÿ
1

4p
B
2
J

� �

rV2
p ÿ

1

4p
B
2
p

� � : �20�

The lower limit of the integration in equation (18) is chosen to be 0

such that the coordinate h is uniquely de®ned. In this way h

coincides with the coordinate z where the surface of constant h

crosses the axis of rotation.

Secondly, the metric coef®cient gw is given in terms of the

magnitude of the poloidal magnetic ®eld by

gw �
1

rBp

: �21�

To obtain the expressions of rw, zw, rh, zh we may use the

orthogonality condition

rhrw � zhzw � 0 ; �22�

and also the fact that they are related to the metric coef®cients gh
and gw as follows,

g
2
h � r

2
h � z

2
h ; �23�

g
2
w � r

2
w � z

2
w : �24�

Thus, by combining the condition of orthogonality (22) and

equations (23) and (24) the remaining values of rh, zh are obtained,

rh � ÿ
zwgh

gw
; �25�

zh �
rwgh

gw
; �26�

with gh calculated by expression (18). For the numerical solution of

the system of equations (25) and (26) a two-step Lax±Wendroff

method is used on a lattice with a dimension equal to 1000.

Equations (25) and (26) should be supplemented by appropriate

boundary conditions on some initial surface of constant h. The

equations for rw, zw de®ning this initial surface in cylindrical

coordinates are as follows

¶r

¶w
�

Bz

rB2
p

; �27�

¶z

¶w
� ÿ

Br

rB2
p

: �28�

Weneed to specify on this surface the integralsF�w�; L�w�;Q�w� and

W�w� as the boundary conditions for the initial value problem. To

specify the initial surface of constant h and the above integrals, we

use the results of the solution of the problem in the nearest zone

when a stationary solution is obtained for the time-dependent

problem.

6 RESULTS IN THE NEAREST ZONE FOR

UNIFORM ROTATION , Q�w� � Qo

As the star starts rotating, in the initially radial magnetosphere, an

MHD wave propagates outwards carrying the effect of the rotation

and de¯ecting the ®eld lines polewards by the Lorentz force (Fig.

1). At times suf®ciently long after the shock wave has reached the

end boundary of the simulation (t >> 1), a ®nal equilibrium state is

reached (Fig. 2). In this stationary state, the poloidal magnetic ®eld

and the plasma density are increased along the axis because of the

focusing of the ®eld lines towards the pole (Fig. 2d).

In Fig. 2 the distances are given in units of the initial Alfvenic

radius Ra. Thick lines indicate AlfveÂn and fast critical surfaces

while thin lines the poloidal magnetic ®eld. At t � 0 the AlfveÂn

surface is spherical at R � 1. Dotted lines indicate poloidal

currents.

With the velocity maintaining the constant initial value Vo along

the Z-axis, the ratio Bp=r remains constant along this axis (w � 0).

As a result, the AlfveÂn speed at a given point of the Z-axis,

Va � Bp=
��������

4pr
p

, increases as the square root of the density

increases because of focusing. It follows that the AlfveÂn transition

at Ra�v � 0� occurs further downstream where Vo�Ra� � Va�Ra�,

i.e., at Ra�v � 0� > 1. As we move meridionally off the polar axis

toward the equator on the other hand, the bulk ¯ow speed is

increased because of the magnetocentrifugal acceleration; it thus

hits the AlfveÂn value earlier than it does on the axis, i.e.,
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Figure 1. A near-zone snapshot on the poloidal plane (Z; r) from the

simulation showing the change of shape of the poloidal magnetic ®eld

lines from an initially uniform-with-latitude radial monopole and before a

stationary state is reached. Distances are given in units of the AlfveÂn radius

Ra and time in units of the AlfveÂn crossing time ta � Ra=Va.



V�v� � Va�v�, at Ra�v� < Ra�v � 0�. Finally, on the equator the ¯ow

speed increases rapidly, with the result that the ¯ow becomes super-

AlfveÂnic much earlier, compared with the polar axis. The degree of

elongation of the AlfveÂn surfaces along the symmetry axis increases

with the value of a.

