FT992A&A. © 7287 Z8935

Astron. Astrophys. 287, 893-926 (1994)

ASTRONOMY
AND
ASTROPHYSICS

Nonradial and nonpolytropic astrophysical outflows

I1II. A criterion for the transition from jets to winds

C. Sauty' and K. Tsinganos?*
! Observatoire de Paris, D.A.E.C., F-92195 Meudon, France

2 Department of Physics, University of Crete, GR-71409 Heraklion, Crete, Greece
3 Research Center of Crete, FORTH, GR-71110 Heraklion, Crete, Greece

Received 22 July 1993 / Accepted 20 September 1993

Abstract. A new class of analytical solutions for rotating MHD
outflows from the gravitational potential of a central object is
discussed; the outflows are driven by thermal pressure gradi-
ents arising from a non polytropic heating, as well as by mag-
netic rotator forces. The solutions are obtained by a separation
of the variables, of the spherical distance R and of the mag-
netic flux function « in several physical key quantities. Thus,
the solutions are magnetic flux self-similar and treat fully the
dynamics of the flow from its source to large distances. The
topology and asymptotical behaviour of this broad class of so-
lutions is examined in detail. At the Alfvénic and X-type critical
points which the transAlfvénic solution crosses, the appropri-
ate criticality conditions are applied. Attention is focused on
the streamline shape which is calculated exactly and consis-
tently throughout the outflow and allows us to formulate a cri-
terion that distinguishes between collimated jets and non col-
limated winds. Thus, two classes of solutions with markedly
different asymptotics are found. The first corresponds to out-
flows wherein the streamlines obtain asymptotically a conical
shape on the poloidal plane, while the second is constituted
of collimated jet-type outflows wherein the streamlines obtain
asymptotically a cylindrical shape. Furthermore, it is shown
that a basic feature of such collimated flows is an oscillatory
jet width, without the help of an external confining pressure;
an analytical formula is given for the wavelength of these os-
cillations. Hence, the jet does not need to focalize completely
along the polar axis, but through successive contractions and
expansions in its width, it naturally relaxes into a cylindrical
pattern; it is argued that this is due to a consistent treatment of
the current flowing along the axis of the jet. The study is applied
to the relevant problem of jets from young stellar objects; this
preliminary application suggests that several observational con-
straints are satisfied if we have a two-component outflow, one
originating at the star while the other at the surrounding disc.
A simple criterion is given for the transition from a magnetic
rotator with collimated jets to a slow magnetic rotator with a
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noncollimated wind, in terms of the meridional anisotropy in
the available energy in the streamlines of the outflow; it essen-
tially amounts to saying that if the magnetic rotator results in a
surplus of energy along any nonpolar streamline as compared
to the available energy along the polar streamline, then the flow
collimates into a jet. It is suggested therefore that the shape of
the streamlines of the outflow from a rotating object switches
over from cylindrical to conical asymptotics, as the central ob-
jectlooses angular momentum and passes successively from the
stage of a pre-main sequence YSO to that of a main sequence
star.

Key words: MHD - solar wind —ISM: jets and outflows — stars:
mass-loss — stars: pre-main sequence — galaxies: jets

1. Introduction

In the last three decades observations have revealed that there
exist two wide classes of astrophysical large scale outflows orig-
inating from stars and stellar systems. First, there is the class of
astrophysical winds wherein the outflow at large distances from
its origin and of the central object obtains radial asymptotics;
its prototype is the solar wind which was predicted by Parker’s
fundamental hydrodynamic theory (1958, 1963) and was later
verified by in situ measurements at the interplanetary space on
the ecliptic plane; imminent measurements from the satellite
Ulysses outside the ecliptic plane and in the solar polar direc-
tions are expected to reveal unmeasured so far wind properties
at those large heliographic latitudes.

And second, there is the class of astrophysical jets, wherein
the outflow is collimated at various degrees over long distances
along some preferential direction. These supersonic beams were
proposed to exist in radio sources as a means of transporting en-
ergy from the intense central cores of active galaxies and quasars
to their distant lobes (Rees 1971); in recent years the existence of
such energy bridges has been also confirmed observationally in
many extragalactic objects (Hughes 1991). In particular, in the
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images of the well observed and classical jet in the elliptic galaxy
M87 obtained with the VLA as well as with the Faint Object
Camera aboard the Hubble telescope (Owen et al 1989; Mac-
chetto 1992), the magnetic vectors suggest that there is present
a rather strong toroidal component of the magnetic field; that
this jet is indeed highly twisted is also inferred from the fact that
the synchrotron emitting regions in the boundary layer of the
jet have a much larger pressure than the external medium and
therefore confinement could be assisted by magnetic tension. In
our Milky Way, similar high-speed bipolar outflows and optical
jets have been systematically observed to be associated with star
forming systems where accretion disks are also inferred to exist
(Lada 1985; Mundt 1985).

From the theoretical point of view three groups of studies
have been aimed towards describing the dynamics of a magne-
tized astrophysical outflow from a rotating gravitating central
object. First, the role of the magnetic field in carrying angular
momentum and thus braking the rotation of a star (Schatzman
1962; Mestel 1968; Mestel & Spruit 1987), was originally ad-
dressed in the approximation of the equatorial plane and for a
polytropic gas (Weber & Davis 1967; Belcher & MacGregor
1976; Cassinelli 1990) and later extended in all space around an
axisymmetric system (Nerney & Suess 1975a,b,c, 1985; Sakurai
1985, 1987, 1990). The method employed by Nerney & Suess
consists of a first order perturbative scheme of the spherically
symmetric flow, relevant to solar wind theory where departures
from radiality are expected to be small. On the other hand,
Sakurai’s treatment is a fully iterative numerical scheme. At
the beginning, the split monopole geometry with radial field-
lines is prescribed. Then at each iteration, the momentum equa-
tion along the fieldline (Bernoulli) is solved while the transfield
equation (Grad-Shafranov) is taken into account for a given
flow along the pipe, although it is pointed out that both equa-
tions should be solved simultaneously. An analogous numerical
technique has been developed by Li (1993) in the relativistic
regime and for a pre-specified magnetic field line geometry.
The analysis of Sakurai (1985, 1990) has also clarified the role
of the classical critical points found by Weber & Davis (1967).
Thus, the Bernoulli equation is shown to have two singularities
for a fixed geometry, namely the slow and fast magnetosonic
critical points, while in the transfield equation a singularity ex-
ists at the Alfvén transition. These critical points were shown
by Heinemann & Olbert (Heinemann & Olbert 1978; Sakurai
1990) to correspond to some characteristic velocities (the speed
of the cusp of the slow mode wavefront, the slow magnetosonic
speed and the fast magnetosonic speed) wherein the transfield
equation changes nature between the elliptical and hyperbolic
one. Such a numerical treatment was the first to provide global
solutions. Nevertheless, because of its pure numerical nature,
only a few boundary conditions have been studied. Moreover,
the streamlines do not converge to a cylindrical shape but rather
to a paraboloidal one, very slowly and the cross section of the
jet diverges only logarithmically. Thus the asymptotic speed is
constant but the density drops to zero logarithmically as well.
However the fieldline concentration near the polar axis forms
a condensation along it instead of a hollow jet structure. This
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may be instable to the kink instability, as suggested there. A
complementary numerical treatment has been performed for the
time-dependent MHD equations resulting to a twisted hollow
jet (Shibata & Uchida 1986, 1987). However, as it has been
noted (Lovelace 1992) those models never reach a steady state
and the twisting of the lines goes for ever.

Along the same lines, an analytical insight into the gen-
eral properties of steady magnetized flows has been provided
by analysing the asymptotic regime of the transfield equation
for polytropic flows, although with the exception of isother-
mal flows (Heyvaerts & Norman 1989). There, it has been con-
cluded that the behavior of the solution at the asymptotic regime
depends crucially on the poloidal current enclosed. Conical
asymptotics should enclose a finite constant poloidal current, but
cannot carry it by themselves. On the other hand, paraboloidal
asymptotics are shown to exist only in the case where the flow
does not contain any poloidal current. Finally, it is shown that
only cylindrical asymptotics are consistent with the polytropic
MHD equations for a flow that is everywhere super fast magne-
tosonic. In particular, it is shown that the matching of external
conical asymptotics to internal cylindrical asymptotics is not
possible in a smooth way.

A second class studied so far are the so-called self simi-
lar models, or more precisely a class of scaling models where
specific variable dependence has been assumed to allow an-
alytical and/or simplified numerical work. Chan & Henriksen
(1980) modelled axisymmetric and polytropic MHD flows in ra-
dio galaxies by neglecting gravity, setting to constants the MHD
integrals of the mass flux per unit of magnetic flux and coro-
tation angular frequency, truncating the Bernoulli integral, as-
suming transverse incompressibility, and finally assuming that
all variables are separable in cylindrical coordinates (z, @, ©)
wherein the dependent variables have self-similar distributions
across the flow. In particular, key-variables are w-self-similar
depending only on the vertical height z. Then, with an appropri-
ately prescribed form of some external confining pressure, they
observed numerically that the jet width exhibits quasi-periodic
oscillations caused by an oscillation in the dominance of the
external pressure and magnetic force on the one hand, and the
internal pressure of the jet, on the other. Thus, this numeri-
cal analysis has revealed some interesting physical features, for
example revealing an oscillatory shape of the jet. However, it
suffers from the drawbacks of neglecting gravity and most im-
portant from the truncation of the Bernoulli integral wherein
several w?-dependent terms are alltogether neglected. As a re-
sult, some not unimportant magnetic acceleration effects have
been eliminated right from the beginning.

Another subclass within the self-similar models has been
aimed towards an understanding of disk-winds (Blandford &
Payne 1982) and recently generalized by Pelletier & Pudritz
(1992). These centrifugally-driven wind solutions have been
used extensively in relation with modelling the observations of
collimated outflows from star forming systems (Pudritz & Nor-
man 1983, 1986). In Blandford & Payne’s (1982) analysis the
variables are scaled with the spherical radius r instead of the
cylindrical radius w and the cold plasma approximation (no
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thermal pressure gradient) is used in the limit of rapidly super-
sonic flows. Thus, for a fixed colatitude 8 all physical quantities
are equal within a factor of proportionality which is given at the
disc surface. This method allows to reduce the set of the ideal
MHD partial differential equations to a set of two ordinary dif-
ferential equations in @ effectively. We may call these solutions
r-self-similar since some key-physical quantities like the Alfvén
number and the cross sectional area of all nested magnetic flux
surfaces in units of the corresponding area at the Alfvén point,
are solely functions of §. A first order equation gives the evo-
lution of the Alfvén number and another second order equa-
tion provides the field/streamline geometry. Both equations do
possess the same singularities as a result of the simultaneous
treatment of all components of the momentum equation. And
consequently, apart from the Alfvén singularity, they find an
extra critical point which is not the fast magnetosonic critical
point. The Alfvén mode is an incompressible mode and thus
is not affected, while the fast magnetosonic mode is shifted
because waves must propagate orthogonally to the self-similar
direction § and compressible wave amplitudes are modified ac-
cordingly in this direction. Actually, these solutions do not even
pass through any critical point except the Alfvén singularity
since the other X-type critical point is always rejected at infi-
nite distance from the disc. Nevertheless they find two classes
of solutions: one consists of fast magnetosonic solutions with
paraboloidal asymptotics while the other one corresponds to
transfastAlfvénic solutions with a turning point and focalisation
onto the polar axis. Such a focalisation seemed to be unavoid-
able because of the current singularity along the axis in this
model that creates an excess of pinching forces that neither the
centrifugal forces nor the pressure gradient (that is neglected)
can balance. However this result is rather surprising, because, if
the flow remains superAlfvénic near the axis, the jet cross sec-
tional area cannot be reduced to less than its Alfvénic value. In
other words, centrifugal forces cannot be neglected near the ro-
tational axis, even asymptotically. Pelletier & Pudritz’s (1992)
analysis is essentially solving the asymptotic fast magnetosonic
regime in the cold plasma approximation, using a more gen-
eral form of the scaling (i.e. using more general power laws).
Although their solution is not self-similar, it still involves a
partial differential equation, and not a complete decoupling of
the variables. Among their solutions, they found one where the
poloidal current does not diverge along the pole and at infin-
ity. Yet these improved solutions correspond to a current free
plasma where all the necessary poloidal current is concentrated
along the polar axis, i.e., along a singular line of infinite cur-
rent density. Thus the solution has to be cut at the inner edge of
the disc. This was also required by the fact that the disc cannot
be Keplerian close to the star. Consequently, another model is
needed to explain the source of this inner current as well as the
connection between the disc and the stellar wind. Blandford &
Payne’s (1982) r-self-similar solutions have been recently ex-
tended to cold relativistic flows by Li et al. (1992) showing that
a kinetic energy flux comparable to, or higher than (Begelman
& Li 1994) the Poynting flux can be achieved in these flows. On
the other hand, Contopoulos & Lovelace (1993) seem to have
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extended the analysis of Blandford & Payne (1982) to more
general power law dependences of the physical quantities and
obtained various streamline shapes according to the magnitude
of the poloidal current enclosed by a flux surface.

A third class of solutions has been studied by averaging the
momentum equation across the jet and using an integral form of
the transfield equation together with the Bernoulli equation. Two
groups of studies which use this approach have been pursued.
The narrow jet approximation (Koupelis & Van Horn 1990;
Koupelis 1990) assumes that all quantities vary slowly across
the jet such that they can be replaced by their average values.
Obtaining thus an equation along the axis of the jet, it is further
assumed that the jet has a constant opening angle. This last as-
sumption, made for simplicity, seems to exclude solutions that
reach high terminal values and the flow asymptotically is su-
perAlfvénic but remains sub-fast magnetosonic with a decreas-
ing velocity. Another group of studies which does not exhibits
this drawback, assumes a separation of the variables and av-
erages across the jet the various conservation laws (Lovelace
et al 1992). Considering a hollow jet with the density and the
toroidal magnetic field peaking at the edge of the jet, the jet does
not carry any net poloidal current. They also assume that the jet
is isothermal up to a certain distance above the Alfvén surface
while it is adiabatic later on. The adiabatic region is consistently
found by solving both the energy and the momentum equation
while in the isothermal part a paraboloidal form of the line is
assumed and fitted to cross the various critical points.

In previous articles we first studied the case of rotating hy-
drodynamic flows with a density enhancement at the equatorial
regions and a streamline shape which is prescribed to be asymp-
totically radial (Tsinganos & Trussoni 1990); we found that the
lighter plasma at the poles relative to the equator, together with a
pressure higher at the equator than at the poles, resulted to high
asymptotic speeds of the wind. In a similar rotating hydrody-
namic outflow we indeed deduced this result that the streamlines
become asymptotically radial throughout all of the meridional
plane (Tsinganos & Sauty 1992, henceforth Paper I). The set-
ting of these problems is motivated and the results are relevant
to the phenomenon of fast streams associated with solar po-
lar coronal holes. Radial asymptotically streamlines were also
found in the subsequent study of a magnetized but nonrotating
outflow for the unique wind-type solution that crosses several
novel critical points (Tsinganos & Sauty 1993, henceforth Paper
II). The case of rotating magnetized helicoidal outflows wherein
the prescribed field line shape on the meridional plane was ra-
dial has been also analysed (Tsinganos & Trussoni 1992); there,
the presence of the toroidal magnetic and velocity fields, in ad-
dition to the poloidal ones, were found to accelerate radially the
outflow far from the base to high terminal speeds through the
transfer of energy flux from the Poynting energy flux. However,
a consequence of the assumed helicoidal structure is that, away
from the base and the rotational axis, the large magnetic ten-
sion of the toroidal component requires, for transfield balance,
a fast drop of the pressure as we move away from the magnetic
axis, yielding thus a negative gas pressure at large angles from
this axis. To avoid these negative pressures due to the radial
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expansion of the poloidal field and flow of a helicoidal system
we were guided to prescribe then a cylindrically collimated field
pattern on the poloidal plane and for a system which in a first ap-
proximation was treated as nonrotating (Trussoni & Tsinganos
1993); the negative pressures were indeed avoided but due to the
lack of available Poynting energy flux, the wind needed unreal-
istically high energies distributed throughout the entire length
of the flow channel in order to escape in a collimated manner
from the gravitational well. The natural following step is then to
deduce the streamline shape in arotating general MHD outflow;
this is the subject of the present analysis.

The structure of our paper is then as follows. To establish our
notation, in Sect. 2 we recall the basic integrals of the axisym-
metric MHD equations for a singly ionized plasma flowing out
of the gravitational potential of a central object. Then, Sect. 3 is
dedicated to the physical characteristics of this model. In partic-
ular, we show how the general class of global solutions of this
series of articles (Papers I & II) follows by judiciously choos-
ing the functional dependence of the appropriate key physical
quantities. It is emphasized that this class of global solutions
is especially adapted to describe the close axis region of the
flow in a consistent and general way. In Sect. 4 we examine the
transfield equation and the Alfvénic transition in some detail.
We then generalize the concept of the Bernoulli integral to our
non-polytropic study and explore the superAlfvénic regime and
the asymptotic conditions in Sect. 5. In particular, we show that
the character of the asymptotic behaviour depends crucially on a
characteristic parameter which measures the available magnetic
rotator energy along the nonpolar streamlines as compared to
the available energy along the polar axis. Thus, two classes of
asymptotics are shown to exist, conical and cylindrical. In ad-
dition, collimated (cylindrical) solutions are shown to be char-
acterized by oscillations whose wavelength is found in an ana-
lytical form by a simple expansion of the equations. And, those
oscillations occur without the presence of an internal thermal
pressure. In Sect. 6, we explore the subAlfvénic region and the
problem of the topologies together with the critical points which
choose the characteristic solutions. Thus, we are able to link the
conditions at the Alfvén transition to the conditions at the source
of the wind. Sect. 7 uses the global picture which emerges from
Sects. 5 and 6 to illustrate the case of collimated solutions and a
preliminary application to jets from T-Tauri stars is given. Such
jets have two components, one rooted in the star and the other
in the disc. The flow is shown to pass through three regimes:
a thermally driven one, a magnetically driven one and finally
an oscillating collimated regime wherein emission is likely to
take place. In Sect. 8, we state a quantitative criterion for the
transition from collimated jets to non collimated winds in terms
of an anisotropy in the available input magnetic rotator energy.
Basically we show that a wind may collimate into a jet if the
available total volumetric Bernoulli energy is higher at the non-
polar streamlines than at the axis of rotation. A brief summary of
our analysis together with some concludings remarks is finally
given in Sect. 9.
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2. Basic equations governing MHD outflows

In this section we write the conservation laws which govern our
problem and briefly review their integrals when the system is
axisymmetric.

