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Abstract. By means of a nonlinear separation of the variables in the governing full set of the magnetohydrodynamic (MHD)
equations for axisymmetric plasmas we analyse an exact model for magnetized and rotating outflows that are hotter and
overpressured at their axis. These outflows start subsonically and subAlfvénically from the central gravitating source and its
surrounding accretion disk. Subsequently they accelerate thermally and magnetocentrifugally and thus cross the appropriate
MHD critical points, reaching high values of the Alfvén Mach number. Three types of solutions are found: (a) collimated jet-
type outflows from efficient magnetic rotators with the flow confined by the magnetic hoop stress; (b) radially expanding wind-
type outflows analogous to the solar wind, from inefficient magnetic rotators or strongly overpressured sources; (c) terminated
solutions with increasing amplitude of oscillations in the width of the beam. In contrast to previously studied underpressured
outflows, the transition from collimated jets to uncollimated winds is not continuous in the appropriate parametric space with a
gap where no stationary solution is found. Superfast at infinity solutions are filtered by three critical points corresponding to the
three known limiting characteristics or separatrices of MHD wind theory. Collimated and terminated solutions cross the slow,
Alfvén and fast magneto-acoustic critical points. Radially expanding solutions cross the slow and Alfvén critical points while
the last boundary condition is imposed by requiring that the pressure vanishes at infinity.

Key words. magnetohydrodynamics (MHD) – Sun: solar wind – stars: pre-main sequence – stars: winds, outflows –
ISM: jets and outflows – galaxies: jets

1. Introduction

One well known example that demonstrate analytically that as-
trophysical jets can be accelerated and collimated magnetically
is the Blandford & Payne 1982 model. This model has been
shown to be the prototype of the wide family of the so-called
radially self-similar disk wind-type outflows, recently reexam-
ined analytically and numerically (e.g., Ouyed & Pudritz 1997;
Vlahakis & Tsinganos 1998; Krasnopolsky et al. 1999; Casse
& Ferreira 2000; Ustyugova et al. 2000; Krasnopolsky et al.
2003; Kudoh et al. 2002; Casse & Keppens 2004).

A complementary wide class of MHD outflow solutions,
which quantitatively demonstrated the transition of collimated
outflows from efficient magnetic rotators to uncollimated out-
flows from less efficient magnetic rotators, is self-similar in
the meridional direction (see Sauty et al. 2002a; henceforth
STT02, and references therein). This class of models may de-
scribe ordinary stellar winds, or collimated outflows composed
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of a central jet core surrounded by a disk wind (Tsinganos
& Bogovalov 2002). Although this model is somewhat sim-
ilar in geometry to an X-wind (e.g., Shu et al. 1994; Shang
et al. 2002), it nevertheless has some differences, such as that
it consistently solves the full set of the MHD equations from
the source to the far region and also that the connection be-
tween the disk and the magnetosphere is an X point rather than
a fan of concentrated magnetic flux. This class of analytical
models may also be compared to the corresponding relaxation
states of recent numerical simulations (e.g., Koide et al. 1998;
Bogovalov & Tsinganos 1999; Keppens & Goedbloed 2000;
Matt et al. 2003; Koide et al. 2000; Koide 2003) as is discussed
in Sect. 6.2.

In such meridionally self-similar models, one may either
prescribe the poloidal structure of the streamlines, or assume
a relationship between the radial and longitudinal components
of the gas pressure gradient. The main properties of the first
class of solutions which are asymptotically collimated are out-
lined in Trussoni et al. (1997; henceforth TTS97) wherein the
essential role of rotation in getting cylindrical collimation has
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been demonstrated. On the other hand, if the two components
of the pressure gradient are related, the meridional structure
of the streamlines is self-consistently deduced from the solu-
tion of the full set of the MHD equations. Such rotating and
magnetized outflows with a spherically symmetric structure of
the gas pressure may be asymptotically superAlfvénic with ra-
dial or collimated fieldlines, depending on the efficiency of the
magnetic rotator (Sauty & Tsinganos 1994; henceforth ST94).

In Sauty et al. (1999; henceforth STT99) we extended the
results of ST94 by performing an asymptotic analysis of the
meridionally self-similar solutions for a non spherically sym-
metric structure of the pressure. It was pointed out there that
a superAlfvénic outflow may encounter different asymptotic
conditions where it can be thermally or magnetically confined,
and thermally or centrifugally supported.

Current-carrying underpressured flows with a pressure
increasing as we move away from the axis, were studied
in STT02. They were found to be either thermally or magnet-
ically cylindrically collimated around their axis, depending on
whether the efficiency of the magnetic rotator prevails or not to
the thermal confinement, respectively. They have been shown
to be well suited to describe various astrophysical winds and
jets (see Lima et al. 2001; Meliani 2001; Sauty et al. 2003).

We complete here this work by studying overpressured
outflows, i.e., with a pressure decreasing away from the sys-
tem axis. Such outflows can only be collimated via mag-
netic stresses if the magnetic rotator is sufficiently efficient.
Otherwise the flow structure attains asymptotically a radial
configuration. We present complete solutions that connect the
base of the flow with its superAlfvénic regime. In particu-
lar we investigate if, and under which conditions, the basal
region can be matched to the asymptotic solutions outlined
in STT99. Conversely to the previous study reported in STT02,
the present analysis requires a very careful topological study of
the MHD self-similar equations because of the presence of a
second X-type magnetosonic critical point.

In the following Sect. 2 and in order to establish the used
notation we briefly review the assumptions, parameters, vari-
ables and mathematical structure of the present model. In
Sect. 3 the asymptotic behaviour of the solutions presented
in STT99 is also very briefly outlined. The results and paramet-
ric study are presented in Sect. 4 while the main properties of
the three classes of cylindrical, radial and terminated solutions
are summarized in Sect. 5. Finally, in Sect. 6 we discuss the
astrophysical relevance of our results, in particular in relation
to jets associated with young stellar objects.

2. Governing equations for meridional self-similar
outflows

We summarize here the main assumptions of our meridion-
ally (θ−) self-similar treatment of the MHD equations. More
details can be found in STT94, STT99 and STT02.