The behaviour of the fast surface has similarities and differences

with the shape of the AlfveÂn surface. First, both these critical

surfaces coincide at v � 0. As we move meridionally off the polar

axis toward the equator on the other hand, their shape becomes

different. This is due to the contribution of the azimuthal ®eld, since

in this case of cold plasma V
2
f � �B

2
p � B

2
f�=4pr. Thus, for

small colatitudes v, Vf increases due to the contribution of Bf

while also V slightly increases because of the magnetocentrifugal

acceleration. However, initiallyVf increases faster and therefore the
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Figure 2. Sequence of shapes of the poloidal ®eld lines by increasing the magnetic rotator parameter a from a � 0:5 (solar-wind-type slow magnetic rotator) to

a � 4:5 (fast magnetic rotator). The initial non-rotating monopole magnetic ®eld has a spherical AlfveÂn surface located at R � 1 and all distances are given in

units of the AlfveÂn radius Ra with the base located at R � 0:5. Dotted lines indicate poloidal currents. Thick lines indicate AlfveÂn and fast critical surfaces. At

t � 0 the AlfveÂn surface is spherical at R � 1.



fast transition is postponed further downstream. At larger v how-

ever, the competing ¯ow speed V increases faster than Vf and the

fast transition occurs closer and closer to the origin.

The dependence of the maximum height Zmax of the fast critical

surface on a is interesting too (Fig. 3). As a increases, Zmax

increases rapidly. This means that for suf®ciently fast rotators

with a$ 5, Zmax goes to in®nity and the ¯ow may stay subfast all

the way to large distances. This result may have some important

implications in the general theory of MHD winds. It clearly

indicates that a superfast stationary solution may not be obtained

for all sets of parameters. For large a no superfast stationary state is

found and thus the equilibrium is vulnerable to instabilities. Such a

situation may take place, for example, in young rapidly rotating

stars. Out¯ows from classical accretion discs (Shakura & Sunyaev

1973) are also expected to have such large values of a, since the

AlfveÂn and sound speeds in such discs are much smaller than their

respective Keplerian speed. Thus, since Va , Vs << VK and ra > rK,

we have

a �
Qra

Va

>>
QrK

VK

< 1:

It follows that out¯ows from rapidly rotating stars and thin classical

accretion discs may produce jets with characteristics that qualita-

tively differ strongly from those of laminar jets usually discussed in

the literature. This result is certainly obtained under the simplifying

assumptions of the present study, and further investigations are

necessary to explore the possibilities that may arise in this regime of

out¯ow. Up to now, all numerical simulations avoided this problem

by arti®cially taking a, 1 in order to obtain a stationary solution

(Romanova et al. 1997), or no stationary solution was obtained at all

(Ouyed & Pudritz 1997, see ®g. 8 in this work). Fig. 3 then may

indicate why no simulation has succeeded in producing stationary

supersonic jets from classical accretion discs up to now (Ferreira

1997).

7 RESULTS IN THE FAR ZONE

The characteristics of magnetized out¯ows at large distances from

the central object have been studied by Heyvaerts & Norman

(1989), Chiueh et al. (1991) and Bogovalov (1995). These studies

have concluded that a stationary axisymmetrically rotating object

ejecting magnetized plasma always produces a jet collimated

exactly along the axis of rotation, if the following conditions are

satis®ed:

(1) The ¯ow is non-dissipative.

(2) The angular velocity of rotation is non-zero everywhere

(actually, if Q � 0 on some ®eld lines, the same conclusion remains

valid).

(3) The total magnetic ¯ux reaching in®nity in any hemisphere

of the out¯ow is ®nite.

(4) The polytropic index of the plasma d > 1.

