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a b s t r a c t

For the first time, a set of renin inhibitors were subjected to the 3D QSAR/CoMFA and CoMSIA studies.
The utility of renin inhibitors in the treatment of cardiovascular diseases has not been fully explored yet.
At the moment, aliskiren is the first and only existing renin inhibitor in the drug market. The performed
3D QSAR/CoMFA and CoMSIA in combination with docking studies included aliskiren and 37 derivatives
possessing a wide variety of bioactivity. The obtained results may aid in the design of novel bioactive
renin inhibitors.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Raised blood pressure, especially systolic pressure (hyperten-
sion), confers a significant cardiovascular risk and public health
concern and should be actively treated. One of the major systems
involved in the elevation of the pressure is the renin–angiotensin
system (RAS) and subsequently its inhibition will have beneficial
effects to lower blood pressure and improve cardiovascular health
[1–3]. The RAS is regulated by a series of highly specific enzymatic
reactions. The first enzymatic reaction in the pathway starts with
renal production of renin that cleaves angiotensinogen to generate
angiotensin I. Angiotensin I is then cleaved by angiotensin–con-
verting enzyme (ACE) to generate the active peptide vasocon-
strictive hormone angiotensin II. The octapeptide hormone
angiotensin II binds to the AT1 receptor to exert tissue specific
effects that control blood pressure (Fig. 1). Drugs that inhibit
biological action of renin are expected to have several potential

advantages. Firstly, since renin catalyzes the rate-limiting step in
the cascade of enzymic reactions of RAS, its blockade is expected
to be more efficient. Secondly, the only known substrate for renin
is angiotensinogen, suggesting that drugs that block the enzymatic
reaction in which angiotensinogen is converted to angiotensin I
must have higher specificity and fewer side effects in comparison
to ACE inhibitors that act on the subsequent biochemical step.
Thirdly, ACE independent pathways for generation of angiotensin
II such as chymase are not affecting the first step of the enzymatic
cascade of reaction. Fourthly, other possible harmful peptides
derived from angiotensin I will not be formed [4–8].

The above potential advantages of renin inhibitors triggered the
intense research efforts for developing of new renin inhibitors. The
first synthetic molecules were either peptide or peptide-like renin
inhibitors (i.e., remikiren and zanikiren) and suffered from their
poor oral bioavailability, rapid elimination, low efficacy, and high
cost of synthesis. Recently, the use of a combination of molecular
modeling and crystallographic structure analysis led to the devel-
opment of aliskiren, an orally effective, non-peptide inhibitor of
human renin, approved by Food and Drug Administration (FDA) in
March 2007 by Novartis with the commercial name Tekturna [9–13].

The X-ray crystal structure of recombinant human renin was
first determined by Sialecki and co-workers at 2.5 Å resolution [14].
Crystal structure of human renin shows that the enzyme consists of
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two mainly b-sheet domains related by an approximately two-fold
axis. The active site cleft is located between the two domains and
extends over eight residues of the respective substrate [15]. The
eight residues of the substrate occupy eight subsites of the active
site (S5, S4, S3, S2, S1, S10, S20, S30). Each domain contains one of the
catalytic essential aspartic acid carboxylates (Asp32 and Asp215). In
the peptidic inhibitor–enzyme complexes, the inhibitors bind in an
extended conformation occupying the following subsites of the
active site (S4, S3, S2, S1, S10, S20). On the contrary, aliskiren acts as
a transition state mimetic, inhibiting renin via hydrogen bonding of
both the central hydroxyl group and amino function of the catalytic
Asp32 and Asp215 residues and does not interact with the S2 or S4
binding sites of renin, instead interacts with a new one called S3sp

[16]. The structure of aliskiren and its favored interactions with
binding sites are shown in Fig. 2. Moreover, aliskiren proved to be
a highly potent inhibitor of human renin and in contrast to all
previous inhibitors, it is much more potent and long acting in vivo
after oral administration in sodium-depleted marmosets and in
hypertensive patients [17]. Based on these results, Maibaum et al.
[18,19] expanded the studies on renin inhibitors and synthesized
5(S)-amino-4(S)-hydroxy-8-phenyl-octanecarboxamide analogues
that can be described as aliskiren derivatives. The thirty reported
compounds of this research group [18,19] were used as database for
performing three-dimensional quantitative structure–activity
relationships (3D QSAR) studies. To our knowledge the present
study is the first application for 3D QSAR on non-peptide renin
inhibitors. The previous 2D QSAR studies cover mainly peptido-
mimetic renin inhibitors and the developed models showed that
their inhibitory activity was largely depended upon the molecular
weight of the compounds, van der waals radius related parameters
of the substituents and the localized electronic effects [20,21].

