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A discrete set of theoretical waveforms should be ready to use when searches for gravitational waves at the
noisy output of the laser interferometric detectors that are presently under construction begin. In this paper we
extend the method introduced by Sathyaprakash and Dhurandhar to construct such a family of templates, that
was based on simple Newtonian signals, to pdé&wtonian signals that may be modulated due to spin-
induced precession. More specifically, we show that if post-Newtonian terms of the phase are taken into
account then the Newtonian templates turn out to be a rather inadequate type of search templates and other
templates of higher post-Newtonian order should be used instead. This expands the number of parameters that
the templates depend on, and, therefore, it leads to a required number of templates that is 2 orders of magnitude
larger than it was previously thought, when precessionally modulation effects are ignored and a formidable
number of templates when precessionally modulated signals are considered. From our analysis it becomes clear
that a post®>Newtonian family of templates, with vanishing spin term, is a very promising family of search
templates for signals coming from nonprecessing binaries. Furthermore, adding an extra oscillatory term in the
phase of these pdst-Newtonian templates would extend their detecting ability to signals coming from mod-
erately precessing binaries; but, unfortunately, the number of templates then needed leaves no hope for an
on-line search. This extended family of templates could be used more effectively in a hierarchical off-line
search[S0556-282(196)01714-9
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I. INTRODUCTION Newtonian techniques, and get rid of all the parameters that
do not crucially affect the shape of the sigtialg., the dis-

The first ground-based laser-interferometer gravitationaltance to the source; see Rg2]), and those ones that are
wave detectors are already under construction and within thexpected, on theoretical grounds, to have some preferred
first decade of the next millennium a network of at least fourvalue (e.g., the eccentricity of the binary’s orbit is expected
such detectorfthe two Laser Interferometric Gravitational to be nearly zero for almost all binaries under consideration;
Wave Observatorie@ IGO’s), VIRGO, and GEO60Dis ex-  Se€[3,4]). _ _ _ _
pected to be able to collect data and search for gravitational The Newtonian family of templates, that is the family of
waves. The most promising and well-understood sources g¥aveforms based on the quadrupole-moment formalism for
gravitational waves are merging compact binaries. two pointlike masses orbiting around each other in circular

For detecting these gravitational waves, in addition to aogt;i’h T:ri fgtégr}grt:jeeigcggzg%?r%ieas a%?jogxt;g}% \(/)Jork
highly sophisticated technical design of detectors, a carefull as been dponé5—7] in the pasE[) top exhibit its power for
construgted f§m|ly of theoreUcaI models, callgd te.mplat.esdetection, its simplicity, and the small number of such tem-
for the signal is needed]. Since the corresponding signal is lates one needs. The Newtonian waveforms depend only on
expected to be buried in the detector’'s noise, only by cros

. X ) ree parameters: the time to coalescence, the phase at coa-
correlating the noisy output of the detector with all membersiescence, and some specific combination of the two masses,

of a pre-constructed family of templates we might have googa|ied chirp mass(The rest of the parameters, that are re-
chances for detecting some gravitational wave from a binaryyted to the geometry of the binary with respect to the detec-
source. tor, combine to a numerical factor that simply multiplies the
To obtain the highest possible signal-to-noise ratio forwaveform function without affecting its shap2].) Now, the
some given signal, and thus to increase the probability teime to coalescence will be taken into account directly in the
detect the corresponding gravitational wave, at least oneomputing process, while performing the cross correlations
member of the template family should very accurately mimicvia fast Fourier transforms, and for the phase at coalescence
the signal. Of course, the task of constructing a family ofonly two values are needédf. [8,9]). The Newtonian wave-
extremely accurate templates is completely unrealistic sinceorms then depend, in a nontrivial way, only on the chirp
(i) one should first solve the full relativistic two-body prob- mass. Therefore, the problem of constructing a family of
lem which is a very difficult, and very complicated problem, Newtonian search templates reduces to the problem of
that still remains unsolved ar(d) the number of parameters choosing a set of carefully spaced values for the chirp mass
that characterize the signal, though relatively small, wouldhat covers the whole range of masses of the potentially de-
lead to an enormous bank of templates that exceeds by faectable binaries.
the near-future computer capabilities. The only way out is to Only recently, our confidence to the Newtonian family of
construct approximate signal models based on posttemplates has started shaking. By using the fitting fa@tby
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as a tool to measure the adequateness of a family of tem- The rest of this paper is organized as follows. In Sec. Il
plates Apostolato$9] has demonstrated the highly dimin- we briefly review the definition and physical significance of
ished power of a Newtonian waveform to mimic a signalFF as a useful tool to measure the adequateness of some
waveform described by the highest available post-Newtoniafamily of templates. The noise spectral density is assumed to
approximations within the sensitive frequency range of thebe that of an “advanced detectof13]. We also present all
advanced LIGO detectofd0 Hz to ~200 Hz. Schutz[10] post-Newtonian approximations for the gravitational wave-
has suggested using the Newtonian family of templates in #orms, that are available today, in a compact form that will
narrower window of frequencies where all post-Newtonianbe helpful in our analysis. In the stationary phase approxi-
effects on the signal are not yet significant. We have testethation all post-Newtonian waveforms have the same ampli-
this and found that, although one may gain a bit in the signaltude form, but different phase formgActually, there are
to-noise ratio, the maximum value of the corresponding FF igost-Newtonian corrections to the amplitude but they turn
still low; this indicates that theseuncatedNewtonian tem- out to be negligible, compared to the post-Newtonian correc-
plates are not much better than the plain Newtonian temtions to the phase; see Rg2].) For the waveform describing
plates. a true signal we are using the highest post-Newtonian wave-
As it was shown in Ref[9], a family consisting of at least form, namely the pogtNewtonian ong14].
post'->-Newtonian waveforms is needed to fit better a realis- In Sec. Ill we demonstrate for one more time the fact that
tic signal waveform, and thus produce a high crossboth Newtonian and postNewtonian templates are not suf-
correlation output. The problem that arises then is that byiciently adequate as search templates, by expanding Table |
using templates of higher and higher post-Newtonian ordeof Ref.[9] so as to include the pasNewtonian waveforms;
one introduces more and more paramet@msother mass see Table I. The FF values obtained for all possible combi-
function, besides the chirp mass, shows up in post nations of signals and templates, for some characteristic bi-
Newtonian order, some spin parameter shows up for firsharies, suggest that the pdstNewtonian templates with
time in post->-Newtonian order, and so gnand that may vanishing spin term are good enough for detection purposes,
imply a huge number of corresponding templates.even for signal waveforms that are of higher than post
Sathyaprakasfil1] has shown that with a clever choice of a Newtonian order. Finally, by truncating the Newtonian tem-
new version of the chirp mass parameter one could take intplates to some fixed uppermost frequency in order to avoid
account the post-Newtonian effects and still keep the probthe template-signal phase mismatching due to post-
lem one dimensional. Unfortunately, the output of ourNewtonian terms in the signal, as Sch[if] has suggested,
present work contradicts the results of Sathyaprakash. Thige have shown that it is not very effective in improving the
contradiction is due to different ranges of frequencies angberformance of the Newtonian templates.
noise spectra assumed. Our work assumes a realistic colored In Sec. IV we analyze the method we have used to cover
noise and an upper frequency cutoff set at the frequency dhe whole parameter spaca two-dimensional spagevith
the last stable circular orbit. It turns out from our work that carefully spaced templates so that any possible signal cross
we have to deal with the two-dimensional parameter space aforrelated with at least one of the fixed templates produces
a post->-Newtonian family of template@he omission of the an output only slightly lower (10% at moghan the output
spin parameter does not substantially reduce the FF valuesghich it would have produced with a hypothetical template
one obtains, as we had shown in Ré&X]). This results in an  that would perfectly mimic the signal. This is an extension in
increase in the number of templates needed by almost 2 otwo dimensions of the method used by Sathyaprakash and
ders of magnitude as compared with previous estimation®hurandhaf5], but it is far more complicated since the dis-
based on Newtonian templates. tances between neighboring templates depend greatly on the
As was shown by Apostolatos, Cutler, Sussman, andnasses and the spins of the binary, and the parameter space
Thorne in Ref[12], if the orbital angular momentum of the that has to be covered has irregular shape. After discussing
binary and its spins are not aligned, then its orbital plane wilthe problems arising in counting the number of templates,
precess, leading to modulation on both the amplitude and thinat one needs to have in a bank of templates, we present a
phase of its gravitational wave. Apostolaf® has demon- more or less accurate estimation of that number.
strated the difficulties imposed on detecting such signals by In Sec. V we briefly present the numerical process that is
using simple post-Newtonian templates, especially when thexpected to be followed at the first stage of detection, and
opening angle of precession is not small. Here, we investitransform our results for the number of templates to com-
gate the effects of precession on the total number of temputer power requirements.
plates needed and suggest the expansion of the templates’ In Sec. VI we discuss the implications arising from con-
parameter space by three more parameters to improve tlsidering signals from spin-induced precessing binaries. After
effectiveness of templates on detecting signals that are modxploring the precessional effects induced in the phase and
erately modulatedHighly modulated signals are very com- the amplitude of such a signal, we make an attempt to con-
plicated; so even these new extended templates are not alsttuct an extended postNewtonian family of templates
to produce sufficiently high FFs.If these extended tem- able to detect these complicated signals and give an order of
plates were to be included in the bank of search templatesnagnitude estimation of the number of its members.
one would need a huge number of templates that exceeds by Finally, in Sec. VIl we summarize our results and suggest
far the present and near-future computer capabilities. Thusyays to exploit our results for precessionally modulated sig-
they, or any other kind of templates that may be used taals.
“correct” the precessionally modulated signals, should be In Appendix A and Appendix B we present semiquantita-
used at a second detection stage, off line. tive arguments for simplifying and modeling the modula-
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TABLE I. This table presents the FF values for a Newtonian, alsN&wtonian, a post>-Newtonian
signal with maximal spin parametg, and a post-Newtonian signal with maximal spin parametgtsand
o, being searched for by the four corresponding families of templates: the Newtonian family, the post
L_Newtonian family, the post-Newtonian family with vanishing spins, and the postewtonian family
with vanishing spins. For every case, two FF values are given, corresponding kb1.@M , black-hole—
Neutron-stafBH/NS) binary and a 1.M,1.4M 5 NS-NS binary. The modulational effects are absent since
the spins and angular momenta are considered aligned. The numbers quoted in this table are discussed more
extensively in Sec. Ill.