In such an out¯ow the density of the poloidal electric current is non-

zero in the region of the collimated ¯ow. Conversely, in the region

of non-collimated ®eld lines the density of the poloidal electric

currents equals zero. This condition can be expressed by the

constancy of the quantity r
2Q�w�Bp=Up, which we shall call the

Heyvaerts±Norman integral.

7.1 Ef®ciency of the magnetic rotator

In the Weber & Davis (1967) model of a magnetized equatorial

wind the terminal equatorial speed is superfast, with the fast mode

surface placed at some ®nite distance from the star. If the initial

velocity of a cold plasma is equal to zero on the surface of the star,

the fast critical point is at in®nity and we obtain the so-called

Michel's (1969) minimum energy solution. This solution is valid

when the monopole-like poloidal magnetic ®eld is slightly dis-

turbed by the plasma. In this case the asymptotic speed at in®nity

on the equator is V¥ � �3=2�Va, while the total speci®c angular

momentum in the system in units of RaVo is L � Qr2a =RaVo. We

recall that Ra is the radius of the initial spherical AlfveÂn surface

while ra is the AlfveÂnic radius on the equator at a given angular

velocity. An important physical quantity in magnetized out¯ows

is the magnetic rotator energy, EMR, the product of the total

speci®c angular momentum and Q. The basal Poynting energy

de®ned as the ratio of the Poynting ¯ux density Sz per unit of

mass ¯ux density rVz is approximately equal to EMR if at the base

of the out¯ow the radius of the jet is much smaller than the

AlfveÂn radius and also the AlfveÂn number there is negligibly

small.

The energy losses of the magnetic rotator per particle in units of

V
2
o are

EMR

V2
o

�
Q2

r
2
a

V2
o

� aL : �29�

This formula is widely used in the theory of the rotational evolution

of stars. But the parameter a goes to¥ inMichel's minimum energy

solution. The plasma is strongly collimated under this condition and

thereforeMichel's solution is not valid. In this case it is important to

know how strongly the effect of collimation affects those frequently

used Michel's energy losses. The energy losses aL per particle on

the equator for Michel's monopole-like solution and our calcula-

tions are compared in Fig. 4.

The deceleration rate in our solution is less than in Michel's

solution. This is due to the collimation of the plasma. The poloidal

magnetic ®eld near the equator decreases and it leads to a reduction

of the deceleration rate.

It is interesting that in spite of the decrease of the deceleration

rate the terminal velocity of the plasma near the equator increases in

our solution. The terminal speed V¥ as a function of a is plotted in

Fig. 5. The terminal velocity is calculated on the equator at the

dimensionless distance X � 500. For the case of a fast magnetic
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Figure 3.Maximum height Zmax of fast critical surface as a function of a, in

units of the base radius ra.



rotator (Michel 1969), the dependence of V¥ on a is

V¥

Vo

�
1

Vo

Q2
R
4
aB

2
a

ÇM

� �1=3

� a2=3
;

i.e., it goes like a2=3. This increase of the terminal velocity on the

equator in comparison to that in Michel's solution is due to the

collimation of the plasma. In the collimated ¯ow there exist strong

gradients of the toroidal magnetic ®eld, which additionally accel-

erate plasma. This means that in collimated ou¯ows we have amore

effective acceleration of the plasma by the magnetic rotator.

The ef®ciency e of the magnetic rotator in transforming part of

the base Poynting ¯ux to poloidal kinetic energy at in®nity is

measured as the difference of the poloidal kinetic energies at

in®nity and at the base normalized to the total energy E (in units

ofV2
o ). The poloidal kinetic energy at in®nity inMichel's solution in

units of V2
o , E

pol
¥ , is

E
pol
¥ �

E

3
�

Q2
r
2
a

3V2
o

;

or

E
pol
¥ �

1

3

Qro

Vo

2 ra

ro

� �2

�
1

3
a2 ra

ro

� �2

�
1

3
aL:

The ef®ciency e is plotted in Fig. 6 for our solution (solid line)

and for Michel's solution (dashed line). We see that due to

collimation, the magnetic rotator becomes a very effective machine

for plasma acceleration.