The aim of our study is to extract a correlation between the
biological activity of a training set of molecules and their 3D
structure. The importance of steric and electrostatic characteristics
is revealed by aligning structurally similar analogues using phar-
macophoric features as structural superimposition guides.

The use of Comperative Molecular Field Analysis (CoMFA) and
Comperative Molecular Similarity Indices Analysis (CoMSIA)
approaches together provide better ability of visualization and
interpretation of the obtained correlations in terms of field
contributions [22,23]. Pharmacophore models are developed by
using the most potent ligand of the training set as template. Each

generated 3D QSAR model allows us to anticipate the predicted
binding affinity values. To determine the linear correlation coeffi-
cients between actual versus calculated binding affinities, partial
least square (PLS) statistical analyses of the data were used. CoMFA
and CoMSIA contour plots are used to explain different structural
requirements for the inhibitors in the active site of renin. Contour
results are used as pilot models for testing the designed novel
analogues before their synthesis.

2. Results and discussion

CoMFA and CoMSIA techniques were used in order to derive
stable 3D QSAR models for thirty 2,7-dialkyl-substituted 5(S)-
amino-4(S)-hydroxy-8-phenyl-octanecarboxamides renin inhibi-
tors used as a training set. The in vitro inhibitory concentrations
(IC50) of the molecules were converted into corresponding loga-
rithmic values (pIC50) and used as dependent variables. The
produced QSAR models were further validated by performing a test
set prediction using eight new molecules.

Table 1 lists all structures used in the training and test sets and
their IC50 values obtained with purified human renin [18,19]. IC50

values differ up to 230-fold, thus there is a sufficient diversity in the
data set in order to construct stable QSAR models. Among the used
molecules for the QSAR study, the highly bioactive compound 26
(aliskiren) in Table 1, whose crystal structure is known and it has
been resolved by co-crystallization with recombinant glycosylated
human renin at 2.2 Å resolution [16] was selected as a template
molecule.

The selected atoms of the template and common in all studied
compounds for the superimposition during the alignment are C1,
C2, C3, C4, C5, C6, O7, C8, C14, C15, C16, C17, C18, N19, C20, O21, C22, C23,
C24, C25, O26, N27, C28 (Fig. 2). Fig. 3 illustrates the superimposition of
all the molecules that consist of the training set.

The results obtained from the PLS analysis are summarized in
Table 2. The predicted versus the experimental pIC50 values for the
training set are listed in Table 3 and are depicted graphically in
Fig. 4 for CoMFA and CoMSIA models, respectively. For CoMFA
model, the leave-one out cross-validated r2 value (r2

cv) obtained
was 0.628 and noncross-validated conventional r2 value was 0.985

Fig. 2. Structure of aliskiren (template compound 26) and the pockets that occupies
(top) and its crystal structure (bottom).
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Fig. 1. The renin–angiotensin system (RAS).
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Table 1
The structure of 38 analogues used as training set (compounds 1–30) and test set (compounds 31–38), their inhibitory concentration (IC50) values and the GoldScores of
inhibitors in the training set.

H
N

R4

R1

O

R2

H2N

OH R3

O

Comp no. R1 R2 R3 R4 IC50 (nM) Chirality GoldScore

Training set
1 MeO CH2CONH2 Me (CH2)3CH3 92 64.70
2 MeO CH2CONHMe Me (CH2)3CH3 42 73.59
3 MeO CH2SO2Me Me (CH2)3CH3 50 72.28
4 MeO CH2CH2CH2OH Me (CH2)3CH3 6 80.52
5 MeO CH2CH2CH2OMe Me (CH2)3OH 2 77.17
6 MeO CH2CH2CH2OMe Me (CH2)2NMe2 18 75.33
7 MeO CH2CH2CH2OMe Me (CH2)3NH2 16 83.28