N signal P1-N signal PN signal P2-N signal

(B maxima) (8,0 maxima)

N templates: 1.000BH-NS) 0.559(BH-NS) 0.677(BH-NS) 0.669(BH-NS)
1.000(NS-NS 0.465(NS-NS 0.535(NS-NS 0.531(NS-NS

PL-N templates: 1.000BH-NS) 0.719(BH-NS) 0.729(BH-NS)
1.000(NS-NS 0.612(NS-NS 0.620(NS-NS

P5N templates: 0.988BH-NS) 0.990(BH-NS)
(B=0) 0.986(NS-NS 0.993(NS-NS
P2-N templates: 0.979BH-NS)
(B,o0=0) 0.989(NS-NS

tional effects appearing in the phase of signals that are prdiere is assumed to be that of the “advanced LIGO detector”
duced from precessing binaries. [13], an analytic fit of which has been given in REZ]:
Throughout we assume that all binaries’ are circular and
we use units wher&=c=1.
0 for f<10 Hz,

H=1{ o[fo|*
S =19 s, (T) +2(1+

A. Definition and significance of the FF (2b)

Il. THE FF AS A TOOL FOR MEASURING
THE ADEQUATENESS OF A TEMPLATE FAMILY

2
” for f=10 Hz,

—h
ol_"

As was shown in the work of Apostolat8], if the fam-
ily of search templates used at the detection stage does not
contain the true signal waveform, then the signal-to-noisavhere S,=0.6x 10" *®Hz"* and f,=70 Hz. Of course, the
ratio will be reduced by unavoidable fact of the reduced signal-to-noise ratio—partly

S because of using templates that are not accurately mimicing
(_) =FFX ' (18 a realistic signal and partly because of using a discrete family
N max of templates—will lead to a lower threshold setting for de-

tection and thus to a higher false alarm rate.

In this paper we have decided to set the limit of 0.9 as the
lowest acceptable FF value for some template family to be
considered adequate, since a reduction in signal-to-noise ra-
tio by 10% means a 27% loss in the event rate. On the other
hand a 10% reduction in signal-to-noise ratio is equivalent to
roughly 10% shortening of the detectors’ arms.

In Eg. (1) (S—N)nax is the signal-to-noise ratio we would
obtain if we had used the exact signhal wavefomit) as a
template, and’MAz, ~ (1) is a member of the template fam-

ily parametrized by the parametexs,\,, ... . The inner
product of two waveformsH(;|h,) is defined[2] by

S

N

where

(WITy, )
FF= max . (1b
NgAo, e \/(T)xl,)\z, . ..|T)\1,)\2, )(W|W)

B. Review of the post-Newtonian waveforms

An ongoing effort of theorist§14] has already produced
analytic expressions for the waveforms of gravitational
waves coming from compact binaries up to post
2.Newtonian order, that is through order/€)* (wherev is
(28 the orbital velocity beyond the quadrupole formula. In the
stationary phase approximation, and after neglecting all post-
—~ Newtonian corrections to the amplitude, the post-Newtonian
whereh(f) represents the Fourier transformiuoft), an as-  waveforms can be written in the compact form
terisk as a superscript denotes complex conjugate, and
S.(f) is the spectral density of the detector's noise which hi(f)=Af~ 6! ¥i(h), (33

=h* (f)ho(f)+hy(f)N% (f)
(h1|h2)=2f0 : zsq(f)l 2 df,
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where A is a constant depending on the relative geometry oNewtonian ordefpost-Newtonian order is the higher order
the binary with respect to the detector and on some combincluded in our analysjs hy(f) is simply the Newtonian
nation of the masseas;, m, of the binary, and takes one of waveform. The phase functiong(f) of the various post-
the values 0,1,1.5,2 denoting the corresponding postNewtonian orders are given 4]

1
tho(F) 1000 20(743 1iu ,
— | 5z2t | (7Mf)2R
() SO 4 H(T 1100 91336 4M 3
= +
Py () () (f) 11 1 0 —4(47— B)(7Mf) ' (3b)
o) 111 1 3058673 5429  617u? "
O 1016 064" 1008w " 1aawz 7| (™MD
|
where 1 - -
0= o[ = 2475 S+ 721(S- L)(Sy- L) ], (3f)
G(f)=2mfte— pc— /4, (30) 48m;m;M X
whereS; andS, are the two bodies’ spins, aidis the unit
and vector along the direction of the binary’s orbital angular mo-
mentum.
3 e It should be noted here that in the presence of spins the
H(f) = T5g(mMP) > (3d  waveform depends on the spins not only through the spin

terms 8 and o but also through the spin-induced preces-
sional changes in the geometry of the binary that produce a
modulation in the amplitude and an extra modulation in the
(M:ml+m2), the 3reguce?/5mass#(= mlm?l M), and the phase of the gravitational waveforms that arrive on Earth
chirp masg M= (mimy/M) "], respectivelytc andéc are  (see Ref[12]). For the moment we will avoid all these com-
the time and phase at coalescence, and the two tgrasd  pjications caused by precession, assuming either that spins
o are the so-called spin-orbit and spin-spin terms, respecgre vanishing or that they are aligned with respect to the