7.2 The radius of the jet

The dependence of themagnitude of the poloidal magnetic ®eld and

density on the cylindrical distance r becomes particularly simple if

we assume for convenience that the following additional conditions

are met in the jet, namely that the integrals W�w�; L�w�;F�w�;Q�w�

and the terminal velocity Vj are constants and do not depend on w,

and also thatVj q Va�0�, whereVa�0� is the AlfveÂnic velocity on the

axis of rotation. In such a case, equations (15)±(27) give an

approximate estimate of the dependence of the magnetic ®eld on

r (Bogovalov 1995),

Bp�r�

Bp�0�
�

r�r�

r�0�
�

1

�1� �r=Rj�
2�
; �30�

where Rj is the radius of the core of the jet

Rj �

��������������������������

1�
Cs�0�

2

Va�0�
2

� �

s

gVj

Q
; �31�

with Cs�0� the sound velocity along the axis of the jet and Bp�0�,

r�0� the magnetic ®eld and the density of the plasma on the axis of

the jet, respectively. It is evident that the poloidal magnetic ®eld and
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Figure 4. For a magnetic rotator we plot the rotational losses aL per particle,

as a function of a (solid line). For comparison, the corresponding rotational

losses for Michel's minimum energy solution are also plotted (dashed line).

Figure 5. The terminal velocity V¥=Vo as a function of a (solid line). For

comparison, the corresponding terminal speed in Michel's minimum energy

solution is also plotted (dashed line).

Figure 6. Ef®ciency e of the magnetic rotator as a function of a (solid line).

For comparison, Michel's solution has e � 1=3 (dotted line).



the density remain practically constant up to distances of the order

of Rj and then decay fast as 1=r
2
outside the core of the jet.

Amongst the main goals of the present paper is the veri®cation of

these conclusions, together with the investigation of the process of

jet formation and the development of methods for the calculation of

the characteristics of the plasma in the jet.

In Fig. 7 the poloidal and azimuthal components of the magnetic

®eld are plotted, together with the magnetic ¯ux enclosed by a

cylindrical distance X. The poloidal magnetic ®eld Bp�X�=Bo (solid

line) is given in units of its reference value Bo, corresponding to the

magnetic ®eld at the symmetry axis r � 0 and some reference

height Zo � 60825 for a � 0:5 and Zo � 5000 for a � 3. The

asymptotic regime of the jet is achieved at these distances. The

intensity of the poloidal magnetic ®eld drops dramatically by more

than 50 per cent with respect to its value at the axis X � 0 within a

distance of the order of the collimation radius Xj � 1=a. The dashed

curve gives the analytically predicted solution for the poloidal

magnetic ®eld Bp�X�=Bo, equation (30). Apparently, for small

values of a there is good agreement between the calculated and

the analytically predicted values of the poloidal magnetic ®eld. For

a � 3 the agreement between the analytical prediction and the

numerical calculations is worse than for a � 0:5. This is natural

because the condition Vj q Va�0� under which the analytical pre-

diction is valid becomes less satis®ed for a � 3 than for a � 0:5.

The strength of the azimuthal magnetic ®eld Bf�X�=Bo (dotted

line) obtains a maximum value at the radius Xj. For X < Xj we have

conditions approximately similar to those corresponding to a uni-

form current density wire and therefore Bf ~ X. On the other hand,

for X > Xj, conditions like those existing outside a uniform current

density wire exist, and therefore Bf ~ X
ÿ1.

7.3 The Heyvaerts and Norman enclosed current

The electric current enclosed by a poloidal ®eld line w � const is

plotted in Fig. 8(a) for a � 3. We may distinguish three regimes.