8 MeO CH2CH2CH2OMe Me
(CH2)2 N

22 55.75

9 MeO CH2CH2CH2OMe Me
(CH2)3 N O

11 65.36

10 MeO CH2CH2CH2OMe Me (CH2)2CO2H 12 67.68
11 MeO CH2CH2CH2OMe Me (CH2)3CO2H 3 70.86
12 MeO CH2CH2CH2OMe Me (CH2)2CO2Et 4 73.32
13 MeO CH2CH2CH2OMe Me (CH2)4OCOMe 6 70.59
14 MeO CH2CH2CH2OMe Me (CH2)2CONH2 7 78.20
15 MeO CH2CH2CH2OMe Me (CH2)3CONH2 1 93.46
16 MeO CH2CH2CH2OMe Me (CH2)4CONH2 2 68.37

17 MeO CH2CH2CH2OMe Me
(CH2)2

N

8 81.58

18 MeO CH2CH2CH2OMe i-propyl (CH2)3CONH2 0.7 64.65
19 MeO CH2CH2CH2OMe i-propyl CH2CONH2 3 77.32
20 MeO CH2CH2CH2OMe i-propyl CHMeCONH2 4 S 70.30
21 MeO CH2CH2CH2OMe i-propyl CH(CH2OH)CONH2 2 S 67.25
22 MeO CH2CH2CH2OMe i-propyl CMe2CONH2 13 53.78
23 MeO CH2CH2CH2OMe i-propyl CHMeCH2CONH2 6 R 86.47
24 MeO CH2CH2CH2OMe i-propyl CH2CHMeCONH2 0.9 R 67.77
25 MeO CH2CH2CH2OMe i-propyl CH2CHMeCONHMe 1 S 79.52

26 MeO CH2CH2CH2OMe i-propyl CH2 CONH2 0.6 75.78

27 MeO CH2CH2CH2OMe i-propyl CH2 CONHMe 0.4 72.85

28 MeO CH2CH2CH2OMe i-propyl (CH2)3CONHMe 0.8 77.07
29 tert-butyl CH2CONH2 Me (CH2)3CH3 20 74.93

30 MeO CH2 CONHMe Me (CH2)3CH3 5 92.50

Test set
31 tert-butyl CH2CO2Me Me (CH2)3CH3 6
32 tert-butyl CH2SO2Me Me (CH2)3CH3 13
33 MeO CH2CH2CH2OMe Me (CH2)3CH3 1
34 MeO CH2CH2OCH2CH2OMe Me (CH2)3CH3 19
35 MeO CH2CH2CH2CH2CH3 Me (CH2)3CH3 4

36 MeO CH2CH2CH2OMe i-propyl
N OC

16

(continued on next page)
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while PLS analysis for CoMSIA model showed that r2
cv was 0.666

and r2 was 0.971. Table 3 shows that average residual of the
experimental and predicted values are 0.06 and 0.08 for CoMFA and
CoMSIA models, respectively. Consequently, both models provide
almost equal statistical confidence and productivity, as the linear
plots of Fig. 4 confirm.

In order to validate constructed 3D QSAR models, eight
compounds (31–38) were used as a test set. Their pIC50 values
ranged between 7.72 and 9.00 and their biological activities were
predicted from the PLS equations derived from CoMFA and CoMSIA
models (Table 4). The obtained average deviation of pIC50 values
from the study is 0.64 for CoMFA model and 0.42 for CoMSIA model
suggesting that both models give a good prediction for the esti-
mation of affinities of the novel compounds prior to their synthesis
(Table 4).

Figs. 5 and 6 depict the stereoelectronic contour plots for
compound 1 possessing the lowest bioactivity and 26 the orally
potent inhibitor (Aliskiren) in the data set for the CoMFA and
CoMSIA models. The steric field defined by the green colored
contours represent regions of high steric tolerance (80% contribu-
tion), while yellow colored contours represent regions of unfavor-
able steric effect (20% contribution). The blue colored contours
represent the regions where positively charged groups enhance the
activity (80% contribution) and red colored contours where the
negatively charged groups enhance the activity (20% contribution).

The CoMFA steric map displays yellow colored contours
bordering the regions A and C. CoMFA electrostatic map displays
red colored contours at the southern part of the region A and within
region C. Blue colored contours are observed at the northern part of

Table 1 (continued )

Comp no. R1 R2 R3 R4 IC50 (nM) Chirality GoldScore

37 MeO CH2CH2CH2OMe Me
N OHH2C

10

38 MeO CH2CH2CH2OMe Me (H2C)3

N
H

N

N
N

3

Fig. 3. Structural alignment of the compounds consisting of the training set for con-
structing the 3D QSAR/CoMFA and CoMSIA models.