2.1. Kinematics and energetics of MHD outflows

An astrophysical wind may be described to a first approximation
as an inviscid and compressible plasma of infinite conductivity
flowing out of the gravitational potential of a central object. The
basic steady hydromagnetic equations governing the kinematics
of this outflow are then,

V-B=0, V-(pV)=0, (2.1a)
Vx(VxB)=0 <— VxB=V9, (2.1b)
oV -V)V = —VP+ %(v x B)x B — ”ﬁ/%e,, @.1¢)

for the bulk flow speed V/, the magnetic field B, the density p
and the pressure P, with .#4 denoting the mass of the central
body, & the gravitational constant and r the spherical distance
from the central object. Equations (2.1a) express magnetic flux
and mass flux conservation while (2.1b) is the induction law
for a plasma of high conductivity, also known as the frozen in
condition and which at once can be integrated introducing thus
the electric potential ®. Finally, Eq. (2.1c) expresses the total
momentum balance along the flow.

The above eight equations describe the kinematics of the
outflow while the energetics should be described by the ther-
modynamic form of energy conservation, i.e., the first law of
thermodynamics. Note that studies of cold plasmas (Blandford
& Payne 1982; Pelletier & Pudritz 1992) have shown the possi-
bility of accelerating jets with centrifugal forces. However, this
requires a sufficient bending of the lines towards the disc and
cannot account for the very initial step of the acceleration where
the corona is strongly heated. Thus, the approach that we shall
follow here is that for a wind to flow out of the gravitational well
of a central object some sort of heating is needed — at least in the
first stages of the outflow where it should dominate — in order to
initiate the mass loss. We shall then denote the volumetric rate
of such a thermal energy input by ¢ with ¢ positive(negative) in
the case of a net heating(cooling). The crucial thermodynamic
variable then is the heat content or enthalpy function h which
represents the reservoir from where the gas in the wind absorbs
thermal energy and converts it to kinetic energy,

VP

q=pV - [Vh - T] . (2.1d)

Evidently, in writing Eq.(2.1d) the volumetric enthalpy h is in-
dependent of any particular equation of state for the gas. On
the other hand, by adopting the classical equation of state of
perfect gases, which is certainly a good approximation for the
astrophysical fluids that we are interested and for a ratio of the
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specific heats in the gas I' = ¢,/c¢,, this enthalpy function h
takes the form,
' ks kg P

h=——-27 with —T==—,

(2.1e)
F-1up 7 p

in terms of the temperature 7, the reduced mass of the gas, u,
and Boltzmann’s constant, kg.

The system of equations (2.1) is mathematically closed for
the eight unknown functions (B, V, P, p) if g is known. How-
ever, the heating processes operating in the accelerating region
of the gas in the astrophysical conditions of interest are usually
poorly known and therefore a corresponding value for ¢ is not
available. Then, a polytropic relation between P and p is cus-
tomarily assumed with a constant index -y # I" which effectively
corresponds to an arbitrary form of the heating ¢ (Weber & Davis
1967; Heyvaerts & Norman 1989; Sakurai, 1990). In this last
case the enthalpy h is replaced by some effective enthalpy A/,

v

1
I By o (v# 1D

2.1e)

dinp  (y=1)

where the case v = 1 corresponds to an isothermal gas and ¢,
is the isothermal sound speed.

For a purely thermally driven wind, Parker (1963) has
pointed out that enough supply of energy is necessary. Formally
the polytropic index needs to be less than 3 /2 in order to acceler-
ate the flow out of the gravitational well of the central object. Of
course a cut off could be introduced such that the flow becomes
adiabatic on larger scales, once some magnitude of the velocity
is reached. This idea has been explored recently in the case of
noncollimated jets by Lovelace et al. (1991). A consequence of
the above polytropic hypothesis is that solutions of the steady
MHD equations are always characterized by the presence of
three critical points, namely the slow, fast and Alfvén critical
points. In this way, some important insight into the solutions of
the complete set of the hydromagnetic equations and their prop-
erties is gained, albeit by sacrificing equally interesting insight
and information on the energetics of the outflows. However, it
is well known that a polytropic equation of state with any con-
stant -y cannot yield correct values of the physical parameters
of the solar wind, both close to the Sun and at 1 AU (Parker
1963). For example, the inadequacy of the polytrope law as a
means of describing the energy equation can be seen by the fact
that when someone tries to reproduce the observed conditions
at 1 AU, unrealistically high velocities and unrealistically low
densities near the solar surface are obtained (Weber & Davies
1967; Belcher & MacGregor 1976).

In the approach that we shall follow here, by means of an
a priori physically sound choice of the streamline integrals,
the MHD equations are explicitly solved without imposing any
polytropic relation. Then, through the energy equation, the form
of the heating/cooling distribution along the flow, g, is calcu-
lated a posteriori and selfconsistently with the assumed choice
of the field and flow structure. In other words, instead of re-
placing a solution of the energy equation by a single parameter,
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v, we replace it by a function, ¢(R, ) [¢f. Equation (2.1d)].
When compared with the approach of the polytropic equation
of state, this approach has the advantage that by examining the
energy function g(R, ), we may decide if the assumed angular
dependence of the physical quantities and the parameters used
correspond to a physically acceptable solution (Tsinganos et al.
1992; Trussoni & Tsinganos 1993). The analytical nature of the
study will also enable us to have a detailed display of the various
complicated topologies of the MHD solutions for magnetized
winds, an experience useful in more sophisticated numerical
studies. It is interesting to also point out that the angular depen-
dence of the physical quantities in the wind emerges naturally
via an integration through a separation of the variables in the
governing equations (2.1) (Lima & Priest 1993).

2.2. Integrals of axisymmetric MHD outflows

Axisymmetry allows a reduction of equations (2.1) in terms of
conserved quantities along each magnetic field line. These free
integrals are a consequence of the general properties of systems
with an ignorable coordinate (Tsinganos 1982); consequently
we shall follow the notations introduced there. It is convenient
to use spherical coordinates (7, 8, ) with ¢ denoting the toroidal
or azimuthal angle, because of the spherical symmetry of the
gravitational field. However, it may also be convenient to use
cylindrical coordinates (w, ¢, z) because of the possibility of
collimation of the flow along the axis z and the resulting cylin-
drical symmetry. In the following we shall use interchange-
ably the two notations keeping in mind that o = rsiné and
z = rcos 6. First we shall recall briefly some general results in
order to introduce the necessary notations.

With axisymmetry, introduce a magnetic flux function A in
terms of which define the poloidal magnetic field,

A4 e —Zéxe
rsind ¥} w v

and a streamfunction ¥ in terms of which define the field of the
poloidal mass flux,

B, =V x (2.2)

2.3)

4PV =V x <rsin0

g VA
€y =;X€<p.

Then, due to axisymmetry and Eqgs. (2.1), ¥ is constant on
surfaces of constant A on which the corresponding streamlines
and fieldlines are roped. Thus, the poloidal components of the
velocity and magnetic fields are parallel to each other, ¥ = ¥(A)
and we can write,

V4

=—B 2.4
arp P 24

p

where the subscript A indicates a derivative with respect to A.
The total V' and B are not aligned due to the existence of the
electrical potential ® in a rotating wind, but each surface of
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constant magnetic flux is a surface of constant electrical poten-
tial, so ® = ®(A). The toroidal component of the frozen flux
condition, Eq. (2.1b), gives then

Vo  _YaB, _
rsinf  4wprsing

® 4 =QA), (2.5)

where @4 is usually denoted by € to indicate that it has the
dimensions of an angular speed and Eq. (2.5) is the so—called
isorotation law because at the footpoints of each line on the disk
or the star where the magnetic field dominates, their angular
speed is equal to 2 [see Eq. (2.13)]. '

Another free integral is obtained by integrating the momen-
tum equation in the azimuthal direction. It is usually denoted
by L(A) to indicate that it corresponds to the total angular mo-
mentum of the system fluid+field,

7sin 6 <V¢ - —B—‘p—> =L(A). 2.6)
Va
From the two previous equations we may derive the az-
imuthal components of the fields in terms of the free integrals
W(A), Q(A) and L(A) (Tsinganos 1982). It is convenient to in-
troduce the poloidal Alfvén number M, which is the ratio of the
poloidal speed to the characteristic poloidal Alfvén speed,

Vv
M = dmpat = LA @7

By 4mp
such that the azimuthal fields are,

Q Q
2 2 2
B, = Ly, 777 _Lrp Y 2.8)
® w 1—-M2" T w 1-M? )

2.3. Alfvén singularity

It is usually pointed out that these equations possess a singular-
ity at the Alfvén point, when the density equals to the so-called
Alfvén density p,(A) (using the subscript “a” to denote quanti-
ties evaluated at the Alfvén point, which should not be confused
with the subscript “A” which denotes derivative with respect to

A)’

\1,2
M?=1 — p(ry A)| oy = PalA) = 4—;‘ . (2.9a)
To impose regularity, the two free functions L and €2 need to be

related,

. L(A
w2]M=1 =r? sm2«9|M=1 = wﬁ(A) = —(-—)

oA’ (2.9b)

which introduces the Alfvénic cylindrical radius w, (noted
sometimes by 7 4 in the litterature) as the ratio of the free inte-
grals L and © and is therefore a function of A solely.
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2.4. Generalized Bernoulli integral

Another constant of the motion may be obtained by integrating
the equation of motion along each streamline. Projecting equa-
tion (2.1c) along a streamline or a fieldline (which is equivalent
to project along the poloidal fieldline due to axisymmetry) one
obtains after combination with (2.1d)

pV -VE=g¢q, (2.10a)

where E is the sum of the kinetic, thermal, gravitational and
Poynting energy flux densities,

= %sz"' %Vj +h-— E}% - %rsin&Bw
In general E is not conserved along a fieldline because of

the heating source q. However, one can still write the conserved

quantity,

* q(s,4)

50 P(8, AV (s, A)

where F'(A) is the generalized classical Bernoulli integral and

s is the path length along a fieldline A.

(2.10b)

E-— ds = F(A4), (2.10c)

2.5 Corotating frame and magnetic rotator energy

If at the base of the flow the poloidal Alfvén number is negligibly
small, the rotational speed is from Eq. (2.5),

Voo = UA)w, , (2.11)

such that the angular velocities £2(A) really represent the indi-
vidual angular velocities of the roots of the fieldlines with the
label A at the base. Furthermore, the physical significance of the
angular velocity Q(A) is that in a system which rotates with an-
gular frequency €2(A), the azimuthal velocity V, is also parallel
to the azimuthal magnetic field B,
U4

pr =V, - Qw-= I
Thus, while in the inertial frame the flow makes a nonzero angle
with the magnetic field such that the Poynting flux is finite,

S, Q

AR wB, =QL - V,Qw,
in the corotating frame the flow is parallel to the magnetic field.
Therefore, in this frame, there is no Poynting flux, S’ = 0 but
only the contribution of the centrifugal potential to the total
energy E’ which is,

B,. (2.12)

(2.13)

1
E' = %V; +5(Vp = Qw)* +h — %‘/@ Lo

2
=E-QL. (2.14)

Note that there is some excess of energy in the inertial frame
as compared to the corotating frame which equals to QL. It
will be shown later that this energy plays an important role in
determining the asymptotics of the outflow and will be called
magnetic rotator energy, Emr.

In the following we turn our attention to the choice of the
free integrals W(A), Q(A), L(A) and F(A).
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3. Physical characteristics of proposed model

Our goal in this section is to introduce the solutions which gener-
alize the ones presented in Papers I and II, although in a some-
what different manner. These solutions are global and exact
and all corresponding equations are solved simultaneously in
all space. Nevertheless, they may be also obtained via a formal
separation of the streamline coordinates A and R and subse-
quently a first order expansion in the governing equations (2.1)
for axisymmetric systems.

3.1. Dimensionless variables

In order to facilitate the analysis it is convenient to use dimen-
sionless variables starting with the Alfvén radius at the pole r,.
At this radius the polar magnetic field, velocity and density are
B., V, and p,, respectively, such that the Alfvén number at 7,
is unity, while a dimensionless magnetic flux function o may
be also introduced,

2 2
rR=_ B _vy2, A=T*f*a(R,9).

= 3.1
Ty 47y (3.1

This normalization is generally used in the literature of mag-
netized rotating flows (Weber & Davies 1967; Sakurai 1985,
1987), although it is slightly different from the notation of our
preceding Papers I and II wherein all quantities are normalized
at the stellar base radius, r, and the distance of a characteristic
critical point r,, respectively.

3.2. Shape of Alfvén surface

Our first crucial assumption relates to the shape of the Alfvén
surface. In the absence of an accretion disk the shape of this
surface emerges as ellipsoidal in the numerical modelling of
Sakurai (1985); with an accretion disk present, the ellipsoidal
form remains along the pole but it is distorted around the equator
getting asymptotically a roughly conical shape (Sakurai 1987),
similar to the one in the modelling of disk-winds by Blandford &
Payne (1982). On the other hand, from a rather general perspec-
tive, it can be shown that a first order expansion in the asymp-
totically dominant magnetic pinching and centrifugal forces, in
terms of the magnetic flux function A (cf. Eq. 5.11), is consis-
tent with a spherical shape of the Alfvén surface. With these
considerations in mind, then, it occurred to us that we may start
our study by taking the Alfvén surface to be spherical such that
the Alfvén number M (R, A) depends on the spherical radius
only and not on the particular fieldline,
M(R,A)= M(R). (3.2)
In other words, it is worth to emphasize that the above assump-
tion (3.2) is consistent with our intuitive expectation that around
the axis of the jet the flow has a rather spherical Alfvén surface,
in any general and model-independent analysis; and, at the same
time in the disk-wind region the Alfvén surface may obtain any
other model-dependent shape. Thus, with (3.2) our modelling
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of the inner part of the jet is of a rather general character. On
the other hand, the modelling of its outer part rooted into the
disc may lack the generality of the inner region. Nevertheless, it
is an exact solution which carries the memory of the modelling
around the flow axis.

3.3. Separation of the variables in the density dependence

Because of the definition of the Alfvén number as the ratio of
the Alfvén density p,(a) = ¥(a)? /47 and the density p(R, a),
(Eq.2.7), the assumption of spherical Alfvén surfaces (3.2) auto-
matically implies that the density should be taken in a separable
form, p = p(R)pe(a) (cf: Egs. 2.7-2.9a). Furthermore, we shall
take only the first order term in an expansion of pg(c) on a,
Pa(@) = pi(1 + 6cx) with 6 a parameter describing deviations
from a spherically symmetric density in this first order scheme.
Note that this is the only consistent way to expand to first order
in the magnetic flux function « the gravitational term in Eq.
(2.1c). Thus, the density has the following form in terms of the
Alfvén number and the magnetic flux function,

Px
M*(R)
The dependence of all other variables, such as the pressure and

the azimuthal components of the fields will be discussed later
in a consistent way with these assumptions.

p(R,a) =

(1+6a). (3.3)

3.4. Magnetic flux Fiag

The form of the magnetosphere is determined by the explicit de-
pendence of the magnetic flux function au(R, ) on its variables.
If there exists a dead zone of closed fieldlines sandwiched at the
equator by aregion of open fieldlines, let the value of a/(R, 0) at
the last open fieldline that encloses the flow region be a,y; and
Aout = A(0ioy). Thus, at the reference ”base” r = r, these open
fieldlines shall extend up to an angle 6., which of course shall
depend on the particular form of a/(R, 6). For a given () the
magnetic flux is conserved and the total magnetic flux Frag —
through an axisymmetric surface around the pole 8 = 0 where
we assume that o = 0 and extending up to the last open field-
line with the label a,, on each hemisphere — is, using Stokes
theorem,

Frgg = / / B, - dS = 21 Aoy = T2 By Oly - (3.4)

s

Note that if 6o, = /2 such that at the “base” the surface S
becomes all the northern hemisphere of area S = 7r2, the flux
through S is Fiyag = 772 B,. Thus the meaning of the function A
becomes apparent from the above equation: 27 Ay, represents
the magnetic flux enclosed by some bounding axisymmetric
fieldline Aou:.

Regarding the functional dependence of a(R,8) we first
note that o can be developed in terms of multipoles. Taking
into account the axial symmetry, we shall keep only the lowest
possible terms in such an expansion writing,

a(R,0) = f(R)sin? 0. (3.5)
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In Eq. (3.5) the functional dependence of f(R) reflects the
degree of flow collimation. For example, f(R) = constant
means radial fieldlines while f(R) ~ R? corresponds to a cylin-
drical fieldline shape. Since we have normalized f(R)tobe 1 at
R =1, o varies from 0 at the pole to 1 at the equator. In other re-
lated studies, a specific form for f was chosen: f(R) = 1+c¢/R™
(Low & Tsinganos 1989), f(R) = 1 (Tsinganos & Trussoni
1990, 1991), f(R) = 1+ cR™ with c a constant and n an integer
(Trussoni & Tsinganos 1993). Here, as in Papers I and II, we
shall not specify f(R) but instead deduce it a posteriori.