2.1. Summary of the basic assumptions

The basic equations governing plasma outflows in the frame-
work of ideal MHD are the momentum, mass and magnetic

flux conservation equations, together with the frozen-in law for
infinite conductivity and the first law of thermodynamics. First,
with axisymmetry the poloidal component of the magnetic field
can be derived from a magnetic flux function A(r, θ) in spheri-
cal coordinates (r, θ, ϕ),

B =
∇A

r sin θ
× ϕ̂. (1)

Next, for steady flows, we judiciously specify the meridional
dependences of the velocity and magnetic fields, as well as of
the density and pressure, V, B, P and ρ respectively, which may
be written as follows (for details see ST94, STT99 and STT02):

Br =
B∗

G2(R)
cos θ, (2)

Bθ = − B∗
G2(R)

F(R)
2

sin θ, (3)

Bϕ = − λB∗
G2(R)

1 −G2(R)
1 − M2(R)

R sin θ, (4)

Vr = V∗
M2(R)
G2(R)

cos θ√
1 + δα(R, θ)

, (5)

Vθ = −V∗
M2(R)
G2(R)

F(R)
2

sin θ√
1 + δα(R, θ)

, (6)

Vϕ =
λV∗

G2(R)
G2(R) − M2(R)

1 − M2(R)
R sin θ√

1 + δα(R, θ)
, (7)

ρ(R, α) =
ρ∗

M2(R)
(1 + δα), (8)

P(R, α) =
1
2
ρ∗V2

∗Π(R)[1 + κα] + P0. (9)

In the above definitions, κ, λ, δ and P0 are model parameters
while we have also used the dimensionless magnetic flux func-
tion α(R, θ) = 2 A(r, θ)/r2∗B∗. Note that conversely to STT99
and papers before, we use a more flexible definition of the pres-
sure function, as in STT02. The dimensionless pressure along
the polar axis is defined as Π(R) within some free additive con-
stant P0. It does not appear in the final dynamical equations
as they depend only on the pressure gradient. However, this
constant can be adapted to the boundary conditions. In radial
solutions where Π goes asymptotically to zero, P0 should also
vanish to ensure that the temperature does not diverge as the
mass density also goes asymptotically to zero. Conversely, in
cylindrically collimated flows where Π can be a negative func-
tion, P0 should be adjusted such that the total pressure remains
everywhere positive.

The square of the poloidal Alfvén number

M2 ≡ M2(r) = 4πρ
V2

p

B2
p
, (10)

is assumed to be solely a function of the radial distance. For
convenience we have normalized all quantities at the Alfvén
surface along the rotation axis, r = r∗. The dimensionless radial
distance is denoted by R = r/r∗, while B∗, V∗ and ρ∗ are the
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poloidal magnetic field, velocity and density along the polar
axis at the Alfvén radius r∗, with V2∗ = B2∗/4πρ∗.

A second assumption is that the cylindrical dis-
tance 	(R, α) of a poloidal fieldline from the axis is separable
in the variables R and α, as 	2 = G2(R)α, where G2(R)
is the cross sectional area of a flux tube perpendicular to
the symmetry axis, in units of the corresponding area at
the Alfvén distance. Then, the dimensionless magnetic flux
function α(R, θ) is related to G(R) through the following
expression

α =
R2

G2(R)
sin2θ. (11)

Finally, for homogeneity with the notations in ST94, STT99
and STT02, we have also introduced the function F(R), which
is the negative logarithmic derivative of the well known expan-
sion factor used in solar wind theory (Kopp & Holzer 1976):

F(R) = 2

[
1 − d ln G(R)

d ln R

]
· (12)

We recall that the value of F defines the shape of the poloidal
streamlines. For F(R) = 0 the streamlines are radial, for F(R) >
0 they are deflected towards the polar axis (with F = 2 corre-
sponding to cylindrical collimation) while for F(R) < 0 they
flare towards the equatorial plane.

2.2. Parameters and variables

The model is controlled by the following four parameters.

– The parameter δ which governs the non spherically sym-
metric distribution of the density with a linear increase (or
decrease) of the density when receding from the rotational
axis for δ > 0 (δ < 0);

– the parameter λ which is related to the rotation of the
poloidal streamlines at the Alfvén surface R = 1;

– the parameter κwhich controls the non spherically symmet-
ric distribution of the pressure. For κ < 0 (κ > 0) the gas
pressure decreases (increases) by moving away from the
polar axis. In this paper we confine our attention to over-
pressured jets, i.e., when κ < 0;

– the gravitational field is written as

g = −GM
r2

r̂ = −1
2

V2∗
r∗
ν2

R2
, (13)

whereM is the central gravitating mass. As a consequence
there is an extra parameter ν which is the ratio of the es-
cape and flow speeds at the Alfvén surface on the polar
axis (R = 1),

ν2 =
GM
r∗V2∗
, (14)

With the assumed axisymmetry, the original system of the
MHD equations reduces to two coupled partial differential
equations for the density and the magnetic flux. Furthermore,
with the self-similarity assumption, the components of V and B
can be written as functions of θ and three functions of R,

namely G(R), F(R) and M(R). In this way, the momentum con-
servation law reduces to three ordinary differential equations
which together with Eq. (12) can be solved for the four vari-
ables M2(R), F(R), Π(R) and G(R) (see Appendix A).

2.3. Efficiency of the magnetic rotator

By integrating the momentum equation along a fieldline we ob-
tain the conserved total energy flux density per unit of mass flux
density. This is equal to the sum of the kinetic and gravitational
energies, together with the enthalpy and net heating along a
specific streamline. In the framework of the present merid-
ionally self-similar model, the variation of the energy across
poloidal fieldlines gives an important extra parameter (STT99):

ε =
M4

(GR)2

[
F2

4
− 1

]
− κM4

G4
− (δ − κ)ν2

R

+
λ2

G2

(
M2 −G2

1 − M2

)2

+ 2λ2 1 −G2

1 − M2
(15)

which is a constant on all streamlines (ST94).
Physically, ε is related to the variation across the fieldlines

of the specific energy which is left available to collimate the
outflow once the thermal content converted into kinetic energy
and into balancing gravity has been subtracted (STT99).