The three mass parametévs i, M represent the total mass

tively, that are given by orbital angular momentum.
1 [ 113 25m2> (113 25m1) } C. The form of FF for post-Newtonian waveforms
B=—||=—=5+—"|S+|=% S| L, (3¢ —_ .
M 12 4m, 12 4m, By specializing to post-Newtonian waveforms both for
the signal and for the templates used to detect the signal, FF
and takes the explicit form

’def[f7/3/Sn(f)]eiAlﬂ(f)AMXPM‘
FF= max = - » ' @
At AM ™53 [AMY3] \/{f df[f7/3/5n(f)]Hf df[f7’3/sn(f)](AM)2}
O O

where AM and PM are some amplitude and phase modula@an templates depend on the masses of the binary only
tion factors, that are present whenever the spin-induced prehrough the chirp mass. For templates of higher post-
cession of the binary is turned on; otherwise these modulaNewtonian order one more mass function, besides the chirp
tional terms could be omittedA #(f) is the difference mass, is needed to define the template. Here, we have de-
between the signal’s phase function and the template’s phasided to use the total ma$4*® because it turned out to be
function, apart from any precessional modulation, andeasier to handle in our analysis and our numerical code; the
Ate, A(M™53) A(M¥3) are the differences between the results we have obtained do not depend on that choice. One
corresponding parameters of the signal and of any membeaf the parameters of the waveformge, is not present in

of the chosen template family. Especiallf{M ) is written  Eq. (4) since we have already maximized the expression for
in square brackets to show that it has to be usely if the  FF over this parameter by keeping the absolute value of the
template family is not the Newtonian one, since the Newtonnumerator in the right-hand side of E@).
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It should be noted that the post-Newtonian order of thdower than post®>-Newtonian, the FF values obtained for
signal is assumed to be of greater or equal order than that signal waveforms that are of higher post-Newtonian order
the templates, since the signal is supposed to be described Byan the template family are rather poor. This indicates that
the most accurate available waveform while the template$he Newtonian and the posNewtonian families of tem-
are usually considered to have a simpler form than the signaplates are rather inadequate families of search templates. On
In order to keep the number of templates in the chosen farthe other hand, the slightly differing, but quite high, FF val-
ily moderately low we will assume that all templates corre-ues for both the podt-Newtonian and the post
spond to waveforms with vanishing spin ternighis ex- Newtonian templates suggest that the pdstewtonian
plains why theg and o terms do not show up in the set of family of templates might be quite adequate for detection
parameters over which the expression in E4). is maxi-  PUrPoses. The inclusion of the pddilewtonian term in the
mized] In the next section we will justify this simplification Signal changes very slightly the fitting capability of the

5 H H
by demonstrating in what extent this is harmless for detecpos‘“1 'NeWtO”'?‘“ fam|ly of templatedlt actually produ.ces
tign pUrpOSES g a FF value a bit higher than the FF for a pbsNewtonian

signal) This is an indication that inclusion of further post-
Newtonian terms in the signal might not produce signifi-
cantly lower FF values. For a pdsNewtonian signal, the

Ill. THE INADEQUATENESS OF THE NEWTONIAN post-Newtonian family of templates does produce lower FF

TEMPLATE FAMILY than the post>-Newtonian one since8 and o in a
. ) ~ post-Newtonian signal have opposite signs and thereby they

In this section we present once more the results obtainegbng to cancel each other. Nevertheless, the difference is
by Apostolatod9] for the FF values one gets if various post- small and presumably it is even smaller for a family of tem-
Newtonian template families and various nonmodulationablates of higher order. All these explain why we have chosen
post-Newtonian signals are used, augmented by some addb use the post>-Newtonian family of templates in our pa-
tional results that we obtained by incorporating the recentlyper.
discovered nonmodulational pdsiewtonian effectq14]. At this point we should note that the FF values we pre-
More specifically, in Table | we have computed the FF val-sented in Table | are based on the assumption of a continu-
ues obtained if any of the Newtonian, pbdiewtonian, ous parameter space for the templates. This is unrealistic
post->-Newtonian with =0, or post-Newtonian with  since only a finite number of templates can be handled by
B=0=0 template families is used as a family of searchcomputers when cross correlating the signal with all the
templates to detect signals described by any of the posthembers of some chosen template family. However, this un-
Newtonian waveforms of Eqg3). (One can find similar reallstlc assumption was ne_cessa}(ry in org,er to fm_d out_what
tables in[6].) As we discussed in the previous section, inKind of templates are sufficiently “flexible” to mimic satis-
order to avoid expanding enormously the parameter space factorily a true gravitational signal, and produce a FF value

the template families, all our templates correspond to postell above 0.9. Of course the FF is expected to be further
Newtonian waveforms with vanishing spin terms; that is reduced when a discrete set of templates is considered. This

will be our subject in the following sections.
The simplicity of the Newtonian templates and moreover
JEE) = e (F:S,= S, 0) ©) their dependence on a sma}ll numper of parameters has fc_)rced
i iNho1 ' people to develop some tricks to increase their detectability.
Schutz[10] especially has proposed to truncate the Newton-
However, the analogous post-Newtonian signals have bedan templates at some frequency where the post-Newtonian
chosen with maximaB and ¢ terms so as to get an estima- effects start growing large. His argument was that up to this
tion for the FF values in the worst case; that is, when thefrequency limit a Newtonian template could very accurately
mismatch between the waveform of the template and that aiatch a true signal, while it is not fair to call the Newtonian
the signal is maximum. Some slight disagreement in the entemplates “inadequate” on grounds that they perform badly
tries of theP>>N column between the present Table | andthrough the whole range of frequencies where the detectors
the Table | of[9] is due to the fact that in the present caseare sensitive.
both objects of the binary are assumed to have spin which Hence, we investigated this idea by computing the FF
are aligned with the binary’'s orbital angular momentumobtained by a truncated Newtonian family as a function of
while in Ref.[9] only the more massive body was spinning. the truncation frequency. To be more specific, we have com-
It is clear from Table | that for search templates of orderputed numerically the function

fftruncdf[f77/3/Sn(f)]ei[wiSign(f)7¢’E)empl(f)]
0
FRftrund = max Toums - ) (6)
Ate AM ™) \/U df[f~73S,(f)] j df[f‘7’3/Sn(f)]}
0 0
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X
0.65} L 1 FIG. 1. This plot shows the performance of a
truncated Newtonian family of templates on de-
0.6} BH/NS : tecting a post>Newtonian signa(solid lines, or
N a post-Newtonian signal(dashed lines as a
2 055¢ N 1 function of the uppermost frequendy,c of the
q_‘é ________ templates. The top pair of lines corresponds to a
~  05p ) signal from a 1M ,1.4M o BH-NS binary with
%‘ both bodies maximally rotatingg\=mi2), and
045} ] both spins and orbital angular momentum
NS/NS ; ;
aligned. The bottom lines correspond to an analo-
04¢ 1 gous 1.M5,1.4M o NS-NS binary. The small
hump in all cases indicates a slight, but not satis-
50, 100, >00. 500, 7000. factory, improvement on the performance of the

truncated templates over the plain ones.