Instead of using f(R), in the present paper we find it more
convenient to introduce the related function G(R),

R
G(R)=—
W=7
R? o, wo?
— [0} GZ(R)sm e—m, 3.6)

which measures the cylindrical distance to the polar axis of a
flux tube limited by the magnetic line with the label

w(R, a) = we(a)G(R) we(a) = T*\/a .

The physical meaning of the function G?(R) is that it represents

the cylindrical cross section of a flux tube, S(R), normalized to

its cross section S, at the Alfvén point,
S w? )

Su, - w‘% - G (R))

Note that Eq. (3.5) is equivalent with the assumption of a
separation of the variables in the function ww?(R, o) of the cylin-
drical cross section of the jet, Eq. (3.7a); this separation of the
variables is comparable to the one for the density, noting in ad-
dition that, as it was assumed for the Alfvén number, we have
only taken the zeroth order term of the expansion of w?/w?
such that we have at the end all forces in the momentum bal-
ance equation expanded to first order. Then =, is expanded to
first order, similarly to p, in subsection 3.3, such that the Alfvén
regularity condition (2.9b) is satisfied.

with (3.7a)

(3.7b)

3.5. Expansion factor F

The logarithmic derivative of o with respect to the radius R
is also physically meaningful. With « in a separable form, Egq.
(3.5), it has already been suggested by the analysis of Paper II
that an important function to be introduced is,

Olna(R,0) _Rdf _,( dInG
dlnR ~ fdR ™~ dlnR )’

which effectively measures the angle that the projection of a
field line makes on the poloidal plane with the radial direction
(see Paper II). Thus, F' = 2 corresponds to cylindrical fieldlines,
while F' = Otoradial fieldlines. Note that the asymptotic value of
F atinfinity is comparable to the parameter n used in Tsinganos
& Trussoni (1993). We shall loosely call F' the R-dependent
expansion factor of the streamlines or simply the expansion
factor.

FR)=

(3.8)
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3.6. Mass loss rate M

First, it is worth to note that the free function W 4(c) is,

Vi
U a(a) = 4”]’; V1+éa,

*

(3.9)

which is a consequence of the choice made for the Alfvén den-
sity in subsection 3.3. Similarly to the magnetic flux, the poloidal
mass flux can be defined in terms of the stream function ¥. From
Eq. (3.9), we have

U(r, 0) = 2mp, Viriih(a),
Pa) = / (1+8a)do’ (3.10)
0

such that mass is conserved. We find then for the mass loss rate
M from each hemisphere of the star,

. )
M= / / PVp- 88 = —2 = 7 p, Vih(otour) (3.11)
s
with Uoy = U(ay ). Thus, we have for oy = ¥(aour),
Qlout 6=0)
Pout = (3.12)

% [(1+6aou)** = 1] (6#0)

The ratio of the mass to magnetic flux from each hemisphere is
then,

M _ Px Vi Y(atour)
Fmag B,

(3.13)
Qlout

The above expressions are still valid if we include lines that
are not connected to the star (i.e., lines with labeling o > gyt
possibly connected to a surrounding disk). Also, if the flow
region extends from oy, to oy instead from oy, = 0 to ayy and
we have a hollow jet emerging from an annular surface Sy,
the above expression for M can be modified accordingly,

M-_—// pvp.ds=%£§_\lﬁ‘l

= WTEP*Vlw(aout, Qin) (3.14)
with,
Qout — Qin ©6=0)
Y(Qouts Qin) = 2 :
2 [0+ B0 — (1 +b0in2] (6 £0)

(3.15)

Similarly to the magnetic flux function A, the meaning of the
function ¥ becomes apparent in the above Eq. (3.11): Wy /2
represents the mass loss rate through the axisymmetric tube of
open fieldlines around the pole which is bounded by the ax-
isymmetric fieldline W,. In the case of the annular flow region
bounded by the streamlines with the labels ¥;;, and W, the
difference [ ¥y — ¥in]/2 represents the mass loss rate originat-
ing at the annular surface S,,,. where the streamlines with the
labels ¥y, and ¥, originate, Eq. (3.14).
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3.7. Axial current I, and total angular momentum loss
rate J

The two functions L(A) and Q(A) are free at the moment apart
from their ratio L /2 which is fixed by the regularity condition,
Eq. (2.9b) and the choice expressed in Eq. (3.7a). To proceed
with a consistent form for these two functions note that the total
angular momentum loss rate J from each hemisphere of the star

1S,

. 1 r4

J=// L(a)pvp-ds=—/ LV 4dA,
s 2 Jo

while the total axial current enclosed by a flux tube at a cylin-
drical radius o is,

(3.16)

2.2
L=SwB,= _Cryg, o/

C
2 —az © ka4

(3.17)
where the last approximation is at the stellar base where M = 0,
w K We. It follows that LW 4 is a crucial function of our
problem which expresses both the total angular momentum loss
rate per unit of magnetic flux and the poloidal electric current
carried by the outflow. Looking then for a general expression of
LW 4 which leads to solutions of the momentum equation in a
separable form and at the same time the forces arising from the
toroidal components of the fields are expanded to first order in
A we find that to this order,

LY 4 = AryB,v/ o2 + pa,

where 1 and X are constants with A describing the strength of
the magnetic torque at . A careful examination of the conse-
quences of this choice shows however that the angular velocity
Q would diverge at the pole unless x = 0. Although this is a
characteristic of other models (see for example Blandford &
Payne (1982) and Pelletier & Pudritz (1992) wherein the so
called normal solution contains such a singularity), this case
should be disregarded as an unphysical extension of those so-
lutions near the flow axis. We prefer to find solutions without
any singularity in the polar current demanding thus that u = 0.
Then,

(3.18a)

LY 4 =)Xr,B,a. (3.18b)

In this way the poloidal current has been expanded to first order
in A and it justifies our expansion to zeroth order in M? and
w? /w2, if we constrain ourselves on expanding up to the first
order only in the momentum equation. Note, however, that the
solutions we obtain remain global and, at the same time, they
are quite adapted to describe the inner part of the jet and the
interplay of the anisotropic forces there. Then, with u = 0 we
obtain the following forms for the total angular momentum per
unitmass, L, the angular velocity of the corotating system £2, and
the total angular momentum loss rate ./ from each hemisphere
of the star,

Qa) = AV

a
L(a) = Ar, V,—, —_—
(@) * V1+boa Tx

\/1%63, (3.192)
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_ A VM oy — ] (3.19b)
2 P(Cout, Qin)
Note that for 6 = 0, aoy = 1, a4 = 0 and we have a total angular
momentum loss from both hemispheres, Jo; = LM, i.e., the
total angular momentum carried by the wind is equal to the
product of the total mass loss rate and total angular momentum
per unit mass, as expected. In general, this relation always holds
with some filling factor as noted by Pudritz & Norman (1986).

J

3.8. Expressions of magnetic and velocity fields

The velocity and magnetic field can now be written exclusively
in terms of unknown functions of R,

B, = B*GTtR—i cosf, (3.200)
Bp=-— *52—15@ siné), (3.20b)
B,=-B, G2)(\ ) II:AC;((};))Rsin 9, (3.20c)
v, = V*—A%% , (3.20d)

For later convenience we shall denote by N and Ny the
numerator of B, and V,, respectively, which vanishes at the
Alfvén point,

Ng=1-G?, (3.21a)

Ny = M? - G?, (3.21b)

while both components have the same denominator D,

D=1-M?. (3.21c)

3.9. Pressure dependence

Finally; the only remaining consistent choice for the pressure
dependence is obtained by making again a first order expansion
in terms of o

1
P(R,0) = 5p. VIR + K(R)e], (3.22a)
a form similar to the one used in previous related studies (see
Low & Tsinganos 1986; Tsinganos & Trussoni 1990, 1991;
Trussoni & Tsinganos 1993; Papers I, IT). We shall see later in

Sect. 5.1 that this is the only choice consistent with equation
(2.1c). For a given form of f(R), we are led then to a system
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of three equations for II(R), K(R) and M (R) as the three un-
knowns. However, here we shall follow the approach of Papers
I and II where it is required that there exists the same heating
profile along each streamline, putting thus K = x = const. (see
Eq. 5.4a). In other words, this is equivalent to requiring that the
effective polytropic index = is the same function of R on each
individual streamline. This demand then leads to a separable
form for the pressure similar to that of the density,

P(R,a) = % P VAI(R)(1 + k) . (3.22b)

Note that with this assumption the temperature profile is also the
same along each streamline similarly to the heating rate. And,
as with the case of the density, the deviations from a spherically
symmetric pressure configuration are controlled by a single pa-
rameter, K.

In the present paper similarly to the preceding paper II, we
shall concentrate on a case which is even more simpler, wherein
k =0and
P(R,0) = 5 p,V2ICR), (3.220)
i.e., asumming that we can keep the zeroth order term in Eq.
(3.22a) and the pressure is thus taken spherically symmet-
ric. This assumption amounts to saying that pressure gradients
across radial streamlines are neglected and only pressure gra-
dients along the individual radial streamlines are taken into ac-
count. Note that this is an interesting intermediate case between
flows described in the cold plasma approximation wherein pres-
sure gradients are neglected alltogether and completely hydro-
dynamic flows confined by pressure gradients. We shall see in
the following that even with such a simplifying assumption, the
problem remains rather complicated and still contains the bulk
physical characteristics of winds and jets.

Although in the present paper we shall treat explicitly only
the case of Eq. (3.22c), we shall use Eq. (3.22b) in Sects. 4 and 5
to investigate some global properties of the problem without loss
of generality and to also avoid in forthcoming papers going again
through all general derivations. Thus, in Sect. 4 on the transfield
equation and the regularity condition across the Alfvén surface
we shall use Eq. (3.22b) and similarly in subsection 5.1 which
treats the momentum equation along the field lines. However,
from subsection 5.2 on, k will be set equal to zero.

3.10. Gravitational potential

Before proceeding to Sect. 4, we need to define another di-
mensionless parameter of our model, v, which represents the
strength of the gravitational potential, Z”, from which the wind
escapes. It can be defined as the ratio of the escape speed at the
Alfvén surface to the polar speed there, such that

- Vese  [2846
- ‘/*' - T*V*z '

(3.232)
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Then, the gravitational potential is,

1 2
= EVf% . (3.23b)

KA

r

T =

Note that since the gravitational potential Z” depends on the
spherical distance R, it would be more convenient to use spheri-
cal coordinates close to the accelerating region of the flow where
gravity is rather strong. On the other hand, cylindrical coordi-
nates would be more appropriate to describe asymptotically an
outflow which obtains the form of a collimated jet along the
z-axis. Thus, oftentimes studies aimed at describing jet-type
outflows neglect gravity because 2 has an inconvenient form
in cylindrical coordinates which does not facilitate a separation
of the variables (see e.g, Chan & Henriksen 1980). Since in this
study we are interested for a complete solution from the accel-
erating region to infinity, including also the gravitational term,
we shall use both types of coordinate description.

4. The transfield equation

In this section we discuss the equations which determine the
shape of the streamlines and also some regularity conditions
which need to be satisfied at the Alfvén transition of the flow.
For the sake of generality of our arguments, in this section we
shall include in our discussion the pressure gradient term across
the fieldlines (k # 0), according to the discussion in Sect. 3.9.

4.1. Equations determining the shape of the streamlines

By eliminating the angular-dependent terms in the momentum
equation via the explicit angular dependences of the physical
quantities presented in the preceding Sect. 3, one finds three
independent equations for II(R), F(R) and M%(R). Two of
these arise from momentum-balance in the radial direction while
the third from momentum-balance in the meridional direction.
Thus, we obtain : '
(1) the equation giving the derivative of the pressure,

dil = 2 [dM? M? v?
E'ﬁ'a _df+f(F_2)] +,_R2—]\42=0, (413)

(2) the equation giving the derivative of the expansion function,

Rg_ _ JFER,G,F,M,IL;k,6,v,))
dR =~ YDR,G,F,M;k,\) ’

(4.1b)

(3) the equation giving the derivative of the Alfvén number,

dM? A3 (R,G,F,M,IL;k,6,v,\)
dR YD(R,G,F,M;k,\)

4.1c)

In the above system we have introduced for convenience the
expressions:

2 2 2
D =(M?*-1) (1+n£-> +£Z—+R2,\2£V—€

= oo (4.1d)
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RG?
./16:—(6—&)1/22M2F
RZ F2 NZ
2 2 2\2-'B
+(2h}HG R +(F+1)(F—2)) (1+Ha——4——R A F)

M?F

2

R? Nz
(F-2) (F +2+ 2na + 2R2)\ZF§’>

Np
—\NR2F(F — 2)ﬁ

R? N2 F N2 2 N2
2p2 2 R2)2.B _ B__Z 'V
+A°R <1+mG2 RX T3 2)(41)2 M2D2)
(4.1e)
RG? F
s N2 2 228 2L
N =6 — k) _2M2(M ) +kIIR°G*M 5
M4 R?
M? R? 5
+—(F = 2)Br 5 + F* +4F +8)
N
_MRYF _ B
N RY(F 2)D
+NR*2M*+ F —2) Np 1Ny (4.19)
D2 2M2D?)° )

The above set of equations gives the derivatives of IT, M2 and F
in terms of these unknown functions and G(R) which is related
to F'(R) through Eq. (3.8). Note that this casting of the system
has two advantages. First, it is right away in a form immediately
solvable by a Runge—Kutta numerical method; and second, it
nicely reveals the role of those critical points obtained by putting
equal to zero simultaneously the numerators and denominators
of Eqgs. (4.1b)-(4.1c).

We briefly note in passing that although the class of solutions
discussed here are of rather different form from the self-similar
ones discussed in Blandford and Payne (1982), it is remarkable
that some formal similarities still exist between the two cases.
Thus, we also have here an equation for the square of the Alfvén
number M and one for the second derivative of the geometry
function G exactly as their self similar solutions have one equa-
tion for the square of the Alfvén number (denoted by m) and
a second order equation for the equivalent of the geometrical
function (denoted by &). This general result is apparently inde-
pendent of any particular assumption. Furthermore, by combin-
ing the momentum equation along a streamline with that across,
one obtains those two equations where the same critical points
appear at the denominators. However, the nature and location
of those critical points shall of course depend on the details of
the model into consideration, a point we discuss later.
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4.2. The Alfvén regularity condition and the acceleration of
the flow

As is well known, the Alfvén speed defined in terms of the
poloidal magnetic field corresponds to the characteristic speed
for the propagation of an incompressible mode in the plasma. At
the location wherein the poloidal bulk flow speed equals to this
Alfvén speed, asingularity appears in the azimuthal components
of the hydromagnetic field as well as in the equations governing
the poloidal field components (transfield equation), indepen-
dently of the particular streamline geometry and the thermo-
dynamics of the outflow. To treat properly this singularity, a
condition is necessarily imposed at this Alfvén transition of the
flow. Thus, in Sect. 2.2 by considering first the azimuthal com-
ponents of the flow such a condition has been imposed between
the two free integrals L(A) and Q(A) resulting to the require-
ment that when M = 1, G = 1 as well (¢f. Egs. 2.9a, 3.20c,
3.20f). Then, at the Alfvén transition denoted by a *, B,, and
V., are given in terms of the finite ratio of the null quantities N
and Ny,

Ny
D

Ny
D

=7-—1.
*

T, 4.2)

*

Similarly, the acceleration of the flow (¢f. Eq. 4.1c) is also
finite at the Alfvén transition because .44y and & are also given
in terms of powers of the finite ratios 7 and 7 — 1 and the
presumably continuous function F'(R) across the Alfvén point.
Itis evident that as long as one works with a prescribed geometry
wherein F'is a continuous function of R (Weber & Davis 1967,
Tsinganos & Trussoni 1991), the Alfvén transition does not
correspond to a mathematical singularity and does not impose
other requirements on the parameters of the flow (Sakurai 1985).
The signature of this transition on the poloidal phase plane is
the topology of a star—point from where “all solutions” pass,
meaning that all slopes of the Alfvén number M (R) are allowed
on the plane [M, R], as it has been demonstrated and illustrated
in Tsinganos & Trussoni (1991).

The natural second step is then to calculate the undetermined
forms 0/0 of 7 and 7 — 1 which appear in the expressions of the
azimuthal fields and the acceleration of the flow. Evidently, one
can use I’Hospital’s rule in order to get a relationship between
the slope p in the [M?, R] plane and the undetermined ratio 7,

_dG?/dR| 2-F, dM>

T dM2/dR|, " P=9R|, -

T where

(4.3)

Using this value of 7 in the equation giving the acceleration
of the flow as we get through the Alfvén point, a third order
equation is obtained in p,

2F,p° — (4KIL, + F2 — 4 — 4X\1)p?
+8A\X(F, — 2)p — 4XX(F, —2)*=0. 4.4)

When k = 0, by giving the values of F, and ), we obtain
immediately the allowed slope of M at the Alfvén point and use
it in order to numerically integrate across R = 1. In the k # 0
case, on the other hand, the slope p depends in addition on the
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value of I1, ; however, this value can be fixed by demanding that
the solution does not diverge asymptotically (cf. Paper I), and
therefore the procedure is formally equivalent to the x = 0 case
which we shall illustrate in the present paper.