We can express ε/2λ2 in terms of the conditions at the
source boundary r0 (see STT99 for details),

ε

2λ2
=

EPoynt.,0 + ER,0 + ∆E∗G
EMR

, (16)

where EMR is the energy of the magnetic rotator (see Eq. (2.5a)
in STT99), EPoynt.,0 is the Poynting energy, ER0 is the rotational
energy at the base and ∆E∗G is the excess or deficit on a non-
polar streamline compared to the polar one of the gravitational
energy (per unit mass) which is not compensated by the thermal
driving,

∆E∗G = −
GM
r0

[
1 − T0(α)

T0(pole)

]
= −GM

r0

(δ − κ)α
1 + δα

· (17)

For ε > 0 collimation is mainly provided by magnetic means,
while for ε < 0 the outflow can be confined only by the ther-
mal pressure gradient, something which is not possible for
overpressured flows. Accordingly, in STT99 we defined flows
with positive or negative ε as Efficient or Inefficient Magnetic
Rotators, respectively (EMR or IMR).

A solution is determined by the four parameters ν, ε, κ and
λ. The parameter δ can be deduced from the constraint imposed
by the integral ε, Eq. (15), which has the following expression
at the Alfvénic singular surface (R = 1):

ε = (κ − δ)ν2 + λ2
(
τ2 + 1

)
− (1 − κ) + F2

∗/4, (18)

where τ[= (2 − F∗)/p] is given by Eq. (A.8).

3. Asymptotic behaviour of the solutions

For R � 1 the asymptotic parameters of collimated outflows
(F∞ = 2, G∞ and M∞ bounded) depend on the value of ε.
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Fig. 1. In a) is shown a plot of the dimensionless asymptotic radius of the jet G∞ and in b) of the wavelength of the oscillations Λosc. in units
of r∗/λ, vs. ε/2λ2 for a representative value of the terminal pressure, Π∞ = 0.01. Each curve is drawn for a constant value of κ/2λ2 which
ranges from −0.1 to −10−5. To the right of the dashed line is the domain of pressure supported and magnetically confined jets ( fBφ + f∇P) while
to the left of the dashed line is the domain of magnetocentrifugal jets ( fBφ + fVφ ) (STT99).

Force balance across the poloidal streamlines, f∇P+ fBφ + fVφ =
0, with f∇P, fBφ and fVφ the pressure gradient, magnetic stress
and centrifugal volumetric force, respectively, calculates M∞
and G∞ as functions of the parameters ε/(2λ2), κ/(2λ2) andΠ∞.

The asymptotic properties of these self-similar winds have
been discussed in detail in STT99, and here we briefly summa-
rize their main features for the case of overpressured outflows
(κ < 0), some of which are displayed in Fig. 1.

– Two main asymptotic regimes exist. In one the outflow is
collimated by the pinching of the toroidal magnetic field
(ε > εlim > 0) and in the other the outflow expands radially
(ε < εlim);

– for κ → 0 we have collimation for any value of ε > 0:
there is no pressure gradient across the streamlines and the
flow can be supported only by the centrifugal force ( fBφ +

fVφ = 0);
– magnetically collimated flows are supported either by the

centrifugal force or by the thermal pressure. For a given
set of values of κ/2λ2 and Π∞, solutions with an increas-
ing asymptotic radius G∞ are found to pass from centrifu-
gally supported to pressure supported. For each regime and
a given value of ε/2λ2 two solutions are found with a dif-
ferent asymptotic radius G∞;

– collimated streamlines always show oscillations. This be-
haviour is consistent with the results found in more general,
non self-similar treatments (Vlahakis & Tsinganos 1998)
and numerical simulations. However as we move along a
given curve with a fixed value of κ/(2λ2) and in the direc-
tion of increasing G∞ (see Fig. 1), in the region of cen-
trifugally supported flows, ε/(2λ2) decreases and then in-
creases again. In the region of minimum ε/(2λ2) where the
two regimes of centrifugally supported solutions merge we
see that the wavelength becomes imaginary. This suggests
that in this region cylindrical asymptotics is unstable.

In conclusion and within the present model, from the asymp-
totic analysis it turns out that overpressured meridionally self-
similar outflows from IMR should always radially expand with

an asymptotically vanishing pressure Π∞ = 0. Conversely, out-
flows from EMR should undergo a transition from radially ex-
panding to cylindrically collimating, as the efficiency of the
magnetic rotator increases.

4. Numerical results

4.1. Numerical technique

As in STT02, using routines of the NAG scientific package suit-
able for the treatment of stiff systems and the Runge-Kutta al-
gorithm, Eqs. (A.1)–(A.7) and (12) are integrated upstream and
downstream of the vicinity of the Alfvén transition (Rin = 1 ±
dR) with Min = 1 ± p dR and Gin = 1 ± (2− Fin)dR (Fin ≈ F∗).
The slope p of M at R = 1 is given in Eq. (A.8). We first inte-
grate upstream tuning the value of Fin until we select the crit-
ical solution that smoothly crosses the singularity correspond-
ing to the slow magnetosonic point and reaches the base of the
wind R0 with M → 0. With this value of Fin we then inte-
grate downstream to the asymptotic region (with R∞ usually
between 104 and 106).

Then, if the solution tends to become asymptotically ra-
dial or paraboloidal with a non zero pressure, we find that the
transverse gradient of the pressure dominates and forces the
flow streamlines to eventually flare towards the equator (or the
pole if pressure is negative) at a finite distance. Such a solution
is terminated. As is well known from the Parker wind theory,
a physically acceptable solution which obtains radial asymp-
totics should satisfy the correct boundary condition at infinity,
namely that the pressure should go to zero there. For this rea-
son, we simply tune the value of the pressure Πin (≈Π∗) such
that Π(R → ∞) vanishes. The various forces acting along and
normal to a poloidal streamline are indicated in Figs. 2–4 as
follows (see STT02): fg, for the gravitational volumetric force,
fVp for the inertial volumetric force, fBp for the poloidal mag-
netic volumetric force, and f∇P, fVφ , fBφ as defined in Sect. 3.