Table 2
Summary of CoMFA and CoMSIA results.

CoMFA CoMSIA

Statistical results
r2

cv
a 0.628 0.666

r2 0.985 0.971
SEEb 0.082 0.117
Probability of r2

ncv 0.000 0.00
F 315.292 128.684
Components 5 6
Fraction (%)
Steric 0.495 0.776
Electrostatic 0.505 0.224
r2

bootstrapping 0.993 0.988
SEEbootstrapping 0.005 0.006

a Cross-validated r2 by leave-one-out method.
b Standard error of estimate.

Table 3
Experimental and predicted activities (pIC50) of the training set molecules.

No. CoMFA model CoMSIA model

pIC50

(experimental)
pIC50

(predicted)
Residual pIC50

(experimental)
pIC50

(predicted)
Residual

1 7.04 7.209 �0.17 7.04 7.195 �0.16
2 7.38 7.197 0.18 7.38 7.205 0.18
3 7.30 7.339 �0.04 7.30 7.463 �0.16
4 8.22 8.086 0.13 8.22 8.033 0.19
5 8.70 8.612 0.09 8.70 8.423 0.28
6 7.74 7.762 �0.02 7.74 7.89 �0.15
7 7.80 7.878 �0.08 7.80 7.769 0.03
8 7.66 7.641 0.02 7.66 7.664 0
9 7.96 8.002 �0.04 7.96 7.987 �0.03
10 7.92 8.035 �0.11 7.92 7.925 0
11 8.52 8.536 �0.02 8.52 8.609 �0.09
12 8.40 8.499 �0.1 8.40 8.499 �0.1
13 8.22 8.157 0.06 8.22 8.179 0.04
14 8.16 8.2 �0.04 8.16 8.122 0.04
15 9.00 8.988 0.01 9.00 8.937 0.06
16 8.70 8.784 �0.08 8.70 8.743 �0.04
17 8.10 8.006 0.09 8.10 8.041 0.06
18 9.15 9.188 �0.04 9.15 9.335 �0.19
19 8.52 8.457 0.06 8.52 8.461 0.06
20 8.40 8.338 0.06 8.40 8.444 �0.04
21 8.70 8.724 �0.02 8.70 8.653 0.05
22 7.89 7.897 �0.01 7.89 7.936 �0.05
23 8.22 8.189 0.03 8.22 8.156 0.06
24 9.05 9.041 0.01 9.05 8.954 0.1
25 9.00 9.053 �0.05 9.00 8.995 0
26 9.22 9.205 0.01 9.22 9.26 �0.04
27 9.40 9.403 0 9.40 9.368 0.03
28 9.10 9.026 0.07 9.10 9.132 �0.03
29 7.70 7.696 0 7.70 7.748 �0.05
30 8.30 8.321 �0.02 8.30 8.344 �0.04

CoMFA residual average value: 0.06 CoMSIA residual average value: 0.08

A. Politi et al. / European Journal of Medicinal Chemistry 44 (2009) 3703–37113706
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the region A, close to R2 group (Fig. 5). The CoMSIA steric and
electrostatic contours were placed in an almost identical topo-
graphical location to that of the CoMFA model.

From the SAR in Table 1, emerges that the more active
compounds contain an alkyl ether chain in the R2 group
(compounds 26–28) while the less active molecules possess
–CONH2 or –SO2Me (compounds 1 and 3). More specifically, in

compound 1 the carbonyl group is mapped near blue colored
contour (negative charged groups disfavored) explaining the
decreased activity. On the other side, in region C, blue (positive
charged groups favored) and red colored (negative charged groups
favored) contours are embedded into the yellow (bulky groups
disfavored) fields in CoMFA and CoMSIA models, indicating that the
orientation of the R4 group may play a critical role in determining
the bioaffinity as negatively and positively charged favorable
polyhedra coexist in this region. Furthermore, from the SAR eval-
uation, it appears that the length of the tail of the chain affects
activity, no matter if the terminal group is electropositive or elec-
tronegative (compounds 10–11 and 14–16).