Close to the axis, 0 < w < 0:1 the current increases with w since the

conditions are similar to those corresponding to some uniform

current density wire. A new regime appears whenwe are outside the

collimated region where the enclosed current reaches a plateau,

0:1 < w < 0:5. We shall call this regime the Heyvaerts±Norman

regime, since the conditions are similar to those existing outside a

uniform current density wire (XBf � const), a situation described

by Heyvaerts & Norman (1989). Finally, a third domain exists in

0:5 < w < 1 where again the enclosed current increases. It seems

that this contradicts the expected behaviour, but, as we show below,

it is due to a very slow decrease of this part of the current and ®nal

asymptotes are not achieved.

7.4 Logarithmic collimation asymptotically

One may use the coordinates �h;w� to show the distribution of the

electric currents (Fig. 8b). In this space, w � 0 corresponds to the

symmetry axis X � 0, w � 1 to the equator and h � 0 approxi-

mately to the source surface, while a poloidal ®eld line corresponds

to some vertical line w � const Fig. 8(b) demonstrates that there is

an electric current near the axis. Then the Heyvaerts & Norman

region of constant XBJ is formed, and ®nally the region where XBJ

increases is observed. It is important that the excess of the electric

current in this last region decreases with h. But this decrease occurs

on a logarithmic scale. The solution goes to its asymptotic form, but

this is done very slowly, on a logarithmic scale. This behaviour can

also be demonstrated by a simple analysis of the trans®eld equation.

In a supersonic ¯ow, the motion of every parcel of plasma is

controlled by the initial conditions and the forces affecting the

plasma. Here we are interested in the collimation process in the

region of radially expanding ®eld lines. In this region forces due to

the poloidal magnetic ®eld and the inertia of the plasma due to

motion in the azimuthal direction can be neglected in the trans®eld

equation in comparison to forces arising from the toroidal magnetic

®eld. The terms B
2
p=8p and rV2

J can be neglected since they drop

with distance r as 1=r4, while the terms corresponding to the

azimuthal magnetic ®eld B
2
J drop as 1=r2. Then, the trans®eld

equation (15) is simpli®ed as follows,

1

8pr2
¶

¶w
�rBJ�

2
ÿ

Up

4prRcF�w�
� 0: �32�
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Figure 7.Variation with the dimensionless cylindrical distance X of the enclosed magnetic ¯ux w�X� (dot±dashed line), strength of the azimuthal magnetic ®eld

Bf�X�=Bo (dotted line) and poloidal magnetic ®eldBp�X�=Bo (solid line) for a slowmagnetic rotatora � 0:5 and a faster magnetic rotatora � 3. The analytically

predicted solution for the poloidal magnetic ®eld Bp�r�=Bo is also shown (dashed line).



It may be seen from this equation that the curvature radius of a

®eld line of the poloidal magnetic ®eld is de®ned by the tension of

the toroidal magnetic ®eld. Let us estimate how the curvature radius

of the poloidal magnetic ®eld changes with distance assuming for

simplicity that the poloidal magnetic ®eld expands radially and

hardly depends on the polar angle v near the equator. At large

distances, the frozen-in condition gives for the electric current

rBJ � ÿ
r
2QBp

Vp

: �33�

Inserting this in (32) and assuming that the dependence of Bp on v is

weak, we get

2 cos vBpQ
2

V2
p

�
Vp

rRcFc
: �34�

The curvature radius of the ®eld line is de®ned by the equation

Rc �
dl

dv
; �35�

where dl is the element of the length of the ®eld line. Since to a ®rst

approximation dl � dR, where R is the spherical distance to the

centre of the rotating object, we get for the equation of a ®eld line,

dv

dR
�

cFBpR
2Q2

RV3
p

sin 2v : �36�

For a radially expanding magnetic ®eld BpR
2 is constant along a

magnetic ®eld line. Therefore, the turn angle of the ®eld line Dv

depends logarithmically on R,

Dv �
cFBp�RQ�

2 sin 2v

V3
p

ln
R

R0

; �37�

where R0 is the initial distance. According to (33) the change of the

electric current enclosed by a ®eld line is connected with the

divergence of the poloidal magnetic ®eld from the purely radial

shape. To have variation of rBJ with w it is necessary to turn some

®eld lines at some angle. Such a turn occurs at the exponentially

large distances de®ned by the expression

R � R0 exp
V
3
pDv

cFBp�RQ�
2 sin 2v

" #

> R0 exp
Dv tan v

2
; �38�

because for the superfast magnetosonic plasma we have

Vp > cFB
2
J=Bp; �39�

which taking into account (33) can be rewritten as V3
p > cFBpr

2Q2.