f;I‘Lll’lC (HZ)

which arises from Eq4) if we omit the modulational factors eterstc, ¢c, and M as one can verify by a quick look at
AM and PM and setfy,. as the uppermost frequency Egs.(3). The time of coalescende can be handled directly
present in the Newtonian templates. In Fig. 1, the depengt the stage of numerical cross correlation, and the phase at
dence ofFF(fyynd 0N fyyne, both for a post>Newtonian  coalescencepe enters trivially in the waveform and only
(i=1.5) and a pogtNewtonian signali(=2) from two typi-  two values of it need to be considerg8]. Therefore, the

cal binaries, is depicted. It is clear that although one mayroblem of constructing a lattice of Newtonian templates to
gain somewhat higher FFhigher signal-to-noise ratioby = search for Newtonian signals transforms to the problem of
cutting the cross correlation of the Newtonian templates anfdilling the interval of chirp masses that correspond to poten-
the signal at some frequendy,,., this method is not very tially detectable signals, with a discrete set of chirp masses,
effective since a significant part of the whole signal is thenso that for any signal represented by some fixed chirp mass
lost by reducingf ,nc to avoid the post-Newtonian behavior Within that interval there will be at least one member of the
of the signal. The maximum possible FF achieved by thigst Of chirp masses that its corresponding Newtonian wave-
method is only slightly higher than the FF obtained with theform produces a FRby maximizing the relevant quantity
nontruncated Newtonian templates. One more time the NewRVerdtc, the only then free parameter to adjusbove, say,
tonian family of templates has failed to work as a “good” 0.9. The_ procedure _to construct such a discrete _set of chirp
family of search templates; therefore, other post-Newtonian@sses is the following: One starts with some arbitrary New-
templates should be more seriously considered as possibignian template with a fixed chirp masst;, (see Fig. 2
candidates for search templates and be studied in detalf//thin the '”tefyg‘,' of interest and computes the dependence
Even so, Schutz’s idea might prove helpful for whateverOf FF ona(M ) by maximizing the quantity appearing

post-Newtonian templates one chooses, and deserves furthd} the right-hand side of E¢4) overAtc, then the only free
investigation. parameter. Notice that now the roles of the signal and the

FE(M:M)
IV. THE METHOD OF CONSTRUCTING A FAMILY
OF SEARCH TEMPLATES

1.0
Sathyaprakash and Dhurandh&t have presented an al- /\/\h

gorithm for constructing a lattice of search templates thatis 0.9
capable of detecting any signal, of a certain minimal signal- a
to-noise ratio, that comes from a binary, the parameters of
which lay within some range. However, their analysis is re-
stricted to Newtonian signals and Newtonian templates, and
to detectors with white noise. According to previous discus- M
sions their results do not reflect a realistic situation, and ' ' '
therefore, it should be reexamined. First, we will describe M., M, M.
their algorithm and their result and then we will extend it to

the {nsore reall§tlc casp of a pGQtIeWtonlan signal and a FIG. 2. The method used by Sathyaprakash and Dhurah@har
post-Newtonian family of templates, and draw our conclu- (5 estimate the number of Newtonian templates needed to detect a
sions. Their work will be translated here in the language of\ewtonian signal with maximum accepted signal-to-noise reduction
FF which, in our opinion, is simpler and has a more directequal to 0.9: One keeps the chirp mas of a template fixed and
physical interpretation than the correlation function they hadsaries the chirp mass of the signal until the corresponding FF

used. drops to 0.9. This determines the range of detectability for that
The Newtonian waveforms depend on just three paramspecific template.
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3 L
Q\ FIG. 3. This is the potentially detectable re-
vg gion of the parameter space, or in other words,
- 27 the space of interest. Here we have assumed that
Q the maximum possible mass included in the bi-
'z nary is 3Mg and the minimum one is O\, .

The bottom boundary corresponds i@ =m,;
any point below thisn;=m, line corresponds to
unphysical masses.

7 15 2 25 3 35
1/3 1/3
M™ M)

template are interchanged since the template is assumeust!-Newtonian templates and signals that there is some
fixed and one varies the parameters of the signal trying t@vidence of strong correlation between the chirp mass pa-
achieve the best fitting. Although what we here call FF doesameter and the postNewtonian parameter term; that is, by
not coincide with the initial definition of FFA(M >3 is  cleverly choosing some combination of these two param-
assumed fiXEd, the maximization has been taken over tl’ﬁersl one could reformulate the pr0b|em to a one-
signal parametetic ] we will insist on calling this so, in order  dimensional problem like the Newtonian one, with the chirp
not to cause any confusion by introducing many new quanmass being replaced by this new parameter. Unfortunately,
tities that all measure the same thing: the best possiblg,,; was due to the assumption of white noise and the inte-
maiching between template waveforms and signal wavegation limits that were used; s¢5]. Also, the irregularity

forms in various cases. In every case the assumptions WE the parameter space, that was ignoreftliti, turns out to

ma_:fﬁ vxgllnbe leeaﬂi)r' e?T(]posed. uhd. that prod EE be a serious issue as we shall see later.
€ range ot chirp masses around, that proguces s In this paper we will assume that the spectral density

above 0.9 is therange of detectabilityfor this template. f noise is given in Eq.2b), the signals are described

When FF drops below the 0.9 level then one should fincﬁy the post-Newtonian waveforms given in Eqs(3)
another template, characterized 1 OFr My;q, that ; N e
P Bt 1 ntl ther with maximal g and o terms [after substi-

produces FF’s above 0.9 for chirp masses outside the rande" ) 5 - )
of detectability of the first template. Proceeding this way,tuting S;=mi,S,=m3,$,=S,=L in Egs. (3e, 3) one
one could cover the whole set of signal waveforms, that ar@ets  Bma= (113/12)- (19/3)(mym,/M?)  and  oma=
in principle detectable, with a discrete set of templates tha¢79/8)(m;m,/M?)] or with vanishing spin terms, and the
produce FE=0.9 for any Newtonian signal coming from a templates are described by pb3Newtonian waveforms
binary with chirp mass within that range. with =0 since they seem to be superior among all other
Sathyaprakash and Dhurandhar found that for Newtoniatwo-parameter templatdsee Table )l
signals from binaries with masses within the range The steps one should follow to construct a discrete family
[0.5M »,30M o] one needs as many as 2450 Newtonian temof post'>-Newtonian templates to be used as search tem-
plates for detectors with white noise and lower frequencyplates are the following(1) One has to choose the two-
assumed 100 Hz(The number includes the factor of 2, dimensional parameter space to place his or her templates
which arises from the two independent values we need foand signals on and then define its boundaries. We have cho-
the phase at coalescence for every value\of >3.) Cross  sen to use a power of the chirp mass, namety °, and a
correlating a given data stream with such a number of tempower of the total mass of the binary, nama&l3, as our
plates in real time is well within the present computers’ ca-two parameters and draw the boundaries in such a way that
pabilities. But this optimistic message should be revised afteall masses in the intervf.5M ,30M ] are included. Our
considering the more realistic waveforms that are now availehoice for the mass parameters makes it easy to rewrite the
able, and a more realistic detector noise. post-Newtonian terms in terms of them and in parallel it
Extending that method of constructing template familiesenables us to transform easily any combination of masses to
to post-Newtonian signals and templates is far more complithe corresponding pair of the two mass parameters and vice
cated since the corresponding waveforms no longer depenckersa. The price one has to pay then is an irregular region in
on only one parametdaside fromt: and ¢c). The param- the parameter space for all binaries under consider&tbn
eter space that one has to fill with carefully spaced templateBig. 3), that we shall calspace of interest(2) One should
is now two dimensionalif one considers template wave- find for each single signal point — practically, for several
forms with no spin terms as we foThere was some hope signal points — which lies in this space of interest, some
after Sathyaprakash’s wofk 1] that the effective dimension- template among the continuously parametrized chosen fam-
ality of the parameter space is still one. He showed, by usingy of templates that produces the highest possible FF value.
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FIG. 4. The extension of Sathyaprakash-Dhurandhar mdthpth post-Newtonian signals and templates. The parameter space, where
templates lie, is no more one-dimensional. Post-Newtonian templates depend not ¢rly®6tbut on other functions of the masses as well.
Therefore, instead of a series of bumps as in Fig. 2, one has now a large humber of iso-FF contours covering completely the whole space
of interest. If signals and templates are of different post-Newtonian order and/or post-Newtonian spin terms are included in the signals but
not in the templates, then each signal-template pair that is producing the maximum FF among all other nearbyi.sigaaisa’),
corresponds to different mass parameters for the signal and the template; and the maximum FF value, then, is not unity but somewhat lower,
since the matching can not be perfect. The grey region corresponds to signals that are not expected to be detectable; that is, signals lying
outside the space of interest.