The green colored contours around the region B show that bulky
groups enhance the binding affinity for the renin in both CoMFA
and CoMSIA models (Figs. 5 and 6). Specifically, the presence of
i-propyl group instead of methyl group on R3 position leads in
greater pIC50 values. Furthermore, in case of highly active
compounds (e.g., compounds 18, 24–28) the i-propyl group falls
within the green colored contour of the region B, while less active
compounds such as 5–7, 15 tend to locate the methyl group away
from this contour and approache the sterically unfavorable yellow
contour especially in the CoMSIA model (Fig. 6). Therefore, the
replacement of i-propyl with a bulkier group such as t-butyl is
expected to enhance further the renin binding affinities.

A second smaller green colored contour is presented in the
region C (Fig. 6). This contour is larger and more visible in CoMSIA
model while in CoMFA model is embedded in the blue colored
contour. The green contour located in region C favors molecules
with bulkier groups (Fig. 6). The groups like methyl or the geminal-
dimethyl-substitution as in compounds 24 and 26 demonstrated
higher activity compared to unsubstituted molecule 14.

Three yellow colored contour maps were observed in both
models; one is in region A and the other two in the region C, sug-
gesting that less bulky groups at these positions favor activity. Most

Table 4
Experimental and predicted activities (pIC50) of the test set molecules.

No. CoMFA model CoMSIA model

pIC50

(experimental)
pIC50

(predicted)
Residual pIC50

(experimental)
pIC50

(predicted)
Residual

31 8.22 7.413 �0.807 8.22 8.256 0.036
32 7.89 7.385 �0.505 7.89 8.361 0.471
33 9.00 7.317 �1.683 9.00 8.334 �0.666
34 7.72 7.243 �0.477 7.72 8.294 0.574
35 8.40 7.352 �1.048 8.40 8.505 0.105
36 7.80 7.595 �0.205 7.80 8.485 0.685
37 8.00 8.121 0.121 8.00 9.358 1.358
38 8.52 7.985 �0.535 8.52 9.338 0.818

CoMFA residual average value: 0.64 CoMSIA residual average value: 0.42

Fig. 4. Calculated pIC50 versus experimental pIC50 values for the 30 molecules of the
training set obtained by PLS analysis using CoMFA and CoMSIA models.

Fig. 5. CoMFA contour map of template compound 26 (highly active, on the left) and the respective analogue 1 (inactive analogue, on the right). Sterically favored areas are shown
in green colored contours (contribution level of 80%). Sterically unfavored areas are shown in yellow colored contours (contribution level of 20%). Positive potential favored areas are
shown in blue colored contours (contribution level of 80%). Positive potential unfavored areas are shown in red colored contours (contribution level of 20%). (Regions A–C show
contour maps around R2, R3, R4 groups of the ligands, respectively. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

A. Politi et al. / European Journal of Medicinal Chemistry 44 (2009) 3703–3711 3707
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potent compounds have a methoxy group at the R1 position (region
A). This group is more favorable than the tert-butyl not only
because a yellow contour is in the vicinity of R1 but also because of
its more favorable interactions with pocket S3. Furthermore, the
yellow colored contours in region A indicate that there is a small
available space in the active site for interactions. This is in corre-
lation with previous published reports suggesting that R2 group
interacts with a narrow subsite (S3 sub-pocket) [18,19]. Large
yellow colored contours on the region C (Figs. 5 and 6) suggest
increase of bulkiness at the terminal segment of alkyl chain of R4 is
unfavorable. This observation is confirmed by compounds 8 and 9.

Since the crystal structure of renin is known, we found inter-
esting to examine the stability of 3D QSAR model with the renin
inhibitors target. As CoMFA model emerged with slightly better
predictive ability, we superimposed the CoMFA contour maps with
the active site of renin. The MOLCAD surface of active site was
developed and displayed with lipophilic and electrostatic potential.
In Fig. 7a the brown color shows lipophilic regions and blue color
shows polar regions of active site. The CoMFA yellow contours
appearing around A and C regions indicate that steric bulk
substituents might have negative effect on the activity of the
molecules. These zones approach to residues Gln13, Tyr14, Gln128,
Ser76 and Ser35 which include hydrophilic groups. Similarly the
green contour appearing around R3 group approaches the lipo-
philic region near Pro 292 and Leu 73 suggesting that bulkier group
will increase the biological activity, an observation that is in
agreement with CoMFA model. Fig. 7b shows the MOLCAD surface
of active site with superimposed electrostatic contour maps of
CoMFA model. At the electrostatic map shown in Fig. 7b, the red
color shows the electropositive zone and purple color shows elec-
tronegative zone. Red contour appears around the positive charge
density of renin while blue colored contour maps are oriented
towards the electronegative groups of renin amino acids confirm-
ing the QSAR results.