4.3. The Alfvén regularity condition and the shape of the
streamlines

Note that so far no explicit use has been made of equation (4.1b),
which describes the shape of the streamlines. However, we have
implicitly used earlier Eq. (4.1b) by requiring that F'(R) is a con-
tinuous function of its variable across the Alfvén transition and
thus obtained the above cubic (4.4) for p. Actually, a careful
examination of the equation determining the streamline shape
reveals that it contains the ratios of Ng and Ny with D. How-
ever, D appears at the denominator in a power higher by one
than Nz and Ny do in the numerator of these ratios. Therefore,
in order that the gradient dF'/d R does not diverge, one requires
that 4% - D = 0 such that dF'/dR is finite when we have the
form 0/0. This requirement that /4% - D = 0 yields then the
following third order equation for 7,

2 _ —
kII, F? 4_1J+(F* 2)F,

42 4T =0. (45)

2t Tax 2
The physical reason for demanding this condition is the require-
ment that the streamlines avoid a kink at the Alfvén transition,
because a discontinuity in F' means evidently a discontinuous
change in the tangent of the angle to the fieldline (cf. Paper II
Eq. 3.1). However, this last equation does not introduce an extra
condition in the problem because it can be obtained by substitut-
ing Eq. (4.3) in Eq. (4.4). Of course this result is not surprising
because Eq. (4.4) has been obtained by assuming a continuous
F(R).

It is interesting to note in passing that the requirement to
impose an extra condition, such that the streamlines do not have
a kink at the Alfvén point, has been originally emphasized by
Sakurai (1985). However, the first quantitative expression of this
condition has been given by Heyvaerts & Norman (1989). The
cubic Eq. (39) derived in Appendix C of their paper by com-
bining Egs. (C.8) and (C.9) is indeed in the case of polytropic
winds the corresponding equation of our cubic Eq. (4.4), if we
note that our p is related with theirs (pun) in Eq. (C.9) by the
relation pyny = 1 + p/2.

Let us now turn our attention to a parametric study of the
regularity condition we have presented here.

4.4. Parametric illustration of the Alfvén regularity condition

To get an idea of the parametric dependence of the regularity
condition at the Alfvén point and establish some connection
with the nonrotating study of Paper II, in Figs. 1(a-d) we plot
the slope p of the square of the Alfvén number M?(R) as a
function of F,, for four representative values of A = 0,0.1, 1,
and 10.

Consider first, the limit of no rotation (A = 0), studied in
detail in Paper II. In this special case the cubic Eq. (4.4) has only
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a single root of finite value p while the other two collapse to the
degenerate value p = 0 which is unphysical because in that case
7 becomes infinite. The allowed values of F), are around F, = 0
and in particular F, € [—2,2]. For F, < 0 we have p > 0 and
the solution is accelerating at the Alfvén point corresponding to
a wind or jet-type outflow. On the other hand, when F, > 0, we
get p < 0 corresponding to the case of a decelerating outflow at
the Alfvén point, or an accretion-type flow. The cases studied in
Paper II were for accelerating outflows corresponding to p > 0
and F, < 0, with F, approaching to zero from negative values
and p ever increasing as the values of the density parameter §
increased. This is shown in Fig. (1a) wherein for F, < 0, p is
positive and increases as |Fy| — 0. In this case of no rotation
the Alfvénic transition is no longer a singularity and one passes
smoothly from the subAlfvénic regime to the superAlfvénic
while the streamlines become asymptotically radial.

Second, for the rotating case of X\ # 0, the experience gained
by the study of the nonrotating case of Paper II would suggest
that, similarly, the most interesting range of F' values should
be around F, = 0. Indeed, as we shall illustrate in the follow-
ing Sect. 6, this range is the most physically interesting one
because then the topology of the solutions contains an X-type
critical point which selects a unique physical solution, as in Pa-
per II. Then, and once rotation sets in, two extra roots emerge in
the range F, € [—2,2]. Since winds and jets always involve a
transition from subAlfvénic (upwind) to superAlfvénic (down-
wind) regimes, they correspond to the accelerating at the Alfvén
point solutions wherein p > 0 while all p < 0 correspond to
accretion-type flows. Since our interest here is confined on jet-
type outflows, among all possible solutions only those having a
positive slope p will be considered. Further, we note that when
F, > 2 the outflow is already collimated more than cylindri-
cally at the Alfvén point and the flow channel area is less than
nw?; those jets are collimated too close to the base (see Sect.
4). Of the two values of p for F, < 0, the larger is on the upper
branch and reaches unrealistically large values corresponding
to an almost null values of 7; the second positive root lies in the
lower branch which is just above the axis p = 0 and becomes
of interest when A is large enough. In the following section we
shall see how the only physically interesting solution jumps with
the increase of the rotation parameter A from the upper branch
to the lower.

It is evident that a transAlfvénic solution will remain su-
perAlfvénic or subAlfvénic once it crosses the line M = 1
satisfying the regularity condition. Then, one can study sepa-
rately the topology in each regime. In the following Sect. 5 we
first study the superAlfvénic regime using the Bernoulli inte-
gral; then in Sect. 6 the subAlfvénic regime which contains the
second X-type critical point is studied in more detail.

5. The Bernoulli integral and conditions in the superAlfvénic
asymptotic regime

In this section we discuss the Bernoulli integral and how this
can be used to determine the outflow conditions at very large
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Fig. 1a—d. Plot of the slope p of the squared Alfvén number, M2(R), across the Alfvén singularity, as a function of F.,. The solution of the cubic
(4.4), in the case « = 0, is given for four different values of the rotational parameter A\: A =0,ina, A =0.1,inb, A= lincand A = 10ind. We
mark with a e the Alfvénic point of the critical solutions for e = 0, used in Sect. 6

distances from the origin. We discuss also some general prop-
erties of collimated flows along their axis which seem to be of
a rather general physical nature.

5.1. Energy flux and the Bernoulli integral €

Considering the above assumptions and the general relation for
the pressure given by Eq. (3.22a), the rate of heating has the
following form,

wR,0) __ VGR)+GRa 5.1
p(R,HV,.(R,0) 2r, 1+éa ’ )
where the dimensionless quantities ¢ and (3 are,

_ 1 ,dII dm?
O (R) = i Mzi(KH) + I‘Kﬂg—/‘[z (5.1c)
-1 dR dR |~ '

Next, consider the sum of the kinetic, thermal, gravitational,
and Poynting energy flux densities per unit of mass flux density,
denoted by E in Eq. (2.10b),

_ V2 E®)+ &R

E=3 l+6a ©.22)
where

M* v?
BR) = o5+ p—IM" - &, (5.2b)
and

M* [F? r , 62
PB)= p [T "1} M

A [M2-G2)? L, [1-G?

The energy E is not conserved along a certain streamline
o = constant because of the input of thermal heating expressed
by the factthat g(R, 8) # 0. However, by subtracting this thermal
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heating as in Eq. (2.10c), the remaining part is conserved along
a particular streamline,

(6B - [ G(RMER| + [HR) - [ GRAR] o

1+6c
A + Fa
1+6a

where F = (1/2)V2F (o) and FA, 5 are real constants. It
follows that

F (o) = (5.3a)

R

% (R) - / G(R)R = T, (5.3b)
R,

and
R

Z(R) - /R G(R)IR = 5. (5.30)

Note that by taking the derivative with respect to R in Eq.
(5.3b) we obtain the r-component of momentum balance. Also,
we should keep always in mind that the above integrals are taken
along a streamline o = constant. This last constrain halts further
progress as long as we keep the general form of Eq. (3.22a) and
the two integrals in Eq. (5.3) are uncorrelated. However, by
making the extra assumption of equation (3.22b), ¢} and
become proportional to each other,

G=rG <

q(R, ) = g(R, 0)cos 8 L +ra 5, (5.42)

(1+68a)t/
and the two integrals are identical within a factor . The same
happens to the heating terms in Eqgs. (5.3) and therefore we
may eliminate I from the expressions of & and &, in Egs.
(5.1b-5.1c) by forming the difference, € = &; — k&. Thus, by
multiplying Eq. (5.2b) by & and subtracting it from Eq. (5.2c),
it is easy to show that ‘

& — k&) =G~ kG =0, (5.4b)

7
dR
and therefore the quantity e is a constant for all streamlines,

e=& — k& =S — KA

_ M P R\*| (6 —rp?
T(GRE |4 “”‘(6) "R

A2 (Ny\® _.,Np
Combining (5.4b) and (5.3a) the total conserved flux of energy

along each streamline is

A+ (KA +e)a

F@) 1+déa

(5.5b)
Evidently, the choice of the pressure dependence we made on R
and @ is the unique choice that leads to a Bernoulli-type energy
equation along each streamline. The new constants € and .4
are independent of the particular streamline, a fact consistent
with the corresponding assumption that the effective polytropic
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index 7y (see Paper II for its definition) is chosen independently
of the fieldline to be a function of R alone. This result could
have been presented as the initial assumption from which we
could have deduced the pressure §-dependence of Eq. (3.22b).
FA can be evaluated at R, where it corresponds to &;(R,)

so it will depend on the initial pressure of the wind. To assign a
physical meaning to €, note that in the special case £ = 0 which
we treat in this article, we have

_ U4 (@)F(a) — V% (pole) F(pole)

- (1/2)V2a¥? (pole)

_ pr,a)F(a) — p(r, pole) F'(pole)

T (/2VZap(rpole)

Thus, the sign of € determines whether there is a deficit of en-
ergy per unit volume (and not per unit mass) along the polar
streamline as compared to the other streamlines (case ¢ > 0) or,
an excess of energy in the polar streamline as compared to the
other nonpolar streamlines (case ¢ < 0). The last form shows
that the role played by e can be easily generalized to other mod-
els through its relationship with F'(«). Equation (5.5b) makes
also evident that our procedure indeed is equivalent to expand
pF to first order in ¢, a point related to the fact we already have
mentioned, namely that the momentum equation is expanded to
first order in a.

In the more often used polytropic approach, an artificial
form of the heating is effectively prescribed by fixing the value
of the polytropic index «y. The present study can be regarded as
a step forward from this polytropic case towards a more general
form for the relation between pressure and density; our only as-
sumption short of any such general pressure-density relation is
that we have assumed that the pressure radial profile is the same
on each streamline to a multiplying factor depending on the
line only. Also, the existence of a conserved quantity () despite
that no polytropic relation has been imposed, is interesting be-
cause it allows some analytical insight into the equations. It will
turn out to be in our model of crucial importance in controlling
the asymptotics. In addition however, such an approach can be
extended to models with a Bernoulli-type energy equation — in
which case € should remain a conserved quantity along each line
— and to other cases with more complicated heating functions.
Then it would be interesting to see how the excess, or deficit
of energy, along the pole compared to the other streamlines is
crucial in controlling the collimation of the outflow.

From this point on, only the simpler form of equation (3.22c)
(x = 0) will be used throughout the rest of this paper. However,
we have seen here that some of the basic features treated in the
limit of a spherically symmetric pressure can be easily extended
to a more general class of solutions which take into account a
nonspherically symmetric pressure distribution.

(5.6

5.2. Asymptotic conditions

Using cylindrical coordinates, the azimuthal components of the
fields become,

o
Bw=_)\3*i(l G >,

ANE G-
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For a collimated outflow (jet), as R — oo, FF — 2 and
the first two terms in Eq. (5.5a) due to deviations from full
collimation and gravity disappear. Then, the Bernoulli constant
€ takes the simpler form,

)\2

Tz -1y

(M, - G&)’

Gl

where the Alfvén number M and the cylindrical radius factor G

take their asymptotic values, M, and G, respectively. There-

fore, for the collimated superAlfvénic outflow, it follows that e
is positive.

In the absence of rotation, the sign of € is determined by
the first term in Eq. (5.5a). Thus, in paper II, physical solutions
were obtained for € < 0 and were shown to be non collimated,
becoming conical asymptotically. There is only one special case

wherein collimation is obtained asymptotically, occurring when
e=0.

+2(M2% — 1)(G*, - 1|, (5.9

907
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Fig. 2a—c. Various global critical solutions are plotted for A = 10, and
various values of € from —10 to 117. Note that the higher value of €
corresponds to § = 0, Fx = 0. We plot as functions of R, the Alfvén
number distribution, a, the cylindrical radius of the jet G, b, and the
expansion factor F’, c¢. Oscillations in the jet radius are visible for
collimated jets (¢ > 0) and show up more clearly in ¢ for € =1, 10, 20.
On the contrary, negative values of e result into radial asymptotics and
ever increasing M

If rotation is too small at the Alfvén surface, € > 0 cannot
be achieved because the flow is almost radial there (see Paper
IT and subAlfvénic topologies in Sect. 6) unless we have a very
negative § which is also known to correspond to decelerating
flows (see Tsinganos & Vlastou 1988; Low & Tsinganos 1989;
Tsinganos & Trussoni 1991; Papers I and IT). We discuss in Sect.
8 how it is possible to find numerically that the flow becomes
radial asymptotically, recovering there the analytical solution of
Paper I. Let us now consider the case where the boundary con-
ditions are such that we really have a focusing of the streamlines
into cylinders.

Switching to the cylindrical coordinates (z, w, ¢), the fields
have only z— and ¢—components when the flow is collimated;
their z-components are constant while their ¢—components are
B, = B,(w) and V,, = V,,(w), Egs. (5.7-5.8). Momentum bal-
ance in the w—direction of the cylindrical radius w is expressed
then by,

PV d [Bg B3

. 5.10
Ao ( )

w dw |87

The above equation simply states the fact that the outwards
centrifugal force due to rotation is completely balancing the sum
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of the inwards magnetic pinching force and the inwards gradient
of the magnetic pressure which is built up by the increasing with
the cylindrical distance w strength of By.

In the present model with £=0 the pressure gradient balances
asymptotically the gravitational term (because of the splitting
of the equations) exactly and both vanish asymptotically, with
the pressure becoming a constant. As a matter of fact Eq. (5.10)
can be also obtained by taking the dominant terms in Eqgs. (2.1)
assuming that collimation is reached.

Thus, Eq. (5.10) yields the following relation between G
and Mo,

(M2 — G2 ) =2M>% (1 — G2 ). (5.11)

Solving this for G, as a function of M, we find two solutions
2+ M
G2 = Mo V2t Moo
V2My + 1

The + has to be chosen according to the value of My, such
that G2, remains positive. Practically, interesting solutions with
G > 1 and M, > 1 are obtained by taking the plus sign.
Substituting G, in Eq. (5.9) we find M, as a function of ¢/,

Moo=\/§[27>\2—1].

(5.12)

(5.13)

When this value of M, as a function of (¢/ A2)is substituted
in Eq. (5.11) we obtain the cylindrical radius function G, in
terms of (e/\?)

= T \4N/e—1 (5.14)

In order to get some physical insight from these relations, note
that the value of G, is reflecting to us information about the
asymptotical value of the cylindrical radius of the jet. Consider
the last open streamline of the flow tube with the label agy. De-
note by @y the cylindrical radius of the jet (i.e., the cylindrical
distance to the flow axis of the last open fieldline at R — 00).
Then

Weo

=Goo, (5.15)

Waq
where @, is the cylindrical radius at the Alfvén point.

Let us keep fixed the parameter A and consider some charac-
teristic values of the above expressions when € varies. First note
that when € = 0, G, = 00, and M, = co. The streamlines be-
come cylindrical asymptotically but the outflow expands all the
way long. At the same time the asymptotical velocity is infinite.
To see it notice that

M2, e (2 4

i (5.16)

Then as ¢ increases G decreases while the Alfvén number M,
and the final velocity decrease. An upper limit exists in the value
of e for a given A because the flow must remain superAlfvénic, so
M, > 1. This limit is reached when € — €max = 2X2(2—V/2),
then M, — 1 and G%, — 1.
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In Figs. (2a, 2b) we have plotted M (R) and G(R) for a fixed
value of A, say A = 10 and several values of ¢ between 0 and
the maximum value 222 — v/2),

-10, -1, 0, 1, 10, 20, 70, 117

€=
{woo/wa=oo, oo, oo, 14, 54, 3, 15, 1

such that the above analytical results can be verified in the
asymptotical limit.

5.3. Oscillations in the quasi-asymptotic regime of
collimated jets

In this section we assume again that the pressure is spherically
symmetric (£ = 0) and that collimation in the flow is obtained.
From the previous section we know that the asymptotic quanti-
ties in the flow are uniquely determined by the initial value of
€/22 which is a constant along all fieldlines.

An expansion of G and M can be made then to get an idea
of the fluctuations that exist far from the region of the initial
acceleration of the wind,

G*=G* (1+9), (5.17a)
M?*= M~ (1+p), (5.17b)

where 6, u < 1. Then we may similarly expand F" to first order
in Eq. (3.8),
F=2-RY, (5.18a)

while the derivative of F' can be also expanded at large R as,
dF

dF _ s pi~ R .
RdR R — R0 R0 (5.18b)
Thus keeping only the dominant term in Eq. (4.1b) one finds,
dF R N2

=2\~ (2N%2 - ¥ .
&~ ( Nb M2> ’ G19)

which can be again expanded to first order. Since to zeroth order
the RHS of this equation is zero and the LHS is condition (5.11)
that we examined in the previous section, the remaining first
order terms give a first relation between , 6 and m

' 268, (1-G &
= 2 00 00
o= [(1—1\40102 2 (1—M2 Tz )9
oo [o°] oo
M- G
+—1°——°°——u] : (5.20)
(= MZYMZ,

This can be combined with the Bernoulli equation (5.5a) that
we also expand to first order — where again the zeroth order is
Eq. (5.9) — to get a relation between y and

1 — M
p= M3 +Gi (1 - 2M2)] mo. (5.21)

Finally, by eliminating x from Egs. (5.20)-(5.21), an equation is
obtained similarly to the classical harmonic oscillator problem,

6=—uw?0, (5.22)
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Fig. 3. Plot of the oscillation wavelength, Aosc, normalized by A/r.,
as a function of the parameter /22 (solid line). The corresponding
asymptotic value of the Alfvén number is also plotted (dashed line).
The shaded area corresponds to the region where the flow does not
exhibit any oscillations. With a dotted line the limit M = 1 is shown,
such that the right part of the plot (¢/2)? > 0.58) is out of interest,
since there the solutions are asymptotically subAlfvénic

where the wavelength of the oscillations Ao, is given by

4r?r? TP 2G2, (1—6%0 X Gf,o)
A, (1= MZP?* \1-M5, M3
MY - GY ( G4
+ % __ 700 1+ =2(1 - 2M§o)) :
2(1 = M3, *(1 — G3,)* Mg, Mg,

(5.23)

It is evident then that oscillations are a natural feature of the
flow at long distances.