One does not have the luxury to do that by identifying thenals, and computed the FF for each one assuming continu-
corresponding template with the signal since these twmusly varying parameters of the pdstNewtonian template
waveforms no longer have the same post-Newtonian formfamily. After fixing these best-matching templates we com-
Then one should explore how FF changes as one varies thfited the FF output around the central signal point. We drew
signal’'s mass parameters, but keep the template fixed; hetge corresponding 0.9-iso-FF contours and studied their
the quantity on the right-hand side of E¢), from which FF shape and size. It should be noted that the template used to
is determined, has to get maximized over oA, as with  produce each 0.9-iso-FF contour does not necessarily lie
the Newtonian case ¢6]. Thus, one constructs contours of yithin the boundaries of the contour since the waveforms

constant FF around each signal point; we shall call them,qeq for the templates are quite different from the waveforms
iso-FF contours(see[16]). The space inside a 0.9-iso-FF ed for the signals; cf. Fig. 4.

. . = . S
contour is analogous to the region of detectability we deflneéI In Fig. 5 we have plotted the shapes and sizes of some of

earlier in this section for the one-dimensional case; in Othe{hese 0.9-is0-FF’s for various locations in the space of inter-

words, it represents all signals for which the correspondin%st For each 0.9-iso-EE there exists a unique temolate wave-
fixed template reduces the signal-to-noise ratio at most by ™" ’ . que P
orm that produces FF0.9 for all signals inside this 0.9-

10%. (3) Finally, the space of interest should be completely. -
covere(zd) ot s)(Jch 0.9p-iso-FF contours, but they sh(?uld l;léso—FF contpur. As these few _contour pIots_lsr)Slcate, the 0.9-
distributed as sparsely as possible so as to keep the numg&P-FF are in general very thin aloqgf)/gh‘el parameter
of templates low. with an average size of-2x10 *M5°°, and quite elon-
Now, counting the number of templates that are needed igated along theM*® parameter. This was to be expected
not as easy as it was for the one-dimensional case. One cé&ffice the total mass parameter appears only in the post-
no longer estimate this number by dividing the area of thdNewtonian terms of a waveform; therefore, in order to
space of interest by the area of a 0.9-iso-FF contour becaus®ange FF as much as tiny shifts in the chirp mass parameter
(1) some of the contours extend out of the boundaries of th€o, @ much larger shift in the total mass parameter is re-
space of interest?) a significant part of the contours’ area is quired. The actual horizontal size of the 0.9-iso-FF does not
shared by two or more neighboring contours, due to theiflepend greatly on the horizontal position of the templtite
iregular shapes, ang) the contours’ sizes and shapes areM* value of the central signglbut it depends greatly on
not fixed but vary greatly with locatiotfor a pictorial dem-  the value of the spin termg and o assumed for the
onstration of all these counting problems see FigT4king post-Newtonian waveforms of the signals. For vanishing
all these intricacies into account, we have attempted to give apins (3= oc=0) the corresponding 0.9-iso-FF contours are
rough estimate of the number of templates one would need toarrower (along M3 than the ones with maximal spin
cover the whole space of interest with these 0.9-iso-FF corterms (3,0 maxima). This seemingly paradoxical effect is
tours. due to the opposite signs between the spin terms and the rest
More specifically, we have chosen several points in thepost'> and post-Newtonian terms, that are not related to
space of interest, which correspond to some hypothetical sigpin, respectively. Whe and o terms are maximal they
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0.046

FIG. 5. This is again a plot of the parameter
space showing the 0.9-iso-FF contours around
several points residing inside the space of inter-
est. Here, the templates are assumed to be of
postt>Newtonian order withB=0, while the
signals are of pogtNewtonian order with3=0,
o=0. The iso-FF contours have quite different
sizes along thv'® axis but not much different
sizes along the\~%? axis. The method we have
used to plot these contour plots is described in
detail in Sec. IV.

)
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reduce the magnitude of both these post-Newtonian termsnentum, than in the case of vanishing spins. From that plot
and thus they help pos®-Newtonian templates imitate the one can deduce the average number of contours, thereby the
corresponding signal. In Fig. 6 we have plotted the numbeaverage number of templates, that should be placed next to
of contours that fit along the widttalongM ') of the space each other to fill the space of interest along its width. We
of interest, versus the chirp mass parametdr, 3. As one  found that number to be approximately 4.8 for the nonspin-
can see, much fewer templates are needed in the case mihg binary case and 1.5 for the maximally spinning binary

maximum spins that are aligned with the orbital angular mocase. Now, by multiplying that number by the number of
contours needed to cover the whole range of the chirp mass

parameter we obtain the total number of templates one

25 should use to pick up any signal with no more than 10%
w20 reduction in its signal-to-noise ratio. Finally, the total num-
fgf_ 15 () ber o_f templates has been augmented by 28%€[17]) to
£ ' take into account the overlap between adjacent contours, and
S 10 by a factor of 2 because of the two independent values of
w 5 — ¢ that need to be considered for each one of the templates

]\\_—2— 3 y \Il;/e mentioned right above. Our results are presented in Table

.8 M M5 The number of templates needed for a different space of
;3 6 interest is also shown in Table Il. Namely, for binaries, the

E 4 (b) masses of which lie within the intervalM,,30M]. Part

. of the counting process that was described above had to be

= 2| A repeated once again for this case, since all three difficulties
03 07 06 05 T o3 in connection with counting templates makg it impossible to

oo e ‘ scale the number of templates with the limiting masses of the

M 057 space of interest. However, the fact that the 0.9-iso-FF are so

thin vertically suggests the following rough scaling law:

FIG. 6. These diagrams show a crude estimation of the number _5/3 _53 i _g/ _5/3
of contours needed to fill up the parameter space along its width Fock((M ™) max— (M) min) =k(M 3)ma><°ckmmiﬂ ’
(alongM*) as a function ofAM =53, The solid lines correspond to @)

post-Newtonian signals with vanishing spin termg=o=0), . . .
while the dashed lines correspond to feewtonian signals with ~ Where the proportionality factdk, which denotes the aver-

maximal spin terms §,o: maxima). The templates we have used 2J€ number of contours along the horizontal direction, is not
are assumed to be of pdSiNewtonian order with3=0, as every- & constant but depends on the limiting masses in a much
where in our analysis(@ For the case ofn,,=0.5M¢, (b) for softer way though; cf. Fig. 6. The maximum mass limit is not
Mmin=1.0M 5 . These plots have been used to compute the totavery crucial in determining the number of templates, which,
number of templates, quoted in Table II. on the other hand, cannot be extremely high since then the
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TABLE II. This table presents the total number of after having weighted the latter Hy'3/S,(f) — and finally
post'>-Newtonian templates wit)3=0 that a template family transform these products back to the time donfae Fig.
should contain in order to produce a FB.9 for any post- 7). This whole process requires, fBrtemplates,
Newtonian signal from a binary with any combination of masses
within the interval [0.5M5,30M ] or within the interval [1
M ,30M]. Signals with vanishing or maximal spin parameters are

assumed. Any spin-induced precessional effects have been ngjhereN is the number of elements the data stretch consists
glected since the spins — whenever they are present — have be%ﬂ’ andn is the number of elements kept in the frequency

considered to be aligned with respect to the binary’s orbital anQU|aEiomain[since very high frequencies of the signal are highly
momentum. The numbers of templates have been computed by ughppressed by the weighting functidﬁm/Sn(f) only a

ing the method described in Sec. IV. Also, we are showing the . .
computing power that each case demands. The numbers, quotgg'rrow range of frequencies should be UseDbviously

. : n=N(2f,/fs), wheref is the sampling rate of the data and
here, for the computing power have been based ort&a@ssuming f, is the uppermost frequency kept in the frequency domain.