The complementary information from docking studies is vital
for the design of new molecules. The performed docking studies
not only highlight the similarities between the QSAR and binding
conformations but also provide the crucial interactions with the
active site for enhanced activity. Fig. 8 represents the most stable
binding conformation for 26 and 1. In these docking studies both
molecules are placed well in the active site of renin and demon-
strate the following interactions. The –OH group of compound 26
forms H-bond both with oxygens of Asp32 (w2.0 and 2.6 Å), the
–NH2 forms H-bond with both amino acids of Gly217 (w2.2 Å) and
Asp32 (w2.1 Å), while the methoxy group of the side chain forms
a H-bond with the distance of 1.9 Å with the –NH group of Tyr14.
The primary –CONH forms H-bond with Ser76 (w2.0 Å) and has
a 3.4 Å distance from Gly34. The terminal –NH2 interacts with
H-bond with –C]O group of Arg74 (w2.3 Å). In compound 1 the

Fig. 6. CoMSIA contour map of template compound 26 (highly active, on the left) and the respective analogue 1 (inactive analogue, on the right). Sterically favored areas are shown
in green colored contours (contribution level of 80%). Sterically unfavored areas are shown in yellow colored contours (contribution level of 20%). Positive potential favored areas are
shown in blue colored contours (contribution level of 80%). Positive potential unfavored areas are shown in red colored contours (contribution level of 20%). (Regions A–C show
contour maps around R2, R3, R4 groups of the ligands, respectively. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. a) The CoMFA steric contour maps within the active site of renin (lipophilic
potential, MOLCAD lipophilic potential surface was calculated for the receptor with the
Connolly method; brown color denotes the most lipophilic areas and blue color
denotes the most polar areas), b) the CoMFA electrostatic contour maps within the
active site of rennin (electrostatic potential, red colors denotes the most electropositive
areas whereas purple colors denote the most electronegative fields). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

A. Politi et al. / European Journal of Medicinal Chemistry 44 (2009) 3703–37113708
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–OH group forms H-bonds with oxygens of Asp32 (w1.9 and 2.5 Å).
The –NH2 group has a 2.5 Å distance from the –C]O group of
Gly217 and w4.0 Å distance from the oxygen of Asp32. The –CONH
group forms H-bonds with –C]O group of Gly34 (w2.1 Å) and –NH
of Ser76 (w1.9 Å). There are no interactions with Arg74 as
compound 1 does not have a terminal –CONH2.

The GoldScore Fitness from docking simulations using the GOLD
program [24] for compounds 26 and 1 were calculated to be 75.78
and 64.70 respectively, showing a better affinity for 26. The major
differences between the two compounds, that may explain their
variation in their bioactivity are the following. The less active
compound does not interact with the S3 sub-pocket which is
composed by the following amino acids: Gln13, Tyr14, Val30,
Val120, Tyr155, Gly217, Ala218, Ser 219, Ala 303. More specifically
compound 1 does not form H-bond with amino acid Tyr14, an
interaction that is likely to be critical for bioactivity as it is previously
reported [25,26]. The absence of this interaction can be attributed to
the substitution of compound 1 in R2 position. The short chain
prevents compound 1 from approaching inside the active sub-
pocket which lies only in its entrance. Additionally, the absence of
interaction with Arg74 for compound 1, due to its smaller dimen-
sions can explain the inferior docking score and here upon the
inferior biological activity.

As it is observed from the superimposition (Fig. 9) there is
a general correlation between the conformations of compounds
used in QSAR and the best docking binding conformation. For
example, RMSD values between these two conformations were
calculated to be 0.934 for compound 26 and 0.985 for compound 1.
However, it should be noted that some small differences have been
observed between the conformations used in QSAR and binding
orientations of the terminal R4 group defined by N27–C28–C29–
C30 atoms in compound 26. The QSAR conformation is gauche

(53.1�) while the binding conformation is trans (175.6�). Addition-
ally, there are small differences in the dihedral angles of alkyl ether
chain between the QSAR and binding conformations of compound
26. Regarding compound 1 the terminal chain of QSAR conforma-
tion has a trans conformation while the conformation of the bound
conformation is gauche. Moreover the –NH2 group in the R1 posi-
tion is oriented differently as it is derived from QSAR and binding
conformations. Specifically, the –NH2 group in QSAR conformation
orients towards the west side while in binding conformation it
orients towards the east side.