This result does not strongly depend on the model because
as it is evident from Eq. (5.19) the only forces that act here are
the centrifugal force combined with the magnetic forces (pres-
sure + tension). Oscillations occur then because of the interplay
of these two forces acting in opposite directions along the cylin-
drical radius distance w. The only assumption is that pressure
forces do not act perpendicular to the jet or they are negligible.
This assumption is not unreasonable for the conditions along
jets far from their source (Blandford & Payne 1982). Also, the
choice we made for the a-dependence of the physical quantities
can be seen as an expansion around the jet axis and this result
seems to be of a rather general nature. It also leads to an inter-
esting relation between the wavelength of the oscillations and
the terminal values of the physical quantities of the flow.

The present model can be also compared to the analysis
of Blandford & Payne (1982) and Pelletier & Pudritz (1992)
where they have found one or multiple turning point(s) of the
fieldlines. However, Blandford & Payne’s self-similar solutions
continue converging towards the polar axis contrary to the result
found by Heyvaerts & Norman (1989) where they show that
polytropic flows with -y # 1 should converge asymptotically to
cylinders. While, the class of solutions presented by Pelletier
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& Pudritz (1992) may have some turning points but the authors
did not perform a complete study along the axis to see how
the cross section evolves. In the case of self-similar solutions,
apparently the disagreement may arise because of the infinite
current density along the polar axis which may act as an extra
force bending the lines toward it. Here we have assumed right
from the beginning that the polar axis is free of any current
such that a final equilibrium is reached with pure cylindrical
asymptotics in agreement with the conclusions of Heyvaerts &
Norman (1989).

Those oscillations can be also compared to the self-similar
model of Chan & Henriksen (1980). These authors found nu-
merically oscillations in their self-similar solutions, although
they assumed pressure confinement and included internal gas
pressure which were considered as the protagonists in counter-
balancing the pinching forces. It is then interesting to see that
these oscillations may occur under other general assumptions
without any help by the pressure, as indeed we have obtained
here. In a forthcoming study it will be interesting to study the
complementary case by introducing a pressure gradient across
the fieldlines.

Now using Eq. (5.13, 5.14) the wavelength of the oscillations
can be expressed in terms of the parameters of our model,

2
7212 4\ 22\’
A =55 (7—1) [1—2(—;—1> }

€ 1
(Ki) 1+ func(2\?/e) ’ (5.24a)
where

[Rz(z — 1) + 1][z% — (2% — 1)%(4z — 1)]
3222z — D(z — D*2z(x — 2) + 1]

func(z) = (5.24b)
If the jet reaches high Alfvén numbers M, € is small and in this
limit func(z) is small compared to unity and can be neglected in
Eq. (5.24). A parametric study can be easily performed then by
using both, this analytical expression and the numerical results.

5.4. Damping of the oscillations

Another way of seeing the development of the oscillations and
their damping (Fig. 2), is by writing the momentum balance
across the streamlines in the following form,

1
PV VIV, = (V x By) x By

B 143
= = V(wBy) — %”Vw,

o (5.25a)

where itis clearly seen from the RHS that the magnetic pinching
force and the magnetic pressure gradient act towards the axis,
while the centrifugal force of rotation acts away from the axis.
The incomplete balance of those forces results in some central
acceleration in the LHS. In other words, it gives rise to a curva-
ture of the poloidal streamlines. In the final equilibrium where
the jet is purely cylindrical, with no curvature of the poloidal
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streamlines, the LHS vanishes and this equation reduces to Eq.
(5.10). Keeping the dominant terms of this equation and using
our notations, we find an equation for the second derivative of
the cross section of the jet,

1 G2 N2 [4(1—612)2

RZdInR?  1- M2 1 — M2
2 [ M?—G?\*
T (W) G2

where there is a one to one correspondance of the terms with
the one in Eq. (5.25a). Eq. (5.25b) is simply another form of
Eq. (5.19). The dependence on 1/R? of the curvature of the
fieldlines in the LHS explains the damping of the oscillations
with increasing radius. This damping is then directly linked with
the initial assumption that the Alfvén surfaces are spherical.
Taking into account the curvature of the Alfvén surfaces thus
leads to a spatially oscillating system and the oscillations are
damping because the farther away from the source, the flatter
the Alfvén surfaces are.

This result gives further insight in comparing with other
self-similar studies. In the Blandford & Payne (1982) model,
Alfvén surfaces are cones and the rotationnal axis is thus sin-
gular and no restoring force exists. In the Chan & Henriksen
(1980) model, Alfvén surfaces are planes and oscillations must
be of a different nature: as we have found, in the limit of flat
Alfvén surfaces, the magnetic and centrifugal forces balance
each other. However including strong pressure gradients lead to
another type of oscillations where the restoring force is now due
to the internal pressure. In their Appendix B, these authors write
an equation similar to Eq. (5.25b) where the pinching term is
balanced by the pressure term. This result may suggest then in
the context of AGN the following scenario. On the small par-
sec scale knotty structure of the jet may be obtained through
a process similar to the one presented here while oscillations
on larger scales may be due to the Chan & Henriksen’s (1980)
process through the interaction with the external medium.

5.5. Parametric dependence of the oscillations

For fixed M., which corresponds to a fixed €/A? through Eq.
(5.13), the wavelength of the oscillations is inversely propor-
tional to A so that the oscillations almost disappear for small
rotation (). Thus, in Fig. (3) Aosc. /7 and M, are plotted as
functions of €/2)2. An upper value of ¢/2)? exists above which
oscillations disappear. Also, numerical calculations show that
the amplitude of these oscillations decreases as ¢ /2)\2 increase,
or, M, decreases. This may be seen in Fig. 2 where some so-
lutions are plotted for fixed A by varying e. On the other hand,
for e — 0%, My, — oo and the wavelength becomes infinite
too as it can be shown from the analytical expression (5.24); the
amplitude of the oscillations increases in this limit.

This resultis to be compared with Blandford & Payne (1982)
and Pelletier & Pudritz (1992) where the existence of a turning
point in the solution exist when the solution reaches high values
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of the fast magnetosonic Mach number (FM number). Denoting
with 7 the square of the FM number, they found that for values
of n above some characteristic value n, solutions in the cold
plasma approximation recollimate towards the axis. To make
further comparison it is possible here to calculate the square
of the fast magnetosonic Mach number as it is defined in the
limit of the cold plasma approximation where asymptotically
thermal effects are negligible. Following Blandford & Payne
(1982), we denote it by n and give it here in the limit where
cylindrical asymptotics are reached, F' — 2,

2
n — Mo(o;z T (5.26)
2 o
1 +aG°°—M§O —

where it is clear that transAlfvénic solutions are fast magne-
tosonic at least around the axis. Exactly along the flow axis n
reduces to M?, as expected because the toroidal components
vanish there (¢f. Sakurai 1985).

The sound speed could also had been introduced explic-
itly right from the beginning, for example via the polytropic
assumption, but this would not had changed qualitatively the
above result. This is because at the fast magnetosonic speed we
do not have a critical point in the present self-similar system.
This is so, not only because we did not use the polytropic as-
sumption. The main reason should be that taking into account
both the Bernoulli and the transfield equations simultaneously
in a consistent way, the resulting critical modes are strongly
modified. A similar situation arises in isothermal self-similar
solutions in cartesian geometry wherein the critical point does-
not coincide with the sonic point, as illustrated in Tsinganos
et al. (1993). This point was already present in Blandford &
Payne’s (1982) study where they had a possible critical point at
t = 1, with ¢t not the FM number but some critical speed ratio
coming from the self similar assumption (see also beginning
of Sect. 6). Moreover, none of the solutions they present are
crossing this critical point which is always rejected to infinity.
However, this does not prevent them from having two classes
of solutions, one being trans-fast magnetosonic.

In Fig. (8), a plot of an oscillating solution is shown for
A = 1.77 and € = 0.28 in a two—dimensional plot of the real
streamlines. In this case the wavelength is ~ 1600r, for a final
M ~ 30 and a cylindrical radius of 4.68 7, . Note that accord-
ing to Eq. (5.21) the amplitude of M is much smaller than that
of F and also note that the scale has been compressed along the
polar axis in the upper part of the plot. In reality oscillations
are quite small in the geometry except for the very first one. As
a numerical result, this example shows that the first oscillation
occurs at about one wavelength from the base, that it is more
dramatic here than in the following oscillations, while our pre-
diction of the wavelength is underestimating the wavelength of
the very first oscillations.

Since the density is proportional to the inverse of the Alfvén
number, it is evident that these oscillations result in bumps of
the density that might be related to the emission enhancements
of the luminosity observed along several knotty jets, a point
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however we shall discuss in more detail in another connection.
The example chosen here emphasizes on purpose the first bump,
although a more general exploration of the parameter set would
show that the relative magnitude of the various oscillations de-
pends strongly on the parameters, as it may be seen in Fig. 2.

6. Topological study of solutions in the subAlfvénic regime

After the previous section where we studied the asymptotics of
the outflow by using the generalized Bernoulli integral, we turn
now our attention to the region of the initial acceleration of the
outflow, in the framework of our model.

As we discussed in Sect. 4, from the momentum equation
one can immediately deduce the existence of critical points
wherein the numerators and denominators of the equations be-
come simultaneously equal to zero. With the assumption « = 0
these critical points occur in the subAlfvénic part of the flow,
similarly to what happens in the non rotating case studied in Pa-
per II. Then, a three dimensional topology of the solutions can
be drawn in the plane [R, F, M?], as in Paper II. In particular,
in this section we shall examine how this topology of the solu-
tions in the subAlfvénic region changes, as the rate of rotation
increases. We shall see that there always exists a unique and
physically interesting solution which is selected by an X-type
critical point, similarly to the non-rotating case. This critical
point is expected where the projection of the flow speed in the
direction which preserves the self-similar symmetry of the sys-
tem equals to a characteristic speed for MHD wave propagation.
Thus, the critical transition occurs when

tan? x
tan? §
where y is the angle between B, and the total component of

the magnetic field in the 6, o-plane. In other words tan?y =
(BZ + Bf,) /B2.

M?*=1

06.1. Parameters determining the solution

The parameters of our problem are the meridional distribution
of the density, §v/2, the rotation rate A, the meridional distribu-
tion of the Bernoulli energy, € and the expansion factor at the
Alfvén point, F,. Nevertheless, out of these four parameters
only two are free, as we show in the following. So various ways
of describing the parameters can be considered.

One way to proceed is to fix (i) the meridional distribution
of the density, §v% and (ii) the rotation rate . Then, integrating
the transfield equations (4.1b-f) upwind from the Alfvén point
(R=1,M = 1), we alsoneed F'(R = 1) = F, in order to have a
complete and unique solution that reaches low Alfvén numbers.
Thus, F, is determined by tuning the values of the slopes p and
7 at the Alfvén point such that the solution goes through the
X-type critical point and reaches low values for M at the base.
Therefore, once 612 and \ are fixed, F, is determined and the
Bernoulli constant € follows from Eq. (5.5a).

A second way to proceed is to start by fixing (i) the merid-
ional distribution of the Bernoulli energy, €, and (ii) the rotation

911

0.8
T

0.6
T

0.4

0.2

A =01

1

Fig.4a—c. Topology of a slowly rotating system with ¢ = 0 and )\ =
0.1 in the [R, M?] plane, a, in the [R, F] plane, b, and in the 3-D
space [R, F, M?], c. The X-type critical point selects a unique solution
that connects the Alfvén point to the origin (thick solid line). Non
critical dashed branches (c) and dotted branches (d) are similar to the
corresponding (c) and (d) of Paper II, except that the (d) branches
cannot cross the Alfvén surface M? = 1 and are forced to turn back
and converge to the ¢ branches
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rate A. Then, we may deduce again the value of F, by requir-
ing that it satisfies the regularity condition (4.5) and the solution
goes through the X-type critical point. Finally, 522 follows from
Egs. (5.5a) and (4.2) applied at R =1,

2

2 = N F, ) +1]1 -1+ L €.

2 6.1)

A direct (albeit approximate) way of getting 612 solely in terms
of € and \? is given in Eq. (6.6) below.

A third way to proceed is to start by fixing (i) the expansion
function at the Alfvén point, F}, and (ii) the rotation rate \. Then,
according to the discussion given in Sect. 4, for given values
of A and Fj, the slopes p and 7 are naturally deduced from
the regularity condition expressed by the cubics in Egs. (4.4)-
(4.5). If in addition we determine the value of the parameter
§v? from the requirement that the solution reaches the base at
R, with vanishing Alfvén number (see Eq. (6.6) below), or
equivalently it crosses the X-type critical point, the value of
the Bernoulli constant € is uniquely determined yielding the
asymptotic outflow speed.

However, among those possibilities we shall choose to fol-
low the second way in the rest of the section. Before proceeding
with a detailed examination of the solution topologies in terms
of the rotation parameter A, we first estimate in the following
the location of the “base” R,, of the wind in terms of the location
of the characteristic Alfvén radius at R = 1.

6.2. Approximate location of the stellar base of the outflow
relatively to the Alfvén surface

An estimation of the radius of the stellar source of the outflow
can be obtained from the expression of the generalized Bernoulli
integral alone. By denoting with R, the radius at which the wind
outflow starts (R, = 7, /7.), we note that this radius determines
the lower boundary of the region where the flow is slow and
strongly magnetically dominated, i.e., M — M, = 0. Then,
from the expression of € (¢f Eq. 5.5a) in the limit of M, — 0,
we obtain R, in terms of G, in an expression which is evidently
the generalisation of the corresponding Eq.(6.4) of Paper II,

512

Ry= ——————.
207 — € — \2G2

6.2)

If §v% = 0, then R, = 0 and the stellar source of the outflow can
be at the origin r = 0, as in Paper II. Similarly, if B, < O the
critical solution reaches R = 0. On the other hand, R, > 0 only
for 6 > 0and 2)? — e > X\2G2, or, § < 0and 2\ — ¢ < A2G2.
Note that since 2A? — € needs to be positive by the asymptotics
of the wind (Eq. 5.14), the last case of 0 < 2A> —¢ < A\2G? and
6 < 0 gives unrealistically low values of the terminal Alfvén
number because usually G, < 1.

Itis evident that the base of the outflow R, is always at some
interval, RM" < R, < R™* where,

min 6V2
Ro™ = 202 —¢’

max __
Ry =

SCar 6.3)
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The minimum value is obtained if the initial cross section of
the jet is negligible compared to the cross section at the Alfvén
surface, such that G, ~ 0. This happens either because R, is
small and the stellar surface has a radius much smaller than the
radius of the Alfvén surface, or because there is alarge dead zone
around the equator such that the last line connected to the base is
rooted very close to the polar axis and w,(qou) <K @a(Qoyt). It
is likely that jets where the material comes from the central star
itself and not from a disc are in a situation not too far from this
one in order to provide an efficient lever arm to extract angular
momentum.

The maximum value occurs from the opposite assumption,
namely that the fieldlines are already cylindrical from the stellar
base, G, ~ 1, a case rather extreme and therefore unlikely
to happen. In this case the extraction of angular momentum
from the star is minimal because the Alfvénic lever arm of the
corotating region would be rather small.

Another way to estimate the value of G, is the following.
Since in the subAlfvénic domain and far away from the Alfvén
distance, rotation is rather unimportant and the magnetic field
rather strong, the geometry of the magnetic field lines there
will be an intermediate one between the extremes of the dipolar
geometry (magnetic effects dominant) and the radial geometry
(outflow effects dominant, opening thus the fieldlines). The for-
mer holds in our model when 6§22 is small such that the initial
thermal acceleration is not significant while the latter when 622
is rather large resulting in a large initial acceleration. Thus, we
may write

1
f(Ro)Efo=-R(1)—_t,

~ p1.5-t/2
GO ~ Ro / )

Fo=-1+t,
6.4)

with 0 < ¢t < 1. When ¢t = 0 we are in the case of the pure
magnetospheric geometry without flows (6v2 ~ 0) and G, =
R!5. On the other hand, when ¢t = 1 we are in the case of
pure hydrodynamic expansion (6v2 > 1) and G, = R,. With
R, < litfollowsthat G, < 1, unless Aisrather high. Thus, for
finite 6% wherein the fieldlines initially expand radially (¢ = 1),
an upper limit can be placed on R, by substituting G, =~ R, in
Eq. (6.2)
MR — (2N — R, + 602 =0. (6.5)
For the examples shown in Figs. (4,5,6), this cubic gives for
R,: R, < 0 when 612 = —0.79,e =0 and A = 0.1; R, ~ 0.35
when 612 =0.69, e =0and A = 1; R, =~ 0.7 when 612 = 116,
€ = 0 and A = 10. These values are almost identical to those
found by the detailed numerical integration, see Figs. (4,5,6).
Finally, if we want to get an approximate value of R, with-
out going through the numerical integration, we may use the
approximation that the field lines are radial up to the corotation
distance, such that F,, ~ 0. Then, an approximate value for §2/>
is obtained by combining Egs. (4.5) and (6.1)

P AN —22V2X2+ 1 — €. (6.6)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...287..893S&amp;db_key=AST

FTI93AGA = ~287- Z89350

C. Sauty & K. Tsinganos: Nonradial and nonpolytropic astrophysical outflows. III

-1

-2

Phcl

Fig. Sa—c. Topology of a system rotating at an intermediate rotational
rate, for e = 0 and A = 1, in the [R, M?] plane, a, in the [R, F] plane,
b, and in the 3-D space [R, F, M?], ¢. The critical solution (thick solid)
is similarly selected by an X-type critical point. Dashed branches (c)
and dotted branches (d) are similar to Fig. (4) except for the reversal in
the [R, F'] plane where (c) branches are above (d) branches. We also
plot a (c) branch that connects the origin R = 0 with some reasonable
boundary conditions, e.g. M = 0, although it is not a critical one (see
text for more details)
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Comparing this value of v/ with the one used initially to obtain
the cases shown in Figs. (4,5,6) we find that for ¢ = 0 and
§v? # 0, 6v> &~ 0.54 when A = 1 and 6% = 116.45 when
X = 10 which are very close to the actual values 622 = 0.69 and
8v% = 116, respectively.