If an extra critical point appears downstream of the Alfvén
transition, we tune the value of the pressure Πin (≈Π∗) such
that the solution crosses this second X-type critical point. After
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Fig. 2. Typical example of a radially expanding solution. In a) Vr/V∗ along the polar axis is plotted vs. R the radial distance in units of the polar
Alfvén radius. The dotted line corresponds to the slow critical point and the dot-dashed one to the Alfvén point. In b) the shape of the poloidal
streamlines is plotted for ε/(2λ2) = −0.05 and κ/(2λ2) = −0.0005, with the dotted line indicating a streamline which is not connected to the
central star but to the surrounding accretion disk. The various volumetric forces acting along and perpendicular to a given streamline are also
plotted vs. R in the two lower panels. In c) positive forces (upper half) acting along the flow are accelerating forces while negative ones (lower
half) are decelerating ones. The inertial force is negative as it is the opposite of acceleration. In d) positive forces (upper half) tend to collimate
while negative forces (lower half) are decollimating. Symbols of the forces are defined in the text.

the critical point the solution is either collimated or terminated.
We can always adjust the value P0 such that the total pressure
remains positive everywhere (e.g. Figs. 3 and 4).

Finally, if the solution naturally collimates and does not
cross the second critical point, we obtain two alternatives.
Either we choose P0 = 0 as in STT99 and tune the value of
the pressure Πin (≈Π∗) such that Π(R) is positive everywhere.
Or, we let P0 � 0 as in STT02 (e.g. Figs. 4), and choose a
value of P0 > 0 such that the total pressure remains positive
everywhere.

It is worth to note that for κ < 0, even though the pressure
along the polar axis is always positive, it becomes negative for
those nonpolar streamlines which correspond to α ≥ −1/κ, as it
happened in TTS97. Thus, conversely to the κ > 0 collimated
solutions analysed in STT02, the present solutions cannot be
extended to all streamlines away from the flow axis. This limi-
tation however is expected since is well known that the merid-
ionally self-similar solutions are more adapted to describe the
flow close to its axis (cf. ST94) than far from it.

4.2. Behaviour of the solutions with κ and ε

In this subsection we have fixed ν = 1 and λ = 1 (with the
value of δ deduced from Eq. (18)) and analysed the trends of
the solutions for different values of ε/2λ2, κ/2λ2 and Π∗. Even
though this is a rather restricted set which does not exhaust the
whole space of the parameters, it may nevertheless illustrate
the main characteristics exhibited by the solutions.

For a constant negative value of κ and for ε increasing from
negative to positive values three types of solutions are succes-
sively found. In the κ/2λ2 vs. ε/2λ2 plane of Fig. 5 are sketched
the three distinct asymptotic regimes of the outflow:

– Radial asymptotics solutions. An example of such a so-
lution is shown in Figs. 2, where we have plotted the di-
mensionless radial speed along the polar axis vs. the ra-
dial distance R, the shape of the poloidal streamlines and
the volumetric forces acting along and perpendicular to the
flow. Such solutions correspond to the filled squares in the
[ε/2λ2, κ/2λ2] plane displayed in Fig. 5.
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Fig. 3. Typical example of a terminated critical solution. The same plots to those of Fig. 2 are shown for ε/2λ2 = 0.05 and κ/2λ2 = −0.00015. In
a) the dotted line corresponds to slow critical point, the dot-dashed one to the Alfvén point and the dashed line to the fast critical point. Positive
forces are accelerating in the upper part of c) and collimating in the upper part of d), while negative forces decelerate in c) and decollimate
in d).

– Terminated oscillating solutions, with a typical example
shown in Figs. 3. Terminated solutions correspond to the
crosses of the [ε/2λ2, κ/2λ2] plane (Fig. 5).

– Cylindrical asymptotics solutions, with a typical example
shown in Figs. 4. Asymptotically cylindrical solutions cor-
respond to the stars of the [ε/2λ2, κ/2λ2] plane (Fig. 5).

The same evolutionary trend is found for a given positive value
of ε by increasing κ from negative values (see Fig. 5). The
character of the solutions changes from radial asymptotics to
cylindrical ones through a transition where the solutions are
terminated.

If ε < 0, we are in the regime of IMR and the transverse
pressure gradient does not let the flow to cylindrically colli-
mate. In fact, solutions with a nonvanishing pressure are either
terminated with negative pressure, or they have excessive flar-
ing (F = −2) such that all streamlines close at the equator, a
rather unphysical situation as discussed in ST94. A third type of
solutions is found when the pressure at the Alfvén surface Π�
is tuned such that Π∞ vanishes, as we mentioned above. Then,
as predicted by the asymptotic analysis, the flow streamlines
asymptotically expand radially, with the Alfvén number in-
creasing unboundedly far from the base while the flow speed

is bounded (Vr −→ V0, Br −→ R2,M −→ R). For a given ε, by
decreasing κ to more negative values (Fig. 5), the solutions with
radial asymptotics have a decreasing terminal velocity and ini-
tial pressure Π�. This can be understood as follows. The trans-
verse pressure gradient is proportional to κΠ, and lower values
of Π� are needed to open the lines radially and at the same
time as the flaring is higher the velocity is lower as discussed
in Tsinganos & Sauty 1992. This last result is unexpected from
polytropic wind theory where a larger flaring leads to larger
velocities Kopp & Holzer (1976) but this is precisely what has
been observed for the fast component of the solar wind during
the minimum and the maximum of the last solar cycles (see
Wang 1995; Wang & Sheeley 2003).

For ε > 0 and κ lower than some threshold value κ1, the
same behaviour is observed. Solutions with an asymptotically
vanishing pressure are radial. Other solutions are either flaring
with F∞ = −2 or refocalizing on the axis if the pressure be-
comes negative and then flaring again with F∞ = −2.