Niiop=3n(log,N+2F + Flog,n)=3nF(2+log,n), (8)

f,=300 Hz. )
Now, there should be some overlap between successive
Range of masses No. of templates ~ Gflops rgal data stretches in order to avoid probl_ems arising from
in Mg circular correlation; se¢10]. Let us call this overlapping
fractionx. This overlapxN should be as long as the longest
P2-N signal: [0.5,30 231000 12.2 expected signal. If one wants to keep up with the incoming
(B=0=0) [1,30 42 000 21 data, the number of floating operations quoted in B8j).
should be performed in a time peridd=N(1—x)/fs. Thus
P2-N signal: [0.5,30 73 000 3.9 the computing power one needs is related to the number of
(8,0 maximal) [1,30 13 300 0.7 templates through

1.8 2f,7
R ( n2 u‘max

F fu
=1"x ” +2>(W)(—3OOH;)Gﬂ0pS’ 9

wherer . iS the time duration of the longest template in the
template family. One, then, has to compute the optimal value
for x and replace it in Eq(9) in order to find the required
computing power. The optimal value faris of the order of

In the actual data process one has to transform the redl.05 forf,=300 Hz andry,=5.5x 10®sec(this is the time
data from the time domain to the frequency domain, take the binary withm;=m,=0.5M needs to sweep upwards in
product between the data and all preconstructed templates frequency from 10 Hz td ). (One should note that the op-

frequency corresponding to the last stable orbit would be so
low that only a few cycles of the signal would enter the
LIGO-VIRGO band.

V. COMPUTING POWER

overlap
N. =
N —)i ANTT

‘data \

FIG. 7. This is a schematic diagram present-
ing the whole data analysis process at the stage of
detection. First, a data stretch consistindNafeal
numbers gets fast Fourier transformed. But since
all frequencies above-300 Hz are mainly com-
FFT: output of ing from noise, the corresponding data could be
3nlog, N P disregarded. That reduces the amount of floating
correlation (t ;.. ) operations from Bllog,N to 3nlog,N, wheren is

the number of data kept in the frequency domain.
+ Then, thesen complex numbers should be multi-
plied with all, sayF, preconstructed weighted

‘ data

invFFT:

3F nlog, n

time domain

data 15:

jth weighted A j
8 template T k

n

templates. That meand=@ floating point opera-
tions. Finally, these products should be fast Fou-
rier transformed to obtain the correlation for each
template. This final process demandsnlog,n
floating operations.
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timal value ofx does not depend crucially on the assumedbecause of deep phase modulation of the waves. Of course
values of f, and 7,,.) The computing power quoted in the plain post®>-Newtonian template family is not “flex-
Table Il is based on Eq9) with assumed value fak,, 300 ible” enough to mimic this complicated modulated signal
Hz. These numbers are remarkably close to the numbers olraveforms. If signals from binaries with considerable open-
tained by Owerj18] by a somewhat different method. ing angles — which carry quite a lot of information and
could ultimately serve as excellent tests of general relativity
— are not to be missed, then more complicated templates
should be used. This would magnify the computational task.
Up to this point we have assumed that even if spins arédow much is the issue addressed in the following analysis.
nonvanishing they are aligned with the binary’s orbital an- Since most of the signal-to-noise ratio is picked up at a
gular momentum to make sure that no precession of the ofrequency lower than the frequency at which the detectors
bital plane occurs, and thus, the gravitational signal waveare more sensitivésee Fig. 2 of Ref{2]), more specifically,
forms are simply described by the post-Newtonianat~50 Hz for the advanced LIGO detectors, we have chosen
waveforms that are given in Egé). Now, if we consider to use the opening angle value at 50 fienceforth denoted
arbitrary angles between spins and orbital angular momerk(LSO)) as the main parameter to measure the intensity of the
tum the signal’s parameter space becomes much richer apgtecessional effects. In Fig. 8 we are showing a density plot
the two-dimensional po$f-Newtonian template family used of A59 in grey scale(black represents lowest angleover-
in Sec. IV can hardly mimién some casethe true preces- ing the whole space of interest for some fixg¢dangle. At
sionally modula_ted signal and produce h|g_h_ FF \_/a_lues. _Th‘f‘east forg angles up to R 7\(|_50) is a monotonically increas-
larger tf;e m|sallgnment angles.the more difficult it is to f'nding function of ¢, therefore the pattern showing up in this
a post->Newtonian templatdwith 5=0) that adequately density plot is more or less independentiggfonly the maxi-

mimics the true signakf. Ref.[9]). Also other parameters of mum value of)\(L5°) depends onp. One can see clearly that

the binary affect the complexity of the signal and accord- ; ; - :
ingly the adequacy of such pdstNewtonian templates. the region of the space of interest that might cause the great

; . . est problems with respect to spin-induced precessional ef-
Apart from the geometry of the binary what is actually di- fects is the upper right corner of it; that is, the region of the

rectly responsible for_the deep modulation of _the signaky; -ries with the highest mass ratios. That means that the
waveform is the opening angle,_ for the precession of ¢ g.iso-FF contourganalyzed in Sec. IV for nonmodulated
(the unit vector along the orpltal angular momentum of thesignals), when drawn around these regions of potentially
binary) and not the spin-orbital angular momentum anglegeen.modulated signals, are expected to contain a very low
SL, which was used in Ref9] as the main parameter con- hercentage of realistic modulated signals for which the cor-

nected with spins, to demonstrate the degradation of the e esponding fixed posf-Newtonian template produces FF
fectiveness of various template families as the precessiongly ;es above 0.9.

effects get more and more pronounced. The opening angle
A\ is given by

VI. SPIN-INDUCED PRECESSIONAL EFFECTS INCLUDED

To get a feeling for the fraction of extremely spinning
binaries for which the po$f-Newtonian template family
proves adequatéroducing FF values above 0.%e have

1+ ycosp compiled in Fig 9 a large amount of information concerning

1+ 12+ 2,000’ (10 the distribution of FF for various (°” angles as one varies
the geometry of the binary with respect to the detector’s
where y=S/L depends on the masses involved and the in

arms. We have picked up a few points inside one of the
stantaneous frequency, ebsL -S, andS,S are the magni- 0.9-iso-FF contours for nonmodulated postewtonian sig-
tude of the total spifS;+ S,| and the unit vector along the

nals with maximalB and o terms, andapproximatelyesti-
total spin 6,+S)/|S,+S,|, respectively. In the following mated the percentage of binary geometries that are producing
we will assume that both spins have magnit@le Mi2 and

FF=0.9 for any possibla®?. This estimation was based on
. 2 the following approximate relatiotfor a proof see Appendi

they always remain parallel to each oth&,€S,); essen- . gapp d P ppendix

tially one then has to take into account a single spin vector. *

These assumptions make the situation more dramatic b ,
maximizing the spin-induced precessional effects and on th?al FR(Q\{*”;geometry=FFQ,\{*’ ;no precession

othe_r hand they simplify our analysis since t_he_precessional XFF(Q, :)\(LSO) :geometry |

motion for the case of one spisimple precessigris known

analytically(see Ref[12]), and can be easily implemented in 11

our computer code for calculating FEThe assumption that

S)|S; is actually wrong, since each spin traces a differentwvhereQ, andQ are the “central point” — the one produc-
precession path and the angle between the two spins changeg the highest FF if precession is absent — and an arbitrary
continuously, but the precessional behavior one gets undgmint inside the 0.9-iso-FF contour, respectively. This rela-
this assumption still resembles quite well the true precessioriion simply states that one can separate the drop of signal-
as was shown if12].) to-noise ratio due to spin-induced precession alpight-