In the following we discuss how rotation modifies the topol-
ogy by directly using our numerical results.

6.3. Topology of a slowly rotating system

It is reasonable to expect that for small rotational rates, the
topology should resemble to the one found in Paper II. As an
example, consider the topology of the solutions for A = 0.1
and € = 0 which is plotted in the [R, F] plane, the [R, M?]
plane and the 3-D space, [R, F, M?], in Fig. (4). We see that the
characteristic X-type critical point of the non rotating solutions
is also present there, although the topology is slightly distorded
by rotation. This critical point selects a unique solution that
reaches the stellar base which in this case is at R, = 0 because
612 < 0. The slope p of the critical line at R = 1 corresponds to
the larger solution of the cubic (4.4) consistently with the fact
that this is the only one that remains in the absence of rotation
as explained in Sect. 4. In Fig. (1b) we mark with a bullet (o)
the value of p at the Alfvén point, corresponding to the critical
solution which passes through the X-type point.

In Fig. (4), we recover around the X-type point the topology
of Paper II. In order to simplify the picture we did not draw
the non critical lines that do not reach the Alfvén point, namely
the lines labeled (a) and (b) in Paper II. Instead, we draw some
non critical lines (c) and (d) and the second critical line. The
main difference introduced by small values of the rotation is
the change of those others branches around the X-type point.
Branches (b) and (c) that were connectedto R = 0, F' = —2, are
now forced by rotation to deviate and avoid this point, reaching
finally R = 0 and F' = 2. On the other hand, branches (a) and (d)
that used to cross the plane M = 1 have first to turn over making
a spiralling structure because rotation prevents them from be-
coming transAlfvénic; further on they just follow a similar path
to branches (b) and (c) towards R = 0. Actually in the present
case those noncritical lines reach R = 0 and F' = 2 because ¢ is
negative. They can reach also F' = oo for other values of € when
§ is positive, as explained in Paper II. This same conclusion still
holds further for somewhat larger values of \.

Although the picture does not change drastically from the
non rotating case, we already see that branches (c) and (d) are
very similar except around the critical point. This means prac-
tically that it is very difficult to isolate numerically the X-type
point by varying the shape of the lines at the Alfvén point and
one may easely miss the interesting solution. The same conclu-
sion holds again for stronger rotational rates.

6.4. Topology for intermediate rotational rates

For values of A of the order of unity (grossly for 0.5 < A < 2.5)
the X-type point remains but the surrounding topology is getting
more and more affected by rotation. A typical such topology is
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shown in Fig. (5), on the planes [R, M?] and [R, F] and in the
3-D space [R, F, M?] with its two critical solid lines and non
critical dotted/dashed lines labeled (c) and (d).

First, note that the X-type critical point for a given value
of 812 is shifted to lower values of the Alfvén number M as A
increases. In Figs. (4,5,6) corresponding to the three represen-
tative values of ), € is kept fixed such that 5% increases when
rotation increases; nevertheless it is not enough and the shifting
up wind of the critical point is observed. It is obvious from Figs.
(4a,5a,6a) that the X-type is farther and farther away from the
Alfvén point. However A = 1 is an intermediate case where the
X-type point is still located at M > 0.

Second, branches (c) and (d) are now reversed at the Alfvén
surface: branches (c) now correspond to values of F, greater
than the value on the critical branch while it is the contrary
for (d). This feature shows up in Fig. 5b where around R =1
dashed and dotted lines are obviously reversed as compared to
Fig. 4b. This reversal compared to lower rotation may appear
as a minor change that does not affect really the physics of
the solution. Nevertheless it is responsible for complicating the
topology and again should be treated with extreme caution in
using numerical schemes.

We would like also to emphasize through this example that
other critical branches may be sometimes obtained controlled
by other critical points. Among the (c) branches that are dis-
played with dashed lines in Fig. 5, a unique solution goes to
[R, F, M?] = [0,2,0]. In Fig. (5c) this solution appears clearly
as a dashed line connected to F' = 2 at the origin. It apparently
corresponds to a physical interesting solution although a more
careful study shows that the strong widening of the jet before
the Alfvén surface (corresponding to the jump from F' ~ 2
to F' ~ 0.5 makes a drop in the velocity quite unexpected. It
corresponds also to a strong cooling in this region. The con-
clusion is that although the solution seems reasonnable at its
boundaries (the source and the Alfvén surface) and it is a criti-
cal soltution in some sens, it is not necessarily a good solution.
However, a further parametric study of these kind of solutions
would be needed to exclude them completly. At present it is not
completly excluded that a second class of solution that does not
cross the classical X-type point may exist. The application of
such solutions is however beyond the scope of this paper.

6.5. Topology for a rapidly rotating outflow
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Fig. 6a—-c. Topology of a fastly rotating system with ¢ = 0 and A = 10
in the [R, M?] plane, a, in the [R, F] plane, b, and in the 3-D space
[R, F, M?], c. The previous X-type critical point of Figs. 4 and 5
does not exist any longer and is replaced by an X-type critical point
at (Ro, Fo, M,) = (Rmin, —00,0). We also plotted the (c) and (d)
branches with dashed and dotted lines, respectively. Note that any of
the (d) branches may be physical but the critical solution (thick solid
line) minimizes the input of energy

If we keep on increasing rotation, through an increasing of A, the
X-type point is shifted to negative values of M? which means
that this critical point does not select a solution any longer.
However, among the various solutions there is only one which
reaches the minimum value for R, R, discussed in Sect. 6.1
with corresponding values M, = 0, and Fy = —oco. A more
careful look into the momentum equation shows that this is an
X-type critical point. An expansion around this X-type critical
point can be performed, as

R=R,(1+¢), (6.7a)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994A%26A...287..893S&amp;db_key=AST

FT992AGA < ~287- Z89350

C. Sauty & K. Tsinganos: Nonradial and nonpolytropic astrophysical outflows. III

and to second order it appears that the Alfvén number M (and
not its square) is

M=0+0(?), (6.7b)
while F' diverges like
1
F=——| (6.7¢)
€
and G? approaches 0 like
202 — €
G? = —r (6.7d)

Considering now the critical solution, it suggests that for
a fast rotating central object, the dead zone completely covers
the stellar surface and the wind starts only from a very narrow
polar region with an extremely high magnetic field. A similar
result was found in Paper I, where the hydrodynamic and very
fast rotating solutions were shown to be unphysical because
all the lines were bending towards the equator except for the
very polar one. The difference here is that the toroidal magnetic
field rapidly grows up making possible to have some physical
solutions through the pinching forces. However, in the source
region lines are strongly bending towards the equator making a
large dead zone around the star.

In fact, there is no absolute way to select a unique solution
in the present case. The only criterion to have an acceptable
solution is to require that it matches the stellar boundary con-
ditions and in particular to have M = O there. As a matter of
fact, any of the (d) branches shown in Fig. (6) could be used
for that purpose. Note however, that the critical branch through
this critical point, corresponds to the smaller base radius R,
and consequently to the bigger lever arm. Moreover, this solu-
tion has the smallest initial gradient for M, minimizing thus the
input of initial energy.

6.6. How rotation controls the topology

Similarly to the superAlfvénic part, a global solution here is de-
termined by the two parameters A and e. In particular, we have
seen that R, is determined by a combination of these two param-
eters which fix the value of 622 and the location of the X-type
critical point that selects the physical solution; and this is just an
extension of the analogous result obtained in Paper II without
rotation. In Sect. 8 we shall discuss in more detail the parameter
€ which gives asymptotically the amount of energy transfered
into the toroidal components. Here however we emphasize that
in the subAlfvénic regime A emerges as the essential parameter
for determining the location of the X-type critical point with re-
spect to the Alfvén distance and subsequently determining the
surrounding topology.

To illustrate this point note, through Eq. (3.19), that X rep-
resents the angular momentum extracted per unit mass along
each fieldline, in units of the Alfvén radius and velocity, or,
it measures the initial angular speed of the footpoints of each
streamline, in units of V, /r,. Thus, A basically measures the
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rotational speed of the star that decreases with time as it evolves
from a protostellar object to the final stages on the main se-
quence. In the subAlfvénic regime toroidal forces are important
compared to other poloidal inertial forces (see Fig. 7 and Sect.
7 for a more detailed discussion on the dynamical regime in the -
solution), playing some important role in the topology. Farther
away Poynting flux has been transfered to poloidal kinetic en-
ergy flux. This explains why €/2)? is an important parameter.
Conversely, it is not surprising that the topology in the sub-
Alfvénic part is mainly controlled by the parameter A while €
plays a minor role.

After this rather technical section, we shall now join the so-
lution in both, the subAlfvénic and the superAlfvénic regimes to
construct a complete solution from the source up to its asymp-
totics. However, we should keep in mind that the proper solu-
tion of the problem in the subAlfvénic part constitutes one of
the most complicated parts of this study, with numerical work
necessary to be done at some stage; and this may explain why
several known studies have avoided to show a full solution from
the source region to infinity. Yet, we believe that such a way of
proceeding is absolutely essential to link consistently the ob-
servables at infinity together with the boundary conditions on
the star.

7. Application to jets from YSO’s

A full study of the applications of this model to various types of
astrophysical jets or winds will be presented elsewhere. In this
section we restrict ourselves to a preliminary application of the
above analysis to jets from young stellar objects, keeping the
discussion at a nondetailed level with our only goal to show the
feasibility of such an undertaking. In particular, without going
into the details of a specific object, we shall choose to outline
our results for the case of the class of T Tauri stars and their
associated jets.

7.1. Observational constraints

In the framework of the present model, the dynamics of a com-
plete solution is determined by knowing the parameters € and A,
while the thermodynamics of the flow by knowing the parame-
ter v and assuming a value for the asymptotic pressure I, (or
temperature Tt,). Then, for each set of those four parameters
an homologous class of solutions can be constructed. Further-
more, by specifying ., V, and p,, all physical quantities can
be expressed in dimensional form which can be compared with
observables, such as the terminal speed, rotational rate, etc. Al-
together then, we need four parameters in order to determine
the dynamics plus two for the thermodynamics.

A representative T Tauri star has a mass of the order of one
solar mass (Malbet 1993), a radius of the order of a few solar
radii, while its rotational speed at the equator is generally in
the interval of 10 — 20 km/s (Bouvier 1986). Such a star usu-
ally has a well collimated jet which typically becomes visible
at 100 AU (Pudritz 1990). This scale approximately determines
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Fig.7. Model I for a YSO, with ¢ = 0.28, A = 1.77, r, = 4.65r@, Vi = 13km/s, and various distributions of physical quantities with radius:
the poloidal velocity along the axis of the jet V} pot (thick solid line), the poloidal velocity at the edge of the stellar jet and the disc wind
Vp,lim (thick dashed line), the Alfvén number M (thin solid line), the toroidal velocity V, 1im (thick solid line) and the toroidal Alfvén velocity,

VA

@,lim.

= By, 1im/v/4mp (dotted line), on the last line connected to the star. The Alfvén transition is denoted with a , while the left vertical thin

A

line denotes the X-type critical point location. The right thin vertical line corresponds to the second crossing of V,J ;. and Vi jim.

the wavelength of the oscillations, if we assume that it corre-
sponds to the location of the first oscillation/knot. Finally, the
terminal speed is generally measured to be of several hundred
km/s, although we may expect that the velocity along the jet
axis is likely to be greater than the observed one (Pudritz 1990).
Moreover, as proper motion of the knots is usually measured to
be a few hundred kilometers, it is likely that we are still under-
estimating the terminal velocity of the gas itself flowing through
the knots. In view of these constraints we choose the following
set of observable variables of the problem :

b=~ 1 Mg,
To R 370,
Q~7.10"%rad/s
Agse = 100AU,
Voo & 700km/s .

= Voo & 15km/s,

(7.1)

7.2. Determination of model parameters from observational
constraints

Consider now the approximate determination of the parameters
which completely define a solution. In order to do so, we shall

use various analytical relations we have established in the pre-
vious sections. First, note from the definition of A in Eq. (3.19a)
that we have,

Qz}\ﬁ.

Tx

(7.22)

Then making the assumption, which will be verified a posteriori,
that the asymptotic Alfvén number is large, we know from Eq.
(5.13) that the parameter 2)2 /¢ is also expected to be large, so
that we can use a simplified form of (5.24a) in this limit,

222\
Agee ~ 270 <—’\-> , (7.2b)
A €
together with a simplified form of Eq. (5.16),
2
Vo = 2V, (2—?—) . (7.2c)

Eliminating 7, A and € from the three previous equations we
get approximately the value of V, in terms of the observable
quantities

V2n

Vim —=2

20582

~ 15.7km/s. (7.3a)
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Introducing this in Eq. (7.2a) gives for the ratio k = r, /) =
3.2 re while using Eq. (7.2b) one gets © = 22/ ~ 22.4,
which gives in turn from Eq. (7.2c) approximately the terminal
Alfvén number, M, ~ 30. Then we use the equations of Sect.
6, keeping in mind that R, = 7, /7. Thus, by combining Eqs.
(6.5)—(6.6) together with the above results we get an implicit
equation for A where all the parameters are known, namely

3 3
ol ey 1 _ 7102 &
53 -2 (1 m) +4A = 2V2N2 4125 ~ 0. (73b)

Solving this equation, we find a value of A & 1.77 for the present
set of observations, together with € ~ 0.28. As r,, 7, and V;
are known approximately, a value of v of the order of v ~ 22
corresponds to a typical one solar mass star.

7.3. Model I for a jet from a YSO

Let us now fix the parameters of the problem and calculate
the solution consistently. We actually need three dimensionless
parameters, namely €, A and v to define a solution, plus three
reference values, i.e. .46, T, and ny, (the terminal density along
the jet axis), to translate all dynamical and thermodynamical
quantities into physical units,

€=0.28,

A=1.77,

v=22,
M=1Mg,

Noo = 10°cm™3,

To=37g. (7.4a)
This set of parameters shall constitute what we call model I, in
the following. Note, however, that we still have some flexibility
in determining the last two parameters: for example, we could
replace them by Vi, and A, if observations were more precise
on the values of those two parameters. Note, also that the choice
of the terminal density is done a posteriori such as to explain the
measured 10* cm ™3 density in the surrounding emiting region,
a point which we shall discuss in subsection 7.8 together with
the thermodynamics. Note for a moment that the value ny, =
103 cm™3 we have chosen, gives p, = 1.7 x 1078 gcm—3,
Finally, the first three parameters define an homologous class
of solutions where all members of this class differ only in the
normalization.

Figures (7) and (8) display various physical quantities as-
sociated with this solution, which we shall review briefly. Note
first that the solution topology is similar to the intermediate case
we discussed in the previous section (see Fig. 5) with an X-type
point in the subAlfvénic regime, located at R, = /7, = 0.742
that selects a unique critical solution going through the Alfvén
point with F;, = 0.451. Therefore, from Eq. (6.1) we find that
8v2 equals to 2.96 along this critical solution. Then, integrating
upwind we find that the critical solution reaches a finite radius
R, = ro/r« = 0.645 where M = 0. This radius practically
defines the stellar base, since the magnetic field is dominant
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there and the velocity reaches zero. Note however, that the real
stellar base may be identified just above R, where the velocity
is slightly positive. Fig. (7) shows however that practically this
does not make any difference.

Thus, in this model I, the wind is blowing from r, = 3 rg,
passes through the X-type critical point at r, = 3.45r¢, corre-
sponding to the left vertical line of Fig. (7), and accelerates up
to the Alfvén surface located at r, = 4.65 g (noted with a % in
Fig. 7). Using the definition of v, the velocity of the wind at the
Alfvén point is calculated to be V, = 13 km/s which is slightly
lower than our initial guess. The wind continues accelerating
until it collimates into a cylindrical shape after undergoing os-
cillations, see Fig. (8), reaching finally a terminal Alfvén num-
ber, M = 30.2. Also, we find the following values of the other
physical quantities :

Q=707x10"%rad/s <=  V,,=148km/s,
Aose = 44 AU,
Vio = 543 km /s . (7.4b)

7.4. Dynamical evolution of flow

InFig. (7), we plot the velocity along the pole, V;, 1., the veloc-
ity along a streamline which is almost at the edge of the jet but is
still connected to the star, V}, jim., the azimuthal velocity at the
limiting streamline, V,, jim., the Alfvén speed associated with
By jim. — i.€. Vj"ﬁm_ = By jim./v/4mp and finally the Alfvén
number, M.