In other words, the magnitude of the exponent in equation (38) is

larger than Dv tan v=2, a large number near the equator. Apparently,

two points at small angular distance Dv on the same ®eld line have

exponentially large radial distances R0 and R from the origin. This

explains the picture we obtain in the numerical solution and agrees

with earlier results obtained by Eichler (1993) and Tomimatsu

(1994).

On the logarithmic scale of Fig. 9(a) the impression one may get

is that all poloidal ®eld lines are focused towards the symmetry axis.

Such a ®gure was produced by Sakurai (1985). However, this way

of plotting the shape of the poloidal streamlines is deceiving with

regard to the asymptotic shape of the magnetosphere, which is

different, as seen on the linear scale of Fig. 9(b). In this plotting it is

clear that the geometry of the poloidal ®eld lines is such that a

cylindrical core (the jet) is formed around the symmetry axis with a

width of the order of the base radius, but all other ®eld lines go to

straight asymptotes ®lling all space.

8 ACCRETION DISC -L IKE ROTATION ,

Q � Q�w�

An analysis of the asymptotic behaviour of MHD out¯ows in

Bogovalov (1995) shows that a discontinuity in the total electric

current is formed on the equator for out¯ows from astrophysical

objects having amagnetic ®eld directed in opposite directions in the

upper and lower hemispheres. In a pure monopole-like magnetic

®eld the electric current leaves the star in the upper hemisphere and

returns back in the lower hemisphere. In such a magnetosphere the

total electric current is continuous on the equator. But already in the

split-monopole model, where the magnetic ®eld has opposite

directions in the upper and lower hemispheres, the closure of the
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Figure 8. For a � 3, in (a) the electric current XBf enclosed by each

poloidal ®eld line w is plotted and in (b) isocurrent contours in the space of

�h;w� are plotted.



electric circuit occurs along the equator so that on the equator

XBf � 0. This means that the total electric current ¯owing in the

upper or lower hemispheres is equal to zero. On the other hand,

according to Bogovalov (1995), the magnitude of XBf is not equal

to zero on all ®eld lines of the supersonic ¯ow where QÞ 0. This

means that the function XBf�w� shown in Fig. 8(a) actually has a

discontinuity at the point w � 1 (on the equator) for the split-

monopole solution. This is the usual MHD contact discontinuity

between the ¯ows in the upper and lower hemispheres, with the

magnetic ®eld equal to each other in magnitude but with different

directions. It is important to check the validity of this conclusion for

a pure monopole-like magnetic ®eld.

In the following, we shall investigate the process of the formation

on the equator of such a discontinuity in the total electric current, in

the ideal MHD approximation. For this purpose, we take the rotation

of the star such that the total electric current that ¯ows in each of the

upper or lower hemispheres is independently equal to zero. For

example, this happens with a differential law of rotation wherein

Q�w� � 0 on the equator and the ®eld line on the equator does not

rotate. This guarantees that XBf � 0, everywhere on the equator.

In this work we took the simplest law of rotation

Q�w� � a�1ÿ w� : �40�

It is worth paying attention to the fact that that this law of rotation

describes qualitatively the rotation of accretion discs where the

largest angular velocity is at the inner edge of the disc and the lowest

velocity at the outer edge of the disc. The solution of the problem for

this differential law of rotation in the nearest zone is shown in Fig.

10. The most important difference with isorotation is the coinci-

dence of the fast mode and AlfveÂnic surfaces on the equator. This is

simply the consequence of the assumed zero toroidal magnetic ®eld

on the equator.