When κ reaches the value κ1, we have the transition from
squares to crosses in Fig. 5. Now a second X-type critical point
emerges in the superAlfvénic regime for R > 1. Numerically,
this second critical point appears at a finite distance and is not
coming from infinity upstream, as one would expect. We no-
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Fig. 4. Typical example of a collimated critical solution. The same plots to those of Fig. 2 for ε/2λ2 = 0.05 and κ/2λ2 = −0.000005. In a) the
dotted line corresponds to the slow critical point (SMSS), the dot-dashed to the Alfvén point and the dashed to the fast critical point (FMSS).
Positive forces are accelerating in c) (upper part) and collimating in d) (upper part), while negative forces decelerate in c) and decollimate
in d).

tice further that, assuming |κ| 
 1, for radially expanding so-
lutions the quantity R2/G2 remains bounded, such thatD does
not reverse sign in this case, cf. Eq. (A.4). Conversely if the
flow tends to be collimated or becomes radial very slowly the
above quantity rapidly increases with R for R � 1, leading
to the appearance of this new singularity [D = 0 in Eq. (A.4)].
This explains the emergence of the second critical point in such
cases.

For a given range of κ-values, [κ1, κ2], the two unphysical
families which flare with F∞ = −2 separate at a finite distance.
In principle the only possible solution would be the critical one
that crosses this new X-type critical point. However, it turns
out that this critical solution always shows downwind of the
position of the critical point oscillations of increasing ampli-
tude and eventually terminates in a loop at a finite distance.
The termination position gets closer to the critical point by fur-
ther increasing κ to less negative values and/or increasing ε.
This type of solutions may be physically unacceptable since
they do not extend up to infinity, unless they are terminated
by a shock, with a positive pressure (we discuss this point in
more detail in the next paragraph). In this case, this extra criti-
cal point seems to be the first of two or more fast critical transi-
tions which seem to appear in the Weber & Davis 1967 1-D so-

lution topologies and also in the 2-D analysis of Heyvaerts &
Norman 1989. Similarly to those examples, the solutions loop
back rather sharply, returning upstream (Fig. 3).

If the efficiency of the magnetic rotator increases further
and/or κ gets larger than κ2, then a new family of cylindrically
collimated solutions enters the picture. Topologically, they ap-
pear once the turning point of the terminated solutions reaches
the X-type critical point. They have the typical properties of
those from an EMR with κ > 0 (see STT02). The critical solu-
tion itself changes as it becomes also cylindrically collimated.

The various families of solutions which exist in that case
are as follows. First, with rather high pressures we have solu-
tions which still flare with F∞ = −2. Second, with rather low
pressures we have the solutions which loop back. And finally,
in between those two families of solutions, for a given inter-
mediate range of Π∗, we have the third family of cylindrically
collimated ones.

One member of this third family of solutions crosses the
X-type singularity which is still present at the border between
cylindrical and looping solutions. The other members of this
third family of solutions are noncritical. The critical solution is
analogous to the limiting solution of STT02 for κ > 0.
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Fig. 5. Regions of the radially expanding (full squares), terminated (crosses) and collimated solutions (stars) in the plane of ε/2λ2 and κ/2λ2.

Furthermore we know from the asymptotic analysis that
different branches of solutions are present, corresponding to
centrifugally or pressure supported flows. The present numer-
ical results show that only the configuration with the smallest
transversal radius can be attained by the jet, which is supported
by the centrifugal force. Thus, as predicted by the asymptotic
analysis performed in STT99, all cylindrically collimated solu-
tions including the critical ones have almost the same asymp-
totic behaviour. In other words the pressure plays a minor role
in achieving the asymptotic configuration of these solutions.

5. Properties of the critical solutions

5.1. Cylindrically collimated solutions

An interesting novel feature in the present cylindrically colli-
mated solutions is the appearance of two X-type critical points
within the flow domain, in addition to the Alfvén critical point.
The only other known case where a unique steady MHD out-
flow solution is filtered by three critical points is the case of
a radially self-similar solution (Vlahakis et al. 2000; Ferreira
& Casse 2004). In general, at such critical points the bulk
flow speed equals to one of the characteristic speeds in the
problem. Hence, it is of physical interest to associate the flow
speeds at these critical X-type points to some characteristic
MHD speeds. In that connection, we first note that the present
solutions posses the symmetries of meridional self-similarity
and axial symmetry. Thus, in spherical coordinates (r, θ, ϕ),
the self-similarity direction is θ̂ and the axisymmetry direction
is ϕ̂. Therefore, a wave that preserves those two symmetries
should propagate along the r̂-direction in the meridional plane.
First, the incompressible Alfvén mode propagates along the
magnetic field (B) with velocity Va and in the direction r̂ of the
poloidal plane with a phase speed Va,r = B · r̂/√4πρ. Thus, at
the Alfvén point we should have M = 1. And second, the com-
pressible slow/fast MHD modes propagate in the direction r̂

with a phase speed VX ≡ Vslow,r, or, VX ≡ Vfast,r which satisfy
the quartic

V4
X − V2

X

(
V2

a +C2
s

)
+C2

s V2
a,r = 0. (19)

Hence, when the above equation is satisfied the governing
Eqs. (A.1)–(A.3) have X-type singularities and VX = Vp · r̂.

On the other hand, it is well known that in the MHD flow
system there exist two hyperbolic regimes wherein character-
istics exist: the inner, which is bounded by the cusp and the
slow magnetosonic surfaces and the outer extending down-
stream of the fast magnetosonic point. Within each of those
two hyperbolic regimes, there exists one limiting characteris-
tic or separatrix surface: the slow magneto-acoustic separatrix
surface (SMSS) inside the inner hyperbolic regime and the fast
magneto-acoustic separatrix surface (FMSS) inside the outer
hyperbolic regime (Bogovalov 1994; Tsinganos et al. 1996).
The true critical points are precisely found on these two separa-
trices. For example, in the case presented in Figs. 4, the SMSS
is at R = 0.751 while the FMSS is located at R = 4150.

In the underpressured solutions studied in STT02 we have
found only the X-type critical point inside the inner hyperbolic
regime wherein the radial outflow speed is Vr = Vslow,r (ST94).
Now, in the regime of cylindrically collimated solutions (do-
main with stars in Fig. 5), there exists a unique critical solution
that also crosses the second critical point. This solution always
has negative values of Π(R) asymptotically. Thus, in order to
have positive values of the total pressure everywhere in the
flow, we have to adjust P0 to some positive value (Eq. (9)). The
closer to zero is κ the more negative becomes the function Π
and the larger is the minimum value needed for P0.