The polar outflow speed and the Alfvén number are increas-
ing functions of the polar distance R and reach asymptotically
maximum values once the jet becomes cylindrical, after some
oscillations. For a nonpolar streamline which is away from the
jet-axis, the initial velocity of the jet is lower, partly because § is
positive, but mainly because of the flaring of the streamlines, as
found in Paper I. To see that we write the total poloidal velocity
along a streamline as

F? G?
M2 1+ T—l ﬁa

a? 1+6c

Vo(R,0) =V, (1.5)
Along the pole a = 0, while for a non polar streamline close
to the equator, we have @ < 1 and F? < 4 because of the
streamline geometry [see Fig. (8)]. It obviously introduces in
the numerator a decreasing factor as we move from the pole to
the equator.

The terminal speed is also reduced due to the positive value
of 6 as we move farther away from the jet to the disc-wind region.
As F ~ 2 in the asymptotic region, we see from Eq. (7.5) that
the anisotropy from line to line is mainly due to the effect of § at
the denominator. This feature does not appear clearly in Fig. (7)
because ¢ is too small. Differences between the polar streamline
and the streamline at the edge of the stellar jet are negligible.

Figure (7) shows the various stages of the acceleration in the
wind. There are mainly three distinguishable zones, separated
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Fig. 8. Plot of the shape of the streamlines in the poloidal plane of model
I with two different scales along the polar axis. The stellar wind (thin
solid) is separated from the disc wind (dotted) by the last line connected
to the star in thick solid line. Below, we plot the initial accelerating and
collimating region near the star with the same scale on both axes. The
Alfvén surface is drawn with a dashed line. On top, oscillations are
shown with the terminal cylindrical shape and the polar axis scale is
reduced on purpose

in Fig. (7) with two thin vertical solid lines. They correspond to
the three different acceleration regimes in the wind as follows.

Up to the X-type point the wind is undergoing an initial
thermal acceleration corresponding to a strongly heated region
(for more details see paragraph 7.8 of this section). At this stage

C. Sauty & K. Tsinganos: Nonradial and nonpolytropic astrophysical outflows. III

the toroidal components do not play any significant role in the
initial acceleration of the wind. The toroidal speed V,, which
carries the initial angular velocity of the foot points, decreases
while the toroidal Alfvén speed V: increases rather sharply. The
X-type critical point corresponds to the transition region where
both velocities are approximately equal. This gives some new
insight to the meaning of this critical point. It corresponds to
the point where toroidal pinching forces start getting dominant
over the centrifugal forces and where the wind switches from a
thermally driven to a magnetically driven one.

From the X-type critical point downstream, both toroidal
components decrease, since there is some energy transfer from
the centrifugal component and the Poynting flux to the poloidal
component. Thus, the poloidal velocity undergoes a much
smoother acceleration as a signature of magnetic effects. In this
region, the pinching forces dominate over the centrifugal forces.
Moreover, as the heating source gradually vanishes, all the ther-
mal forces vanish too (see Fig. (9) and discussion hereafter 7.8).
The net result is that the lines focalize toward the axis.

This inward converging of the lines spins up the wind again
and we reach a new stage where both V,, and Vj are equal (right
vertical thin line). At this point the interplay of the toroidal com-
ponents creates oscillations that we shall explain later together
with the corresponding streamline shape in this regime.

7.5. Streamline shape

In Fig. (8), the poloidal fieldlines are plotted and they show
again three different regimes corresponding to the three previous
dynamical regimes.

Initially, the streamlines show a strong flaring. This flar-
ing is due to the large heating and corresponding large pres-
sure gradient in the radial direction d P/d R, which has also a
strong component in the w-direction, dP/dw, repelling thus
the streamlines away from the flow axis. Later, as the heating
and subsequently the pressure gradient d P/d o sharply decrease
[see Fig. (9¢)], the streamlines return to their radial shape.

However, now the azimuthal magnetic field has built its
strength enough to start pushing the streamlines towards the
flow axis and collimation starts. This corresponds to the second
dynamical regime from a few rg up to approximately 4000 rg.

The third dynamical regime is the one with the oscillations
where the toroidal forces dominate in the transverse force bal-
ance. It approximately starts when both toroidal velocity and
toroidal Alfvén speed are equal. At this point, lines are con-
verging, increasing thus the toroidal velocity. However, the ex-
istence of centrifugal forces prevents the flow from focalizing
completely at the pole. The jet undergoes oscillations due to
the interplay of the centrifugal force, the magnetic tension and
the magnetic pressure gradient. Asymptotically, the difference
between the two speeds in Fig. (7) reflects the existence of a fi-
nite magnetic pressure gradient at equilibrium. Each minimum
(maximum) in the jet radius [see Fig. (8)], thus corresponds
to a maximum (minimum) in the azimuthal velocity and to a
minimum (maximum) in the azimuthal Alfvén speed. At each
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extremum there is a restoring force which brings the jet to-
ward equilibrium. In between, the toroidal velocities reach their
asymptotic values, but the curvature of the streamlines is associ-
ated with some extra transverse forces making thus the system
to oscillate around its asymptotic position. These oscillations
exist because we have taken into account the curvature of the
Alfvén surfaces with respect to R. As we go farther away in the
jet this curvature decreases, thus resulting in a damping of the
oscillations. Finally, the jet reaches equilibrium in a cylindrical
configuration as explained in Sect. 5.

Between the top and the bottom plots, the apparent kink in
the lines is an artifact of the plot and it is due to the different
scale. As we already noted in Sect. 5, the first throat in the jet is
more dramatic than the following oscillations and is the more
likely to be where the jet starts becoming visible. However, it
must be emphasized that in order to “resolve” the jet horizontaly,
the equatorial axis has been much enlarged as compared to the
polar axis making the effect of oscillations more pronounced
than it really is. The thick line indicates the very last streamline
connected to the star and actually separates the stellar wind
component of the jet from the disc wind component. Lines that
are not connected to the star (with dots in Fig. 8) may then
naturally correspond to lines rooted in the disc itself.

The wavelength of the oscillations is smaller by more than a
factor of two than our initial guess because of the approximate
form of Eq. (7.2b) and we only kept this formula in order to
make some starting guess of the actual value. Note the following
regarding these oscillations. First, the first throat [cf. Fig. (8)]
is located around R = 2100 corresponding to

Afirst throat = S8 AU . (7.6)

Second, the wavelength is rather sensitive to the terminal Alfvén
number and increases rapidly as M increases slightly (Fig. 3).
Finally, note that available observations are not so precise as to
take our initial guess strictly. Here, the first throat corresponds
to the point where the jet becomes visible; and this is not known
better than a factor of 2. In Fig. (10), we present another solu-
tion where the wavelength is much larger, just to show that by
shifting the parameters it is possible to adjust more precisely
the observations.

7.6. Mass loss rate

From Fig. (8) and the discussion of the previous subsection, it is
evident that there exist two components in the jet, one being of
stellar origin and the other one produced by the disc. However,
they do not have the same contribution to the total mass loss
rate of the system, as we shall see.

From Egs. (3.10) and (3.7a), it is possible to calculate the
mass loss rate along a flux tube of asymptotical cylindrical radius
Woos

2
M(we) = wrip*V*% [(1 +6-2%0 /2 1.7

2G2
r:G%

Using the values of model I, we find that the stellar component
of the jet carries approximately 5 x 10™1% Mg/yr, while a jet
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extending to only 42 AU can account for a mass loss rate of
10~8 Mg/yr as observed. Thus, the stellar component in Model
1 does not contribute significantly to the total mass loss rate but
it is instead the disc-wind which is mainly responsible for the
mass loss rate, a fact in agreement with recent observations
which relate the wind mass loss rate to the accretion mass loss
rate (Edwards et al. 1989; Cabrit et al. 1990). Also, it is still the
inner part of the disc that is responsible for the total mass loss
rate within our model. And, an even inner part of the disk is
responsible for the total mass loss rate if we allow a transerve
pressure gradient (k # 0) as we shall explain at the end of this
section.

7.7. Poloidal electric current

Our modelling is rather general along the rotational axis and
should therefore reproduce some features of other models. In
particular, it is interesting to show that the flow along the axis
can be modelled in a consistent way, avoiding a complete fo-
cusing of the lines on the pole, as is the case for example in
several other disc-wind models (Sakurai 1985, 1987; Blandford
& Payne 1982; Pelletier & Pudritz 1992), because the ques-
tion of the current density along the axis has been correctly
addressed. As we have shown just above, the present model
may account for the inner current-carrying part of the jet com-
posed of the proper stellar wind and the inner core of the disc
wind necessary to collimate the jet. Then, the solution can be
eventually matched outside to a wind that does not carry any
poloidal current as suggested by Pelletier & Pudritz (1992).

Actually, the dependence of all toroidal components across
the jet can be deduced easely from Eqgs. (5.7) and (5.8) in the
asymptotic regime. There, we have that

Boo(w) x w,
Vipoo() o< const.
Jpol.oo(@@) o< const. ,

Ipol.oo(w) x w? ) (7.8a)

where jpol.co @and Ipol.co are the current density and the total
poloidal current in the jet. These asymptotic dependences can
be compared with those in the self similar model of Chan &
Henriksen (1980), although here the increase of the mass flux
(and therefore of the density) with the cylindrical radius allows
the rotational speed to reach a constant value and not to diverge
as in their model. More precisely, the poloidal current enclosed
in a flux tube of terminal cylindrical radius we, is given by
(3.17)

cB, w2, 1 - G2,

Tpor.co = )\2_1;@1_—.]\73; )

(7.8b)
such that this model requires a rather small current flowing into
the jet. Taking the values of model I, we find that the inner part
of the jet carries the current,

2
Do

Toot.co = 1.81 x 107 A. (7.8¢c)

2
s
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Fig. 9a—c. Plot of the polar temperature, pressure and heating profiles
in a, b and ¢ for model I (solid line). Parameters are given in Fig. 8,
together with p, /m;, = 10 cm 2. In addition we have plotted a second
solution (dotted line) where velocities have been reduced by a factor of
/10 as compared to model I, but everything else is kept identical (i.e.
A, € T, px and .#6 are as in model I but V, is changed to V,/ V10)

A total current of about 10'° A is flowing within 3 AU in a core
jet and this would be enough to support a surrounding current-
free flow as suggested by Pelletier & Pudritz (1992).

7.8. Thermodynamics

Let us turn now our attention to the thermodynamical features
of the solution corresponding to model I and illustrated in Figs.
(7) and (8). In the following Fig. (9a) we plot the temperature,
in (9b) the pressure and in (9c) the heating rate per unit volume,
along the rotation axis of the flow, with the curves corresponding
to model I displayed with a solid line. At the same plots we have
also drawn with dotted lines the curves corresponding to another
solution where all parameters are kept identical to model I except
that the velocities have been divided by a factor of /10 (the
terminal velocity is now 220 km/s and the equatorial velocity
of the star is 4.96 km/s) and v = 70.

As we already mention in Paper I, the pressure and con-
sequently the temperature, can be adjusted by renormalization
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as long as k = 0, because the pressure just enters through its

gradient in Eq. (4.1a). However, there exists a lower limit here,

in order for the pressure to remain positive everywhere. Thus,
we have chosen arbitrarily some asymptotic values for the pres-
sure in Fig. (9b) which are close to the lower allowed value.

Hence the pressure almost goes to zero in the very first oscilla-

tion where it reaches its minimum value. For model I wherein

v = 22, we choose Tpo = 6.5 x 10° K (solid) while for the

lower velocity model with v = 70, T, = 6.7 x 10°> K (dashed).

Globally we see that by reducing the velocity, it is easy to re-

duce within the model the terminal temperature and pressure

although their initial values are not affected, since the escape
speed does not change.

In Figs. (9b,c,d), for the temperature, pressure and volumet-
ric heating rate profiles along the polar axis we may distinguish
several regimes in the radial dependence of those thermody-
namic variables.

e First, we have a high heating rate which builds up a large
pressure gradient that helps the wind to escape from the
gravitational well of the star. Thus, most of the heating is
concentrated near the star and drops fast, consistently with
the idea that most of the heating processes are coming from
the star or its surrounding disc and are damped with the dis-
tance. With the flow expanding radially such that the density
drops only like R~2, a sharp temperature increase results
then as in the chromospheric transition region (Papers I and
1I).

e Second, subsequently the heating and therefore the pressure
gradient level off, the pressure decreases slower and the
temperature starts to decrease too, also as found in the radial
case of Papers I and II.

e Third, when the geometry deviates from radial and collima-
tion starts, the pressure drops even much slower, essentially
balancing the gravitational well only since the inertial terms
in this regime are small. This is the case just before oscilla-
tions appear because F' is close to 2 and the inertial terms in
Eq. (4.1a) are proportional to M2(F —2)/R. In other words,
the pressure goes almost to a constant value once the devia-
tions from radiality are strong enough and the gravitational
effects become small. Such a combination could not exist
in the previous noncollimated solutions as the ones found
in Papers I and II: in an asymptotically radial wind the pres-
sure keeps on decreasing like R~ all the way long, to zero
at infinity. Thus, now the pressure rapidly becomes con-
stant forming a plateau that corresponds to the asymptotic
value reached after collimation is achieved. The density is
still droping fast and consequently the temperature rises to
higher values. This is the case just before oscillations appear.

e Fourth, once the flow starts undergoing oscillations, the
pressure in the jet undergoes small oscillations too (as com-
pared to the initial pressure gradient needed to push the wind
out of the gravitational potential) because of the kinematic
forces that appear again in Eq. (4.1a). In particular, as F* > 2
in Eq. (4.1a) the pressure needs to drop faster in order to bal-
ance the term proportional to F'—2 in Eq. (4.1a). Combining
this with the result that the density increases as the jet ma-
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terial moves towards the throat, the temperature decreases
sharply. When the lines start bending strongly towards the
pole, more than cylindrical (between 1000 and 10000 rg
in Fig. 8), the total heating becomes negative as it can be
verified in Fig. (9) independently of the velocity. This net
cooling effect is responsible for the drop of the temperature
shown in Fig. (9a). It actually suggests that the effect of fo-
cusing by the pinching magnetic forces can be associated
with radiative losses. However, the total cooling in this re-
gion is unlikely to be only radiative, since a larger or smaller
part of it may be of magnetic origin (Alfvén waves) and be
reprocessed in the next opening of the fieldlines where heat-
ing takes place once more.

o Finally, after the oscillations decay the pressure, temper-
ature and density relax to their constant values while the
heating drops to zero. Note that the density profile is the
inverse of the Alfvén number distribution given in Fig. (7).
The high temperatures are associated with low density re-

gions so that it is quite unlikely that those regions will have any
radiative emission. Moreover, ¢ is positive which means that the
density increases outwards and that the temperature decreases
across the section of the jet. Thus, it is quite likely that the outer
regions of the jet have the main contribution to the observed
portion. The transverse drop of the temperature is given by

T(w) 1
Tpol. - w?

(7.9)

In model I, for example and in the asymptotical region the tem-
perature drops by a factor of 10 within 5 AU and by a factor
of 100 within 16 AU across the jet. So, relatively close to the
jet axis the temperature drops to a few 10* K, as implied from
the observation of the optical jets. This may be reduced even
more if tranverse gradient pressure were allowed as we shall ex-
plain later on. Another way to reduce globally the temperature
is to reduce the velocity, as it is shown with the dotted curves
in Fig. (9a). Although we did not perform any calculation of
the luminosity, the inner hot core is likely to have no detectable
counterpart (visible or X-ray emission), the same way the hot
corona of the sun after a few solar radii is undectectable. How-
ever, in the throat of the jet itself, very low temperatures can
be achieved, even close to the polar axis. There the temperature
can reach very low values down to 10* K and beeing associated
with some enhancement of the density there, it would favor in
addition to a spatially continuous emission from the outer part
of the jet, some brighter knot emission. Thus, the very first point
of focusing which we called the first throat, may be a good can-
didate for the formation of a visible knot and it may be also
the only one in the frame of the present model. As proper mo-
tion is usually measured within those knots, it could be that the
series of knots usually observed are resulting from the time-
dependent evolution of the jet which is of course out of the aim
of the present modelization.

Altogether, we have found that the present model shows
some interesting properties in describing the thermodynamics
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of jets, although it does not contain explicitly an energy equa-
tion. It also displays some of the limitations of the model, mainly
because of the absence of a tranverse pressure gradient, an as-
sumption we abandon in a companion study. Such a refinement
of our approach may improve the situation, for example by re-
ducing the temperature everywhere in the jet, as we shall explain
in a following subsection. However, we note that such effects of
the thermodynamics are of second order as far as the dynamics
of the flow in its asymptotics are concerned (which is anyway
close to the cold plasma description). In closing we mention
that in this subsection we have restricted our attention to the
thermodynamics of collimated flows. The thermodynamics of
noncollimated which become asymptotically radial on the other
hand, has been already discussed in Papers I and II, as well as
in Tsinganos & Trussoni (1991).

7.9. Model II for a jet from a YSO

An important feature of the previous solution is that the Alfvén
surface turns out to be rather close to the stellar base, with a
corresponding lever arm w, = 1.5w,, as compared for ex-
ample to the solar case. We note that this result has emerged
naturally from our parameters chosen to fit the observations.
Usually it is convenient to assume that the Alfvén surface is
rather far from the star in order to decouple the thermodynam-
ics and use the cold plasma approximation. Note however that
also in other self-similar solutions (Blandford & Payne 1982)
the Alfvén surfaces are converging towards the center. There is
even a singularity in this case as all Alfvén iso-contours cross
the origin. By comparison, in the model of Sakurai (1987) it is
suggested that the Alfvén surface could be far from the disc but
it changes of topology near the star and gets closer. The lever
arm of the disc wind would then be enhanced and responsible
for the angular momentum loss. As it has been shown by Pudritz
& Norman (1986), the stellar wind cannot do it by itself and this
seems to be confirmed here. Nevertheless, the central part of the
jet, modelled here, could be an important component to explain
the overall structure of the flow as we have just shown. Finally,
X-ray observations suggest that the acceleration region is very
close to the star within a few stellar radii, comforting the idea
that the Alfvén surface would be closer than expected (Natta
1990).