3. Conclusions

The present 3D QSAR study aims at targeting the following
points: a) the comparison of the obtained results from CoMFA and
CoMSIA models; b) the validation of the constructed models; c) the
explanation of the different activities based on the constructed
contour maps.

Although the molecules used in the present 3D QSAR study are
flexible, the constructed models revealed statistical significance
and good predictive abilities by using CoMFA and CoMSIA. These
results confirm that these methodologies can be successfully
applied in flexible molecules in agreement with our previous
studies [27,28].

The two models CoMFA and CoMSIA did not record significant
differences neither in their statistical analysis nor in the contour
plots. In order to test the stability of the obtained PLS models for
every conventional CoMFA and CoMSIA PLS run, bootstrapping
was also performed. Obtained results support the reliability of
the created models. Moreover, the contour plots of CoMFA and
CoMSIA models, were located in the same space, but differed in
volumes. These differences can be attributed to the energy

Fig. 8. Docking interactions of compound 26(A) and compound 1(B) with active site residues.

Fig. 9. Superimposition of the QSAR conformation (designated with yellow and green colors respectively) with the binding conformation of compounds 26(A) and 1(B). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A. Politi et al. / European Journal of Medicinal Chemistry 44 (2009) 3703–3711 3709



Author's personal copy

functions used to calculate the field values in CoMFA and CoM-
SIA. In CoMFA the energy function is very sensitive with the
changes in position. In CoMSIA, these fields are calculated using
much smoother potentials which are not as steep as the Len-
nard–Jones and Coulombic functions and have a finite value even
at the atomic positions. In test set, the predictions of the activi-
ties in CoMFA and CoMSIA provided statistically significant
results. Average deviation from experimental pIC50 for both
CoMFA and CoMSIA models were found less than one logarithmic
unit.

3D QSAR studies are applied in order to address the following
question. What molecular features can be modified to enhance
bioactive properties of drug molecules? 3D QSAR studies are
usually applied when the receptor is unknown. However, in our
study, the X-ray structure of renin is known, therefore, QSAR
studies are combined with docking results. This combination as it is
shown in our previous studies is very effective to produce novel
potential drugs [29,30].

From the GoldScore fitness function it cannot be extracted total
reliance on pIC50 values (Table 1). This is not a surprising result as
the docking programme mainly scores the interactions with the
amino acids of the active site and the compared compounds have
small differences in their structure. However, the difference in the
activity can be attributed to the fact that some of the studied renin
inhibitors (e.g., compound 1 is not placed deeply in the S3 sub-
pocket), while in others (compounds 2, 6–8, 13, 17–21, 24, 29) an
interaction is not observed with the Tyr14 amino acid of S3 sub-
pocket, that has been characterized as essential for high binding
affinity.

The correlation of the results obtained from docking and QSAR
studies lead to better understanding of the structural requirements
for enhanced activity. The obtained results can be used as
a guideline to design and predict new and more potent renin
inhibitors.

4. Computational methods

3D QSAR/CoMFA and CoMSIA studies were performed using
Sybyl molecular modeling package [23], while docking studies
were performed using the GOLD program [24].

4.1. Data set and molecular modeling

The thirty compounds used in this study are originated from the
work of Goschke et al. [18] and Maibaum et al. [19] and are deriv-
atives of aliskiren. The selection of the training set was done based
on structural diversity and wide range of activity. Crystal structure
of aliskiren is known and it was used to build the basic skeleton of
all the molecules in data set. The structures of the compounds were
designed in Sybyl6.8 molecular modeling package and Gasteiger–
Huckel charges [31] were assigned to the atoms of the compounds.
All the compounds were subjected to minimization until converged
to a maximum derivative of 0.001 kcal�1 A�1, using Tripos force
field [23].

To obtain reliable results, the total compounds were divided into
two sets, the training set consisting of 30 compounds and the test
set consisting of 8 compounds. In the 3D QSAR study the renin
inhibitory activities of the studied inhibitors were expressed in IC50

values and converted into pIC50 values using the equation
pIC50¼�log IC50. The IC50 values used in the training set has 230-
fold difference between the lowest and highest active compounds.
In the selection of test set compounds, similar range of diversity
with training set has been taking into account.