The fast magnetosonic nature of this second critical point
can be analysed by drawing the characteristics in the vicinity
of this separatrix critical surface, provided that we are able
to define there the sound speed. Alhough the sound speed
is ill-defined in our model, we can nevertheless deduce its
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Fig. 6. Slopes of the two families of characteristics of the collimated critical solution of Figs. 4 in each of the two hyperbolic regimes of the
problem. In a) the slow magnetoacoustic separatrix surface (SMSS) is at R = 0.751 just before the slow magnetoacoustic surface (SMS). In b)
the fast magnetoacoustic separatrix surface (FMSS) is at R = 4158 above the fast magnetoacoustic surface (FMS) at about R = 3000. Arrows
indicate the direction of MHD signal propagation while two Mach cones above and below the FMSS are also shown.

value at the critical surface by following the steps presented
in Tsinganos et al. 1996,

C2
s =
∂P
∂ρ

∣∣∣∣∣∣∣∣(R,α) (20)

= −V2
�

2

∂Π
(
M2,R

)
∂M2

∣∣∣∣∣∣∣∣
(R,α)

M4 1 + κα
1 + δα

+ H(R, α), (21)

with H(R, α) a function which becomes zero at the critical sur-
face. The condition at the critical point is equivalent to set-
ting equal to zero the denominator [Eq. (A.4)] of Eqs. (A.2)
and (A.3),

(
M2

a − 1
) (

1 + κ
R2

G2

)
+

F2

4
+ R2λ2

(
1 −G2

)2

(
1 − M2

a
)2
= 0. (22)

Together with the previous definition of the sound speed and
Eq. (A.1), this can then be put into the form of Eq. (19)
with VX = Vr.

Moreover assuming that H(R) = 0 in all space we can
calculate the slopes of the two characteritics in the regions
where the equations are hyperbolic. The results are displayed in
Figs. 6 for the cylindrically collimated solution of Figs. 4. We
show that there is an inner hyperbolic domain bounded down-
stream by the slow magnetosonic transition as well as an outer
hyperbolic domain bounded upstream by the fast magnetosonic
surface. As in Tsinganos et al. 1996, the transition from hyper-
bolic to elliptic in Fig. 6a is very close to the critical transi-
tion SMSS such that it is impossible to distinguish between the

two without zooming closer than what is done in this figure.
Instead in Fig. 6b, the FMSS is clearly distinguishable from
the FMS. Thus, in both cases the magneto-acoustic separatrices
clearly differ from the corresponding magneto-acoustic transi-
tions in the same way the ergosphere differs from the event
horizon of a rotating black hole (see Sauty et al. 2002b).

5.2. Terminated solutions

We have seen that the main feature of the terminated solu-
tions is the onset, downstream of the FMSS, of oscillations
with growing amplitude. This is likely to be related to some
instability that does affect the configuration of the outflow
which thus cannot attain any steady configuration. This is
confirmed by the perturbative analysis in STT99: for this set
of parameters the asymptotic solutions show a turning point
(see Fig. 1, left panel, and Figs. 1 in STT99) and in this re-
gion the typical oscillations of the asymptotic streamlines are
not present, namely their wavelengths become imaginary (see
Fig. 1, right panel, and Fig. 8, Eqs. (5.4)–(5.5) in STT99).

The cylindrical solutions with the second critical point are
extended to infinity because there is some freedom on Π∞.
For the terminated solutions, cylindrical asymptots are forbid-
den because the cylindrical regime is unstable (infinite wave-
length of the oscillations). The only remaining solution is for
the lines to become radial. However, by crossing the second
critical point the value of Π is fixed, so there is little chance
that the solution becomes radial or paraboloidal because the
pressure does not vanish asymptotically. By plotting the forces
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across the lines, we see that in fact at the turning point the pres-
sure gradient dominates. It is balanced only by the curvature
force of the poloidal velocity which creates the turning point
and the termination of the solution.

5.3. Radial solutions

In outflows which are launched dominantly thermally (cf.
Fig. 2c), the streamlines start with a basically radial shape close
to their base. Further away, if the outflow is strongly overpres-
sured (κ < κ1), the asymptotics remains radial. Hence, there
is no drastic change in the geometry of the streamlines. On
the other hand, in mildly overpressured ouflows (κ > κ2), the
asymptotics changes to cylindrical (in the intermediate case
κ1 < κ < κ2 the oscillations are so strong that the solution termi-
nates). Thus, for κ > κ2, there exists a transition region between
the base and the asymptotic regime wherein the cylindrical ge-
ometry is finally obtained after the basal roughly radial regime.
During that transition phase the outflow naturally passes from a
stage of oscillations in its radius, Mach number and other phys-
ical parameters. These oscillations can be understood as the re-
sult of the interplay of the pinching magnetic tension force and
the resulting reaction by the flow (conservation of angular mo-
mentum). In consistency with the previous explanation, a con-
spicuous feature appearing in the asymptotically radially solu-
tions is the lack of any oscillation of the poloidal streamlines,
a result confirming the physical origin of these oscillations.

In that connection, theoretical arguments and various an-
alytical self-similar solutions have shown that a notable com-
mon feature of all self-consistent, self-similar MHD solutions
which become finally cylindrically collimated is that the out-
flow passes from a stage of oscillations in its physical param-
eters (Vlahakis & Tsinganos 1997). Such oscillatory behavior
of collimated outflows is not restricted to the few specific mod-
els examined so far, but instead it seems to be a rather general
physical property of an MHD outflow which starts noncylin-
drically before it reaches collimation. Note that the same fea-
ture of oscillations has been also found in non-self-similar sim-
ulations of outflows which start radially before the magnetic
tension converts them to a cylindrical shape (Tsinganos et al.
2003).

6. Conclusions

6.1. Summary of results

In this paper we continued the analysis of Meridional
Self-Similar Models (MSSM, hereafter) by confining our at-
tention to the study of outflows with a density increasing
away from the axis and towards the surrounding streamlines
[cf. Eq. (8) with δ > 0] and with a pressure decreasing from
the axis [cf. Eq. (9) with κ < 0]. In such overpressured out-
flows with a central dip in the density distribution, the temper-
ature is strongly peaked at the axis relatively to the surround-
ing regions, more than in the underpressured outflows studied
in STT02.