However, to show that the model can reproduce a jet with
a more extended lever arm, we plot in Fig. (10) the poloidal
two dimensional configuration of the streamlines. The thick line
again separates the stellar wind from the disc wind. The set of
parameters used for this solution, called model 11, is

€=0.07,

A=0.8,
v=4.,
M =1Mg,
To=37g. (7.10a)

The Alfvén surface is now found tobe atr, = 7.8 7, = 23.4 g,
with an Alfvén speed V, = 28.4km/s and the X-type critical
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Fig. 10. Similar plot as Fig. (8) for model I with € = 0.07, A = 0.8. The
dead zone is much bigger and the Alfvén surface farther away from the
star. On top, the wavelength of the oscillations is much larger than in
model I

point is located at r, = 6.13r, = 18.47g. As the dead zone
is important, the ratio of the magnetic lever arm to the stellar
lever arm is even higher than the ratio of the Alfvén radius to
the stellar radius. We find altogether

we = 14w, ,

Q=1410"%rad/s <=  V,,=2.9km/s,
Aose =320AU,
Afirst throar = 642 AU,
Voo =950km/s
Mo, =24, (7.10b)
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Note that the wavelength here, is much larger than in the pre-
vious model and corresponds more or less to the spacing of the
HH objects in HH 33-34 (Reipurth 1990) which is of the order
of 0.004 pc = 825 AU. For such an object, the velocity of the
gas inside the jet should definitely be larger than the proper mo-
tions of the knots in the jet; such a study needs to be carried in
the framework of a time dependent model.

If a specific object is to be modelled, of course the present
scheme can be used iteratively until convergence is reached
between the observations and the final solution. Such a detailed
modelling is however outside of the scope of the present paper.
‘We have simply shown here that our study is capable to describe
such a phenomenon and our model is rather flexible for the
various parameters of the observations.

8. The transition from jets to winds

In Sect. 6 the boundary conditions at the source of the outflow
were connected to the conditions at the Alfvén surface while in
Sect. 5 we linked the conditions at the Alfvén surface to those
at the asymptotics. In Sect. 7 we have illustrated the collimated
solutions by applying them to jets from T-Tauri stars. In this
section we shall try to characterize quantitatively in the frame
of our modelling how collimation takes place and to link it with
the boundary conditions at infinity and at the stellar surface. Our
aim is then to give a general criterion and to explain why we
obtain those two different classes of solutions.

8.1. A criterion for collimation

From the previous sections, it appears that giving the two pa-
rameters € and A in the frame of our modelling completely deter-
mines the geometry of the solution. In the following we discuss
the physical content of this key combination of the two param-
eters, ¢/2)2. Thus, first note that

€ _ p(R,a)F(a) — p(R, pole)F(pole)
222 (R, )QUa)L(c)
_ ApF)
pQL -

8.1

Evidently this parameter measures the excess of the volumet-
ric total energy along a given field line, as compared to that
energy along the pole, normalized to the corresponding volu-
metric magnetic rotator energy, pQ2L.

Expressing €/2)? in terms of the conditions at the source
boundary r, where the cylindrical radius is w,(a), the escape
speed Vesc,o, the polar density p,(pole) and the density at any
other streamline p,(c), we find from Eq. (6.2) that for the case
540,

€ ER + EG
2—A_2 =1- [E—MR:I s (823)
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where Ejyr is the magnetic rotator energy and Ex, Eg the base
rotational and corrected gravitational energies, respectively,

V2 w2
FE; =QL Ep = 2% - 207"
MR ) R 5 5 9
V2 »(pol
B = Leseo B _ GH [1 _ Polpo e)] . (8.2b)
2 pO To po(a)

Thus, in a fast magnetic rotator (FMR) Emgr is larger than the
sum of Eg, the rotational energy, and Eg, the gravitational
energy corrected by the density latitudinal anisotropy factor
1— po(pole)/po(c), such that € > 0in Eq. (8.2a) and the flow is
asymptotically collimated by the magnetic rotator forces. Note
that the ratio Er /Emr equals to the ratio of the cross section
of the flow tube at the stellar surface to the cross section of the
same tube at the Alfvén surface and therefore one expects that
if this ratio is small compared to unity, the magnetic lever arm
is much larger than the stellar base and thus angular momentum
is efficiently extracted from the central object.

If on the other hand, the magnetic rotator energy Eyg is
smaller than the sum of the rotational energy Er and the cor-
rected gravitational energy Eg such that € < 0in Eq. (8.2a), the
flow is asymptotically radial, as it is indeed the case for slow
magnetic rotators (SMR). Note that the latitudinal anisotropy of
the density (6 > 0) favours radial asymptotics (e < 0) together
with the rotational energy Ex. This result has been also obtained
in the previous papers I and II where the solutions had a ten-
dency to become more quickly radial as the effective gravitation
is increased.

Consider the characteristic ratio €¢/2)? at the asymptotic
region of the outflow. If the flow obtains cylindrical asymptotics
(F' =2), the available magnetic rotator energy is transfered into
centrifugal kinetic and Poynting energy flux density per unit of
mass flux density, such that at infinity,

e V2oo/2+Sos/PooVeo
22 IO

(8.3a)

In this form it is evident that this quantity has to be positive in
order to have collimation.

On the other hand, when rotation becomes negligible asym-
ptotically, collimation is not possible and a sudden transition
may appear towards a noncollimated asymptotical regime. In
this case Goo — 00, Mo, — 00 but M2 /G2 = Vi [ V.
Thus,

e VoML (F%L Ve
22 T 2V, R ( 4 1) Ve (8.30)
where V,, / Voo = G2 /M2, ~ (G%, — 1)/(MZ% — 1). Now

since at infinity all forces vanish and the heating too disappears,
the velocity should reach some constant value, V.. Then, if
0 < Fy < 2 it follows from Eq. (3.8) that G2, = C? R?~F)
and M2 = V,,C?R?~F=) where C is a constant. Inserting
these expressions in Eq. (8.3b) it follows that negative values of
€/2\? are possible only for conical asymptotics where Foo, = 0.
Numerically it is also verified that the transition from positive to
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negative values of €/2)2 corresponds to a transition from cylin-
drical to conical asymptotics. Then, we reach the conclusion
that if a central star is spinning down such that €/2A? becomes
negative, its outflow switches from one with cylindrical asymp-
totics (a jet) to one with a conical asymptotics (a wind), as we
discuss in the following.

8.2. An example of non collimated outflow

Having illustrated in Sect. 7 collimated solutions, we present for
the sake of completeness here an example of a non collimated
solution. According to previous criterion we should seek such
a solution when ¢ < 0. In order to keep things as simple as
possible, we took again §v2 = 2.96 a value equal to the one
obtained in model I [Figs. (7) and (8)]. We then lowered A,
which actually measures the strength of the magnetic rotator as
explained in 8.1, to A = 1. Again a unique solution, selected
by an X-type point, is found to link the Alfvénic surface to the
stellar surface. It corresponds to a negative value of € such that
no collimation to cylinders can occur. The parameters of model
III are thus

€e=—2.54,
A=1,
To=37g. 8.4)

Reducing the magnetic rotator strength, through A2, by
about a factor of two, the jet has undergone a sudden transition
from a purely collimated configuration with cylindrical shape
towards an asymptotically radial shape reminding of the solar
wind as shown in Fig. (11). A continuous transition through suc-
cessive quasi-steady states described by our present modelling
is not possible because it would go through a stage with € = 0.
For € = 0, the jet would keep on accelerating and the temper-
ature would keep on increasing up to infinity because the flow
would never reach the third dynamical regime, as we have seen
in Sect. 7.

However, through this example, we may understand that as
ajet has removed enough angular momentum from a young star,
the central object has span down making the magnetic rotator
less efficient, reducing thus the magnetic rotator energy Emr-
After passing through a critical stage, cylindrical collimation
and knot formation seems to have disappeared completely and
the flow is undergoing a continuous expansion with magnetic
pinching not efficient any longer.

From Fig. (8) to Fig. (11), the scenario has been over-
simplified as compared to reality because we have kept 612
constant for simplicity. Globally, if the star reaches a stage com-
parable to the characteristics of the Sun today, it seems that 12
atthe Alfvén surface may decrease which would shift the Alfvén
surface to larger radii.

9. Summary

To obtain analytical solutions of the appropriate MHD equa-
tions for outflows from a central gravitating object (Sect. 2)
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Fig. 11. Plot of the shape of the streamlines, as in Fig (8), for model
III with € = —2.54, A = 1. It corresponds to a star initially described
by model I that spins down and reaches a non-collimated stage. The
radial shape is made evident by the use of to different equatorial scale
on the bottom and top part of the plot contrarily to previous figures.
The solid lines are still lines connected to the star while dotted lines
are connected to the disc

equatorial plane

we have used streamline coordinates (R, «) and assumed that
in these coordinates the key physical quantities of the problem
are separable (Sect. 3). Further, expanding to lowest order their
a-dependence,

2 _ pal) L5 (R, @)
M (R,a)= ———~ = M*(R), =)

=G*R), 9.1
p(R, ) (R), 6.1
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pa(0) = py(1+6a),  wi(a)=rla, 9.2)
dJ X 5.3 I G
S =7nBla,  P(Ra)=p VIR 1 +ka), (9.3)

we obtained a system of ordinary differential equations for
M(R), G(R) and II(R) (Sect. 4). We have solved this system
in the simpler case where « = 0.

An integration of the coupled ODE’s for M(R), G(R) and
[I(R) revealed that the asymptotic behavior of the streamlines
of the flow crucially depends on the parameter €/2\? which is
a measure of the available magnetic rotator energy such that,
in a FMR, 6/2)\2 > 0 and the streamlines obtain cylindrical
asymptotics while, in a SMR, €/2A? < 0 and the streamlines
become asymptotically conical (Sect. 5). Note, in passing, that
FMR and SMR do not relate to the actual speed of rotation; a
T-Tauri jet is a FMR although the star itself does not spin very
fast. In addition, in the case of the FMR, collimation is achieved
through oscillations in the form of the streamlines. We derived
an analytical expression for the wavelength of these oscillations
by expanding the momentum equation in the asymptotic regime.
We have shown that these oscillations can arise from the inter-
play of toroidal components only, without the help of pressure
gradients. This result is novel with respect to previous studies
showing such oscillations.

A detailed study of the solutions (Sect. 6) showed that three
categories of topologies exist depending on the rotational speed
of the central star. Nevertheless, the topologies of the solutions
are controlled by an X-type critical point in the subAlfvénic
regime (Sect. 6) in addition to the classical Alfvénic transition
(Sect. 4); and this result generalizes to arotating object the study
of Paper II for non rotating flows. Although rough estimates
linking the boundary conditions at the source of the outflow to
the transAlfvénic region may be obtained (Sect. 7), a consistent
solution of the equations of the outflow from the wind source
to infinity crossing the relevant critical surfaces is needed; this
problem is not a trivial one and should be taken into account in
related numerical studies. ’

A preliminary application of the results to outflows from
young stellar objects (YSO’s) has been performed (Sect. 7) sug-
gesting a simple way to use observations to constrain the model.
We emphasized that there is a necessity for a two component
jet constituted of an inner core of stellar origin surrounded by a
wind coming from the disc. The disc wind may be a good can-
didate to explain most of the observed features. However the
stellar jet may still be an essential ingredient for solving consis-
tently the problem, carrying the necessary poloidal current that
supports the collimated flow. More precisely, the present model
is appropriate to describe some basic features of optical jets as
they come from both the star and the inner disc region. On the
other hand, the mass loss associated with CO lobes could be
originating in the extended disc region which has not been at
the main focus of our modelling. Of course models which are
stationary like the present one cannot account for the observed
proper motions in HH objects. However stationary models can
be used as the first step for an understanding of the time de-
pendent evolution of outflows from YSOs. In this connection,
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proper motions can be undestood as resulting from a variability
of the source region of the outflow (Raga et al. 1993).

We finally concluded (Sect. 8) by giving a criterion for col-
limation of the flow in terms of quantities at its source. We sug-
gested that the asymptotic shape of the streamlines of a rotating
object must drastically change as it losses angular momentum
and successively passes from the stage of arapidly rotating YSO
(FMR) to a stage of a solar-like object (SMR).

We would like to emphasize two limits of the present model
as we have already discussed throughout the paper together with
some possible solutions.

In the present study we confined ourselves for simplicity to
a spherically symmetric pressure, i.e., the case k = 0. However,
the same model can be easily extended to include a meridionally
anisotropic pressure (x # 0). Such a general pressure gradient
may play an important role in the initial part of the acceleration.
Thus, if £ < 0 an external pressure confinement may help the
collimation, although there is no such observational evidence
that the jet should be pressure confined. Conversely, with x > 0
it would be possible to increase the value of § keeping (6 —
k) fixed to the previous value of 6 used in model I. In such
a case the gravitational effect which is proportional to (6 —
k)v? would remain the same while the meridional anisotropy
in the density would increase more rapidly. In particular for
collimated solutions, the inner core of our hollow jet would be
more confined around the axis. The anisotropy in the pressure
would also allow to have a reduced pressure along the axis,
which we have seen to be a way to reduce the high asymptotic
temperature obtained along the polar axis. Moreover, increasing
6 would increase the total mass loss rate and this would allow to
reduce the size of the source of the observed mass loss rates to
an even smaller inner region of the disc wind. Although we have
just shown that such a study may easily improve the connection
with observations, we do not expect to find completely new
fundamental results. For example, concerning the asymptotic
oscillations, a more general model including tranverse pressure
gradients is likely to reproduce intermediate results between
those presented here and previous other studies e.g., Chan &
Henriksen (1980). Nevertheless for the sake of completeness
and a better understanding of the inner accelerating region, such
a study has to be undertaken.

Another question which has not been fully addressed here,
relates to the disc wind. We have shown that a current density
singularity at the jet axis can be avoided and collimation still
achieved in a natural way without a complete focusing toward
the axis, contrary to cold plasma models, by a simple expansion
scheme of the MHD free functions. And although the present
model does not use the most general form of those free functions,
it remains of a quite general nature around the axis since it
includes the dominant terms that exist there. However, another
form of these free functions may be more appropriate to describe
the outer part of the jet. For example, we have already noted
that our model would need somehow an outer cut off, or to be
replaced by a current free solution at large distances from the
jet-axis. Since our main goal has been here to find a criterion
distinguishing collimated stellar jets from non collimated solar-

925

type stellar winds, it was beyond our scope to describe in detail
the interesting physical problem posed by a disc wind.

Nevertheless it is interesting to compare the asymptotic
regimes obtained to the litterature. We have shown that the
flow can reach cylindrical or radial asymptotics. In the case
of radial asymptotics the flow is asymptotically isothermal as
in Tsinganos & Trussoni (1992), so there is no contradiction
with the result of Heyvaerts & Norman (1989) where only non-
isothermal flows have been considered. Moreover it is likely in
this case, as the terminal temperature is rather low, that the flow
is no longer ionized. We suggest then that the flow would be-
come a radial hydrodynamical adiabatic flow far from the star.
From non collimation to full collimation, we have found only
one paraboloidal solution with infinite terminal velocity carry-
ing no poloidal current in agreement with Heyvaerts & Norman
(1989). The last interesting regime is composed of collimated
solutions which reach cylindrical asymptotics and carry a net
poloidal current. Again this is in agreement with the conclusions
of Heyvaerts & Norman (1989).

In Sakurai’s treatment a paraboloidal (almost cylindrical)
structure with a logarithmically increasing cylindrical radius is
obtained (despite the deceiving logarithmic plot of the stream-
lines where they seem to converge towards the pole). Apparently
the jet is not completely collimated along the axis. However, it
generates a high density column along the axis which is likely
to be unstable according to the author. Conversely to this model
we have been able to obtain fully collimated stationary solutions
with a hollow jet structure.

Note that contrarily to Blandford & Payne’s (1982) and Pel-
letier & Pudritz’s (1992) models we do not find streamlines that
keep on converging towards the axis, which is choking off the
solution after some radius unless shocks are invoked (see Gomez
de Castro & Pudritz 1993). However the analytical expressions
given by Blandford & Payne (1982) for the asymptotics quan-
tities (e.g. their Eqs. 2.32 - 2.35) should not be valid near the
axis as they have neglected centrifugal forces. Moreover, from
the expressions of the toroidal components, we see that the jet
radius in the superAlfvénic regime should never be less than the
Alfvén radius (Pelletier & Pudritz 1992). Note also that an inner
source for the net poloidal current has to be invoked in Pelletier
& Pudritz’s model that could be of the kind described here.
Nevertheless a common feature of all these models is the first
recollimation process that occur for sufficiently high terminal
velocities and Alfvén numbers.

Contrarily to cold plasma models, the decollimation / recol-
limation process is probably due to the self consistent treatment
of the current along the axis and the role of the centrifugal forces.
This is quite different from the Chan & Henriksen (1980) result
where an internal pressure was always important there to support
the pinching force. As we already mention, this basic difference
is also responsible for the different nature of our oscillations as
compared to theirs and the existence of a damping length in our
case which does not exist there (see Appendix B in Chan &
Henriksen (1980) where the authors wrote an equation for the
oscillations similar to ours but droping the centrifugal term and
keeping the internal pressure gradient). The advantage we get
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in our formulation is a broader range of wavelengths that may
explain oscillations on smaller scales of the jets.

To conclude with, the scope of this paper has been to give a
criterion for the collimation of an outflow. As we have shown,
this can be interpreted in terms of the meridional anisotropy of
the volumetric generalized Bernoulli energy at the source of the
outflow. A cylindrically collimated jet requires an excess in this
Bernoulli energy at any nonpolar streamline, in comparison to
a polar streamline.
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