The larger the opening anglg , the larger the portion of most term in Eq.(11)] from the one due to nonoptimal
the geometries defining the orientation and location of thecombination of parameters of the nonmodulated signal and
binary with respect to the detector, which lead to low FFthe templatgleft term on the right-hand side of E¢l1)].
values because of deep amplitude modulation and mainlfhe term “geometry” denotes some arbitrary fixed geo-

COQ\L:
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FIG. 8. This density plot diagram shows
3! which regions of the parameter space are most
affected by spin-induced precession effects
(lighter region$. What has been actually plotted
here in grey scale, is the{>? value for all pos-
sible  combinations of masses  within
[0.5M,30M]. The misalignment angle be-
tween orbital angular momentum and spins has
been assumed here to be’9But sincex(*? is a
monotonic function ofLS, at least for LS
<9(°, this diagram gives a more or less correct

M -5/3
ro

! distribution of \(*? for any moderate misalign-
ment angle; however the maximun{*® angle
depends orLS. (The dotted form of the upper
part of the diagram is only due to the number of

0 , . , ] points that were chosen to be depicjed.

1 1.5 2 2.5 3 3.5

1/3
M

metrical configuration of the binary and the detector. Thegnd even for)\(50)<250 the contours that contain at least
term FF@,\(>”;no precession) has no reference to geomsomebinaries, for which the fixed posf-Newtonian tem-
etry since the output of FF is independent of the binaryplate produces FF0.9, shrink considerably(e.g., for
detector geometry when there is no precession. When com;(L5°):25° there is almost no binary producing £0.9 out-
puting this FF though, one should use for the postside the 0.925-iso-FF contguiThe consequence of this is
Newtonian phase terms of the signal, the saghand o twofold: (1) One has to increase the number of templates and
terms that are assumed for the other two FF tewitk pre-  reduce their spacing in order to have some chances to detect
cession. a signal from a moderately precessing binary. This increase
One can see clearly in Fig. 9 that faf>”=25° FF is  depends on the maximuir{*” value one considers realistic
above 0.9 only for 50% of the binaries at the central pointand insists on searching for such a bina(g For )\(,_50)

100
80 100
- OO0 - 80 .
70 = %9 FIG. 9. By compiling the values of the FF for
o zo all possible geometrical configurations, and using
O 10 20 30 40 50 60 o L ! L (50 H
2O ot degrees) o, 1020 50 40 50 60 Eg. (11) for several\}””, we obtained the per-
b A\ / AL (i degrees) centages of precessing binaries with masses
around the masses of the central point
(10M,1.4M ) and opening anglk{®? that pro-
100

duce a FF above 0.9The central point of the
diagram represents th@, point of our discus-
sion in Appendix A while any other point around
could be thought of as th@ point of our analy-

S0

(=124
<0
20

o

o /0 2() f() SO 50 60
§0)

%

(irn degrees) < sis) The grey histograms show the percentages
8 when we use the simple pdstNewtonian tem-
= plates with those fixed\~>® and M values
§ that produce the highest possible FF value
o (0.998 for the central point’s signal when preces-
3 sion is not present. The black histograms arise
oo when the more complicated family of templates
FF=0.950 S0 that allow for an oscillating term in their phase
GO
%0 [I are used; see E@12). The contours shown at the
o - o om main diagram are the iso-FF contours discussed
O 10 20 30 <0 50 60

FF=0.925
(50)

A in Sec. IV that refer to signals from nonprecess-
L

ing binaries; here, they serve as the multiplicative
factor FF@Q,\{°? ;no precession) of Eq11).

(irt degrees)

—~ ~“FF=0.900

0.1 M1/3
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above 50, no matter how densely one fills the space ofprecessing binaries in the future. These new templates could

interest with post>Newtonian templates, they are practi- also be used at a more detailed afterdetection stage for ex-

cally inadequate to detect such precessing binaries. tracting all possible spin information and thus improving the
Possible improvement could offer a more advanced famextraction of other parameters that are nonrelated to[2}in

ily of templates that might be able to mimic the spin-induced

modulation of the waves. Having chosen properly the param-

eters of the post>Newtonian template, one obtains a total  This paper addresses the question of the number of tem-
phase in the expression from which one computes Fhplates needed for detection as well as the form the templates
[Ay(f) plus the phase evolution which is hidden in the PMshould have and the method to construct them from the out-
term; see Eq(4)] that looks like an oscillatory phase, due to set, assuming, for first time, a more or less realistic signal
precession, superimposed on an almost constant, throughowkveform from a coalescing binafpos?-Newtonian and a
the most sensitive frequency band of the detector, phasegalistic noisy detectofthe advanced LIGO oneBy using
even the secular evolution of the precessionally modulategF (the fitting factor introduced ifi9]) not as a measure of
phase, that might arise in some special geometric configuraadequateness of a template family but as a tool to set the
tions(cf. [9]), could disappear by properly adjusting the tem-spacing between neighboring templates, we obtained a num-
plate’s parameters. Therefore, the simplest extension of thger of templates almost two orders of magnitude higher than
post™>Newtonian template family one could think of is a the number estimated in Rd6] which was based on New-
family of post->-Newtonian templates with an additional os- tonian signals, Newtonian templates, and detectors with
cillatory phase. More specifically, since the precession angle/hite noise.
a(f) (see[9,12)) evolvesxf =22 or 1 depending on the Our analysis suggests that neither the Newtonian family
relative sizes ol andS, a good choice for the frequency of templates nor any other family of templates with as few
dependence of the additional oscillatory phase would be eiparameters as the Newtonian one is adequate for detection
ther f~22 or f~1. We have chosen the one thateid ~#3  purposes. At least one more mass parameter is necessary for
since only if S is of about the same order &sthe preces- the candidate family of templates. This has been verified
sional effects are noticeable. The templates that we have chirdependently by Ower{18] for the restricted case of
sen to use have the same form as the boBtewtonian tem-  post'-Newtonian signals and templates.
plates given in Eqg3), with an extra oscillatory term added Finally, we have analyzed the role of spins in the number
on its phasey{% (f): of templates. If one ignores the spin-induced precession of
the binary then the spin terms in the higher post-Newtonian
order terms have a moderate impact on the total number of
PINE) = i O (F) + Ccog 6+ Bf ~23), (120  parameters. However, if one allows for precession effects
then not only the number of templates has to raise consider-
The precise frequency dependence does not seem to be cably but even then a great number of signals might remain
cial since only a small number of precession cycles occuundetectable due to inadequate matching between the simple
within the sensitive range of the detector; we have verifiedemplates and the highly precessionally modulated signal.
this by testing the behavior of boftt 3 andf ! frequency  Essential improvement might offer more complicated tem-

VIl. CONCLUSIONS

terms in the additional phase. plates, like the ones introduced in Ed2), but then the price
These new templates introduce three  newis a formidable number of templates, well beyond the capa-
parameters  C, 6,5, besides the old ones bilities of the near-future computers. These new complicated

Atc,Adc,A(M %3 A(M3), thus raising substantially templates could be used after detection to improve the
the total number of templates. On the other hand they greatlgignal-to-noise ratio and offer some information about the

improve the FF values. The code we have used to computspins, which then could be used to extract more accurately
the FF’'s does not perform a simultaneous maximization obther astrophysical parameters like the ma$&és

the quantity appearing in Eq4) over all six parameters This work is a first step in expanding the post-Newtonian

[maximization over one of them¢c, has already been templates so as to include “corrections” that mimic the true

achieved by replacing the quantity to be maximized with itsprecessionally modulated gravitational waves. Further inves-
absolute value; cf. Eq4)]. Rather it computes the maximum tigation has to be done to enable this rich structure, due to
over the old parameters first and then over the new ones; thjgrecession, be revealed.