We have been able to construct solutions describing out-
flows starting subsonically and subAlfvénically from the cen-

tral gravitating source and its surrounding accretion disk and,
after crossing the MHD critical points, reaching high values of
the Alfvén Mach number.

In terms of asymptotic profiles three broad types of solu-
tions are found:

– (a) Collimated jet-type outflows from EMR where the out-
flow is confined by the magnetic hoop stress, provided that
they are not too overpressured (κ not too negative, i.e.,
κ > κ2). Among those solutions, a unique one crosses three
critical points: the SMSS, the Alfvén and the FMSS. We
analysed those solutions and have shown that the sepa-
ratrices indeed correspond to the three familiar separatri-
ces in MHD wind theory. This class of critical solutions
exhibits at large distances oscillations between over- and
under-pressured flow (Figs. 4).

– (b) Radially expanding wind-type outflows, analogous to
the solar wind, for all IMR [cf. Eq. (15) with ε < 0] or
strongly overpressured sources from EMR (ε > 0, κ < κ1).
Those solutions cross the slow and the Alfvén point and
the initial pressure is fixed by the outer boundary condition
that the terminal pressure should become zero. They do not
show any intermediate topology of a third critical point.

– (c) Terminated solutions. Such solutions cross again the
three MHD separatrices. The onset of the increasing am-
plitude oscillations and the termination of the solutions can
be understood because cylindrical asymptotics were shown
to be unstable. As for disk wind solutions crossing all crit-
ical points, shown in Vlahakis et al. 2000, such terminated
solutions can support terminal shocks. This is the oppo-
site of the solutions of refocalizing disk wind usually used
in models (e.g., Ferro-Fontán & Gómez de Castro 2003).
Nevertheless, our terminated solutions are usually having
very high temperature in the far regime and thus they are
unphysical.

Although from the asymptotic analysis presented in STT99
we could not exclude the existence of paraboloidal asymp-
totics, we could not find numerically any such solution except
in the limiting case ε = κ = 0 (ST94). We conjecture that
these paraboloidal solutions could be found in principle in the
transition region between radial and cylindrical asymptotics.
However steady equilibrium is impossible in this region and the
solutions terminate before reaching their asymptotic regime.

6.2. Astrophysical implications

Possibly related to the previous discussion on the lack of
paraboloidal solutions, we note that, conversely to underpres-
sured jets studied in STT02, the transition of collimated jets to
uncollimated winds is not continuous in the parametric space
showing a gap where stationnary solutions do not exist. We are
tempted to conjecture, then, for some jets with strong transient
events, such as violent outbursts, the following scenario: if the
outflow configuration is at the interface of the regime with col-
limated and non collimated solutions, an outburst could be as-
sociated with the flip over between the two different classes of
asymptotically collimated and radial solutions.



C. Sauty et al.: Nonradial and nonpolytropic astrophysical outflows. VI. 11

One of the major outstanding questions in astrophysical jets
research is how they are generated. Take for example the case
of the closer and thus better resolved jets associated with young
stellar objects. In that connection one may say that through a
combination of observations and numerical simulations we do
know several details about the propagation of these jets in the
parent cloud and their interaction with their environment but
we know relatively fewer details about their generation at the
“central engine” (cf. Hartigan 2003; Ray & Bacciotti 2003). At
the same time various studies have shown that a high degree of
collimation is already achieved very close to the source, namely
at 10 to 20 AU (Woitas et al. 2002).

In that content, two wide classes of models are available
today to study analytically the launching and eventual colli-
mation of MHD outflows (Vlahakis & Tsinganos 1998); first,
the family of the so-called radially self-similar models (RSSM)
which have as their prototype the Blandford & Payne (1982)
model and second the family of the so-called meridionally
self-similar models (MSSM) which have as their prototype the
Sauty & Tsinganos (1994) model and which we have explored
in this series of papers. A third class of models are the so-called
X-wind models where mass loss originates at a fan of concen-
trated magnetic flux in the inner disk radius (Shu et al. 1994;
Shang et al. 2002).

In an analytical MHD treatment of the problem of out-
flow launching and subsequent collimation, in the RSSM the
driving force and collimation mechanism are basically mag-
netic. Among the limitations of the RSSM is that they are in-
valid close to the jet axis where they have singularities and
are thus more appropriate to describe disk-winds which col-
limate within several AU from the star (Ferreira 1997; hence-
forth F97). Also, after several Alfvén radii when the stream-
lines reach their maximum cylindrical radius, they slowly re-
focus towards the axis and the solutions terminate. Another
difficulty of the cold plasma RSSM is that they predict rather
large terminal speeds and too low densities and ionisation frac-
tions and do not accomodate some efficient heating mecha-
nism which is needed in order to explain the observed emis-
sion (Dougados 2003). However, Casse & Ferreira (2000) have
shown that by including a hot corona above the disk it would
help to increase the mass loss rate and thus the terminal densi-
ties. In any case, the RSSM deal consistently with the accretion
ejection problem and have been recently used with some suc-
cess to compare observed jet widths and collimation scales in
several T Tauri microjets for which we currently have the cor-
responding observations (Dougados et al. 2000; Pesenti et al.
2003).

On the other hand, in the MSSM for jet acceleration and
collimation the driving force is a combination of thermal
and magnetocentrifugal terms while collimation can be also
achieved by a combination of pressure gradients and magnetic
tension forces. In the MSSM however, if the source region of
the outflow is restricted to be only the stellar base, the result-
ing mass loss is unrealistically low, unless it includes the in-
ner part of the disk. Nevertheless, an interesting fact is that
observations clearly show that jets extend to relatively great
distances (100 to 1000 AU) from the protostar where the ob-
servation of forbidden line emission means that the jets are still

warm/hot at such large distances. But then if jets are launched
from small regions and also expand, they should cool adiabati-
cally. The question arises then on how do these jets remain hot
at such distances from the protostar. Clearly a heating mecha-
nism is needed. Hence, observations seem to suggest that ther-
mal gradients, which may originate in a stellar or an accretion
heated disk-corona, play an important role in accelerating the
flow (Dougados 2003). Such a heating is a basic ingredient
of the MSSM and may thus explain the puzzle. In addition
steady MSSM stay tightly collimated to unlimited distances
from the source without a need to refocus towards their axis
in which they are valid without any singularity. Furthermore, it
has been suggested that HH jets may be the progenitors of the
(uncollimated) solar wind outflow, a form in which jets even-
tually evolve after the star looses angular momentum becom-
ing an inefficient magnetic rotator (ST94, STT99, STT02 and
this paper).