The poloidal magnetic ®eld in the far zone is shown on a

logarithmic scale in Fig. 11. It is clearly seen in this ®gure that

along with the expected collimation of the ¯ow towards the axis of

Magnetic acceleration and collimation of out¯ows 221

q 1999 RAS, MNRAS 305, 211±224

Figure 9. Shape of the poloidal magnetic ®eld lines for a magnetic rotator

parameter a � 3 plotted up to a radius 5000 times the initial base radius. In

(a) the poloidal ®eld lines are plotted on a logarithmic scale, and give the

erroneous impression that all ®eld lines are focused towards the symmetry

axis of the system. In the linear scale of (b) however, a cylindrical jet is

formed around the symmetry axis while all other ®eld lines go to straight

asymptotes that ®ll all space.

Figure 10. Shape of the poloidal magnetic ®eld lines in the near zone of a

differentially rotating magnetic rotator with a � 1: the ®eld lines focus

towards the pole and the equator.

Figure 11. Shape of the poloidal magnetic ®eld lines for a differentially

rotating magnetic rotator with a � 1, plotted on a logarithmic scale up to a

radius 1000 times the initial base radius.



rotation, there is also a focusing of the ¯ow towards the equator. The

explanation of this result is simple. With the assumed differential

law of rotation, the largest toroidal magnetic ®eld in the nearest

zone is found somewhere around the middle latitudes. The pressure

of this toroidal magnetic ®eld pushes the plasma towards the

equator and the pole from these mid-latitudes.

Fig. 12 shows the formation of a discontinuity in the total electric

current near the equator (w � 1�. On the other hand, isocurrent

contours in Fig. 12(b) show that at small h the dependence of XBf

on w is that of a smooth function with a maximum placed at

w � 0:5. This maximum moves to the equator as h increases and

®nally the distribution of XBf is similar to the one for an isorotation

as that shown in Fig. 8, with the exception of a discontinuity formed

near the equator.

9 RELATIVIST IC OUTFLOWS

In this section we discuss brie¯y the problem of collimation of a

relativistic plasma. This relativistic version of the problem under

consideration differs from the non-relativistic one only in the

modi®cation of the function G�h;w�. In the relativistic case, the

terms with the electric ®eld play an important role. To specify the

boundary conditions in the superfast magnetosonic region we will

use the approximate solution obtained in Bogovalov (1997) for a

relativistic plasma out¯ow in the nearest zone. In this solution the

magnetic ¯ux function is

w � 1ÿ cos v ; �41�

corresponding to the poloidal magnetic ®eld of a magnetic mono-

pole and

BJ � ÿxBp

g0

U0

; �42�

where g0 is the initial Lorentz factor of the plasma that is ejected

from the surface of the star,U0 is the initial 4-speed of the out¯ow, x

is the cylindrical distance in units of the light cylinder radius. We

assume a uniform rotation of the star,

Up � U0; UJ � 0 ; n�r� �
n0

r2
; �43�

where n0 is the density of the plasma on the light cylinder. The

solution written above is an approximate one, with corrections in

the subfast magnetosonic region of the order j=g30, where

j � �B
2
0=4pmc

2
n��RstarQ=c�

2 is the Poynting ¯ux per particle at the

equator. The fast-mode surface in these variables is rf �
���������

j=g0
p

.

This solution is valid under the condition j=g3 p 1. To get an idea

of the physical parameters it may be useful to recall that for the Crab

pulsar we have j, 106, g0 , 103, and j=g30 , 10ÿ3.

The boundary conditions in the form of the integralsW�w�, L�w�,

Q�w�, F�w� were speci®ed directly after the fast-mode surface and

the solution obtained is shown in Fig. 13 for j � 300 and g0 � 30.