4.2. CoMFA and CoMSIA settings

CoMFA was performed using the QSAR option of Sybyl. The
steric and electrostatic field energies were calculated using the
Lennard–Jones and the Coulomb potentials, respectively, with
a 1/r distance-dependent dielectric constant in all intersections
of a regularly spaced (0.2 nm) grid [30]. An sp3 carbon atom
with a radius of 1.53 Å and a charge of þ1.0 was used as a probe
to calculate the steric and electrostatic energies between the
probe and the molecules using the Tripos force field [23]. The
truncation for both the steric and the electrostatic energies were
set to 30 kcal mol�1. This indicates that any steric or electrostatic
field value that exceeds this value will be replaced with
30 kcal mol�1, thus making a plateau of the fields close to the
center of any atom.

CoMSIA was performed using the QSAR option of Sybyl. An sp3

carbon atom with a radius of 1.53 Å and a charge ofþ1.0 was used as
the probe to calculate the CoMSIA similarity indices. Steric and
electrostatic similarity indices were evaluated at the intersections of
a similar grid using the same probe atom according to the standard
implementation of CoMFA in Sybyl. The similarity indices between
the compounds and the probe atom are calculated according to:

Aq
F;kðjÞ ¼ �

Xn

i¼1

wprobe;kwike�ar2
iq

where A is the similarity index at the grid point q, summed over all
atoms i of the molecule j under investigation; wprobe,k is the probe
atom; wik is the actual value of the physicochemical property k of
atom i; riq is the mutual distance between the probe atom at grid
point q and atom i of the test molecule; and R is the attenuation factor
[32]. The default value of attenuation factor a was set to 0.3. Larger
values of a will result in a steeper Gaussian function and increasing
attenuation of the distance-dependent effects of molecular simi-
larity. On the other hand, reducing a to smaller values will result in
a probe atom detecting molecular similarity of its neighborhood
more globally. The optimal value of a is between 0.2 and 0.4 [22,33].

4.3. CoMFA and CoMSIA partial least-squares (PLS) analysis
and validation

The initial PLS analysis was performed using the ‘‘leave-one-
out’’ cross-validation method for all 3D QSAR analyses. A minimum
column filtering value of 2.00 kcal mol�1 was set to improve the
signal-to-noise ratio by omitting those grid points whose energy
variation was below this threshold. In both CoMFA and CoMSIA
analyses, descriptors were treated as independent variables,
whereas the pIC50 values were treated as dependent variables in
the PLS regression analyses to derive the 3D QSAR models. The final
model (noncross-validated conventional analysis) was developed
from the model with the highest rcv

2 , and the optimum number of
components was set to equal, that yielding the highest rcv

2 . The
noncross-validated models were assessed by the conventional
correlation coefficient r2, standard error of prediction, and F values.
For the creation of the CoMFA field, ‘‘CoMFA standard’’ scaling was
selected, while in the case of CoMSIA, the ‘‘none’’ option was
selected in the Sybyl.

To obtain confidence limits and test the stability of obtained PLS
models, for every conventional CoMFA and CoMSIA PLS run, boot-
strapping was also performed (100 runs, column filtering:
2.00 kcal mol�1). The idea is to simulate a statistical sampling
procedure by assuming that the original data set is the true pop-
ulation and generating many new data sets from it. These new data
sets (called bootstrap samplings) are of the same size as the original
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data set and are obtained by randomly choosing samples (rows)
from the original data, with repeated selection of the same row
being allowed. The statistical calculation is performed on each of
these bootstrap samplings, with new values being calculated for
each of the parameters to be estimated. The difference between the
parameters calculated from the original data set and the average of
the parameters calculated from the many bootstrap samplings is
a measure of the bias of the original calculation.

4.4. Molecular docking

The binding interactions and the active conformations are
derived from the GOLD program, using the genetic algorithm [24].
The energy functions of the interactions are partly based on the
conformational and non-bonded interactions. The scoring function
used was GoldScore. For the docking studies, the crystal structure
of renin with aliskiren (2v0z, pdb code) was downloaded from
protein data bank. From the crystal structure, the inhibitor and
water molecules were removed. An active site of 10 Å around the
docked inhibitor was created. The maximum number of generic
algorithm runs was set to 20 for each compound. The default
generic algorithm parameters were selected (100 population size,
5 number of islands, 100,000 number of generic operations and 2
for the niche size).
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