However, recent numerical simulations of magnetocentrifu-
gally collimated outflows from a rotating central object and/or
a Keplerian accretion disk have shown that relatively low mass
and magnetic fluxes reside in the produced jet as compared
to the surrounding wind (Tsinganos & Bogovalov 2002; Matt
et al. 2003). This is also the case in the solutions presented
in ST94 and STT02. In ST94 it is pointed that a significant
fraction of the total mass loss rate of the jet is originating in
the disk. Observations however indicate that in jets from young
stellar objects, the collimated outflow carries higher fluxes
than these studies predict. As a solution to this problem it has
been proposed that jets may be described as a two-component
system composed of an outflow originating at a central ob-
ject which is surrounded by a disk-wind (ST94, Koide et al.
1998; STT02, Tsinganos & Bogovalov 2002). In that respect,
Hartigan et al. 1995 have identified an outer low velocity com-
ponent (LVC) with velocities in the range of 10 to 50 km s−1

along with a high velocity component (HVC) with radial veloc-
ities of a few hundred km s−1. According to Kwan & Tademaru
(1995) the LVC is probably a low-velocity disk-wind that en-
compasses the jet. This view was confirmed later by Bacciotti
et al. (2002) using HST/STI data to investigate the velocity
structure of the DG Tau jet. They found that the kinematics
follows an “onion-like” structure with HVC closer to the jet
axis and a LVC spread out wider.

Double component jets also clearly appear in time depen-
dent simulations of jets around black holes and stars (e.g.,
Kudoh et al. 1998; Koide et al. 1998). The magnetic field
does not penetrate the black hole magnetosphere, thus the in-
ner plasma is compressed and a pressure driven outflow de-
velops. The surrounding wind is centrifugally driven from the
disk and magnetically collimated. However the main difference
between double jet component simulations and the present an-
alytical solutions is that the first describe dense core jets while
the second model hollow jets. At this point note that both ana-
lytical (Hanasz et al. 2000) and numerical (Kudoh et al. 2002)
studies of the flow stability tend to show that the inner flow is
probably more stable than the Keplerian outer part and this is
particularly true in the case of hollow jets. Further comparison
of simulations and our analytical modelling is however difficult
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because the boundary conditions generally used in disk winds
are rather different from the self-similar assumptions used here.

In accordance with the above theoretical and observa-
tional difficulties encountered by the single-component mod-
els, we propose that jets may indeed be described as a two-
component outflow system. The model presented in this paper
and in STT02 is by itself a double component jet structure for
cylindrically collimated solutions. One part of the jet comes
from the star itself. The other comes from the inner boundary
of the disk which is connected with the stellar magnetosphere.
Such double structure can be applied directly to model jets
from T Tauri stars with low mass accretion rate, like RY Tau
for instance. However for T Tauri stars having higher mass ac-
cretion rate, like DG Tau, a consistent model would be one with
an inner outflow described by a ST94-type MSSM, surrounded
by a wider F97-type RSSM disk-wind part. For example, in the
present MSSM the velocity is peaked at the axis and the degree
of collimation increases with velocity, as observed.

Supporting evidence for the previous scenarios comes from
recent findings on the rotation of jets from T Tauri stars with
high accretion rate, by using either near-infrared long-slit spec-
troscopy in a series of distant knots (several 1000 AU away), or,
by using HST/STIS observations much closer (within 100 AU)
(Bacciotti et al. 2002; Coffey et al. 2003). Remarkable fact is
that the magnitude of the only recently inferred toroidal ve-
locity in the jets (5–15 km s−1 at distances of 20 to 30 AU
from the flow axis and at around 100 AU from the plane of
the disk) is precisely what some time ago was already inferred
from MHD jet launching models (see for example, Tsinganos
& Trussoni 1991, Fig. 6; and Tsinganos et al. 1992, Figs. 2, 3
for a MSSM; or, Vlahakis et al. 2000, Figs. 5, 7 for a RSSM). It
should be interesting then to further discuss new observations
in the context of the two analytical available models (MSSM
and RSSM).
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Appendix A: MHD equations for meridionally
self-similar flows

Under the assumptions of axisymmetry and meridional
self-similarity, the MHD equations reduce to the following
three ordinary differential equations forΠ(R), M2(R) and F(R):

dΠ
dR
= − 2

G4

[
dM2

dR
+

M2

R2
(F − 2)

]
− ν2

M2R2
, (A.1)

dF(R)
dR

=
NF

(
R,G, F,M2,Π; κ, δ, ν, λ

)
RD (

R,G, F,M2; κ, λ
) , (A.2)

dM2(R)
dR

=
NM

(
R,G, F,M2,Π; κ, δ, ν, λ

)
RD (

R,G, F,M2; κ, λ
) , (A.3)

where we have defined:

D =
(
M2 − 1

) (
1 + κ

R2

G2

)
+

F2

4
+ R2λ2 N2

B

D2
, (A.4)

NF = −(δ − κ)ν2 RG2

2M2
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NM = (δ − κ)ν2 RG2

2M2

(
M2 − 1
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+κΠR2G2M2 F
2
− M4

4
(F − 2)

(
4κ

R2

G2
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M2

8
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(
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2M2

N2
V

D2

 , (A.6)

with

NB = 1 −G2, NV = M2 −G2, D = 1 − M2. (A.7)

The definitions of the various parameters is discussed in
Sect. 2.

At the Alfvén radius, the slope of M2(R = 1) is p =
(2 − F∗)/τ, where τ is a solution of the third degree polynomial:

τ3 + 2τ2 +

(
κΠ∗
λ2
+

F2∗ − 4

4λ2
− 1

)
τ +

(F∗ − 2)F∗
2λ2

= 0, (A.8)

and the star indicates values at R = 1 (for details see ST94).
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