The collimation of the ¯ow in this relativistic case is very weak. To

explain this, let us estimate the dependence of the radius of
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Figure 12. For a differentially rotating magnetic rotator with a � 1, in (a)

the electric current XBf enclosed by each poloidal ®eld line w is plotted and

in (b) isocurrent contours in the space of �w; h� are plotted.

Figure 13. Shape of the poloidal magnetic ®eld lines (solid lines) in the far

zone of a rotating magnetic rotator ejecting relativistic plasma. Dashed lines

show pure radial out¯ow.



curvature of the star on the distance to the star assuming that the

magnetic ®eld to a ®rst approximation is the ®eld of the magnetic

monopole. At large distances, we can neglect the poloidal magnetic

®eld and the azimuthal rotation of the plasma. In this case the

trans®eld equation becomes,

1

8px2
¶

¶w
�x

2
�H

2
J ÿ E

2
�� ÿ

�Up � F�w�x2Bp�

4pxRcF�w�
� 0: �44�

It is easy to obtain, similarly to the non-relativistic case, the

approximate equation for a ®eld line,

dv

dr
�

sin 2v

rU2
0 �U0=j � sin2 v�

: �45�

An integration of this equation gives approximately,

r � rf exp
DvU2

0 �U0=j � sin
2 v�

sin 2v

� �

; �46�

where rf is a lower limit of the integration. It may be seen that a

large factor U3
0 =jq 1 is present in the expression above for small

angles v <
����������

U0=j
p

and an even larger multiplierU
2
0 at larger angles.

Collimation is ®rstly expected at small angles Dv, v. Therefore,

the distance at which the jet is formed is

rcoll � rf exp
U

3
0

2j
: �47�

For the parameters used in the calculations rcoll � 3:5 ´ 1019rf . It is

interesting to estimate the distances at which we would expect

collimation of the wind from the Crab pulsar. For this pulsar

j � 106, g0 � 103 and thus we get rcoll < 10226 cm, a value much

larger than the size of the cavity (0.1 pc) formed by the wind before

it terminates in the interstellar medium.

This result shows that for parameters typical of radio pulsars

there is no collimation of the supersonic plasma at a reasonable

distance. Therefore, the plasma is not accelerated in this region, as it

was also concluded by Begelman & Li (1994).

10 SUMMARY

The axisymmetric 3D MHD out¯ow of plasma from a magnetized

and rotating central object is numerically simulated for awide range

of angular velocities of the central star. The simulation of the time-

dependent evolution of the ¯ow from some initial state was used to

obtain ®nally a stationary solution. The model of a non-rotating star

with a monopole-like magnetic ®eld was taken as the initial state of

the magnetosphere. It was found that the obtained stationary ®nal

state depends critically on a single parameter only. This parametera

expresses the ratio of the corotating speed at the AlfveÂn distance to

the initial ¯ow speed along the magnetic monopole-like ®eld lines.

The acceleration of the ¯ow was most effective at the equatorial

plane and the terminal ¯ow speed depended linearly on a. Sig-

ni®cant ¯ow collimation was found in fast magnetic rotators

corresponding to large values ofa > 1, while very weak collimation

occurs in slow magnetic rotators with small values of a < 1. Part of

the ¯ow around the rotation and magnetic axis is cylindrically

collimated, while the remaining equatorial part obtains radial

asymptotes. The transverse radius of the jet is found to be inversely

proportional to awhile its density grows linearly with a. For a > 5

the magnitude of the speed of the ¯ow in the jet remained below the

fast MHDwave speed everywhere.We predict that a regime of non-

stationary jet ejections may be possible at such high values of a.

The above results have been obtained under several simplifying

assumptions, such as the neglect of gravity and thermal pressure, as

well as by taking for the initial magnetosphere a split-monopole

con®guration. Despite these assumptions however, we recover the

main results of rather general theoretical studies on the formation of

a collimated out¯ow from a magnetized and rotating astrophysical

object. Nevertheless, for a meaningful comparison with the obser-

vations, one needs to relax these assumptions: a task taken up in the

next paper.
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