is justified by the nearly independent contribution of these
two sets of parameters on Féee Appendix B In Fig. 9 the
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APPENDIX A: DECOMPOSITION OF FF INTO
A NONOSCILLATING-PHASE PART AND AN
OSCILLATING-PHASE PART
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U df[f~ 73S, (f)]e*"DAM X PM
0

FRQ,\*”;geometry=max

_ _ : (A1)
Ate \/U df[f7’3/sn(f)]Hf df[f7’3/$1(f)](AM)2}
0 0

The only thing that makes this expression different from thenearly constant near that frequency. The larger the distance
usual formula for FHcf. Eq. (4)] is that the quantity on the betweenQ and Q, , the narrower the opening dff (or
right-hand side is maximized over only one parametern), since only atQ, the differences between the template’s
Atc. Equation (Al) gives the FF value for a family of mass parameters and signal’'s mass parameters are optimal,
post->-Newtonian templates located at a fixed locati@p and, thereforeA (f) has the widest possible flat bottcor

on the[ M~ %3 M3 space — thus, having only. as a free  top).

parameter to adjust — and a p&stewtonian signal, located One, then, could approximatey(f) as

at positionQ on the[ M ™53 M¥3] space, coming from a

precessing binary with a specific geometry relative to the const  forfy<f<f,,
detector’s arms and a fixed opening angle at 50 2. Ag(f)= o for f <f,< 50 Hz, (A2)
Now, assume that all secular evolution of PM has been © for f>f,> 50 Hz,

transferred intoA () term, and thus, PM is just a purely

oscillating phase term. After the maximization ov&tc,

Ay(f) acquires aJ-like shape(or a N-like one as in Fig. wheref, andf, are two frequencies on either side of 50 Hz,
10) with its flat part centered around 50 Hz. The reason ighat depend on the location a@; more specifically, the
that f~7/3/S,(f) is maximum at about 50 Hzfor the ad- smaller the distance betwe&hand Q, the larger the inter-
vanced LIGO detectgr thus the phase term should be keptval f,—f,. Hence Eq(13) simplifies to

fu(Q)
U df[f‘7’3/%(f)]AM><PM’
FRQAP?; try= e
A7 ;geometry

= —— . (A3)
\/U df[f?’?‘/s«f)]} | df[f7’3/sn(f>]<AM>2}
0 0
550
5t
4.5¢ . :
FIG. 10. This plot shows how the phase dif-
ference between a pdsNewtonian signal from a
= precessing binargshown in the schematic picture
S 4 at the bottom of the diagramand the best-
~ matching simple post-Newtonian template de-
2 pends on frequency. One can see clearly its wavy
N shape that we discussed in Appendix A. This
3.5¢ picture justifies the addition of an extra oscilla-
tory term on the phase of our pdStNewtonian
templates; cf. Eq(12).
3t
2.55 . - . <
10. 20. 50. 100. 200.
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Now, since the modulation terms PM and AM are oscillating rather fast compared to the rate 18, (f) evolves, one
could replace their effect with a constant suppression factor, and rewritéABpas the following:

FH QN % ;geometry=

fu(Q)
f df[f~ 73S, (f)]X (supr. factoy
f1(Q)

\/[fmdf[f7’3/Sn(f)]Hfmdf[f7’3/Sn(f)](AM)2}
0 0

[ STt s(h)]

fu(Qy)
U df[f~ 73S, (f)] X (supr. factoy
f1(Q4)

Ren 713 = = :
IESCLUNGEU) \/“ df[f‘7’3/Sq(f)]Hf df[f”’slsn(f)](AM)Z}
0

(Ad)

0

Remember tha®, is the location of that special signal that our one-parameter family of templates would match very well if
precessional modulation was not present. Thereﬁ}flfég*))dffqmlsn(f) could be replaced bygdff~"3/S,(f). That brings

Eq. (A4) to the form

[ STt s,(h)]
FR(Q,\ %% :geometry~ —

fu(Qyx)
f df[f‘7’3/31(f)]AM><PM‘
f1(Qy)

Jodflf=™sy(f)]

which is just the same with Eq11), apart from small dif-
ferences that arise from approximatings(f) by a constant
within the interval[ f,,f,] and outside this interval.

: (A5)

\/def[f7’3/31<f>]Hf°°df[f7’3/sn<f>]<AM>2}
0 0

spin-orbit and spin-spin coupling cause the binary’s orbital
plane to precess. This precession leads to a modulation of
gravitational waves both in amplitude and in phase. As was

In the following, we will give an example that demon- shown in[9] the phase modulation has more dramatic con-

strates the accuracy of E(L1). For a post-Newtonian sig-
nal coming from a binary witrm;=10Mg5, m,=1.4Mg,

and LS=30°, which is located at
shown in Fig. 10, the best matching pb3Newtonian

the position tween a signal

sequences than the amplitude modulation. Here, we are fo-
cusing our interest on trying to improve the matching be-
from a precessing binary and a
post:>-Newtonian family of templates by adding in the tem-

template is the one whose parameters are differing from thplates’ phase an extra term that resembles the true modulated

signal's parameters byAt.=—3.1 msec, A(M )=
9.002<10 *M %3, A(MY}=0.7948Y%. The FF pro-
duced then is FRQ, ,\(°Y:geometry}=0.9490. On the

phase of a signal. The modulated phase could happen to
grow secularly, but that could in general get fixed quite well
by properly adjusting the templates parameters. What re-

other hand, if one uses templates with the samdnains then, is a complicated oscillation in phase that evolves

M3, M as before to match another signal neady,
say @ with massean;=10.2552My, m,=1.374 20 o,

and with the sama (®? as for Q, the computed FF values
are FFQ,\{®?;:geometry)=0.8884, if the binary is precess-

ing with the samex ° as before, and FEZ,\°?;no pre-
cessiony0.9218, if the binary is not precessing,

tively. The approximate equatiql) is accurate to the level

of 1.5%.

APPENDIX B: TEMPLATES WITH AN EXTRA
OSCILLATORY TERM IN THEIR PHASE

at the same rate as the precession itself; cf. Fig. 10. There-
fore, a natural extra term we could add to the templates’
phase is a simple sinusoidal term that has the same frequency
dependence as precession. Of course, the actual oscillatory
phase term of a real signal is much more complicated than a
simplistic sinusoidal term, as one can see from Fig. 10. Nev-

reSPEC-grtheless, a sinusoidal term, like the one given in @Q),
with the appropriate triad of amplitudeC), initial phase

(6), and “wave number” (), can greatly enhance the
matching ability of a template.
In order to get a feeling of the necessary spacing between

templates in théC, 8,8] parameter space we have explored
the drop of correlation between simple sinusoidal phase

During the orbital inspiral of a binary, if at least one of terms as a function of parameter mismatching. More specifi-
the bodies is rapidly rotating, then the general relativisticcally, we have computed numerically the function
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a,=0.005

FIG. 11. Here we have plotted the contours
c(ag,a,,a3)=0.990 at variouss values, where
c(ay,a,,a3) models the correlation between the
new expanded templates and the signal from a
precessing binary; see E@1). The sizes of the
contours indicate that in order to cover the whole
[a;,a5,a3] parameter space with as few tem-
plates as possible one should choose templates
spaced by roughly0.1,0.1,0.00% respectively.

a,

UKZ dx exp(i{cogx)—(1+a;)coda,+(1+az)x]})

207

(B1)

c(a;,az,a3)=

Apart from an amplitude term this function has the form of about 30 values of to cover all possible amplitudes up to
FF before the maximization over the three new parameters of. (ii) The values ofs should be spaced by about 0.1; that
the oscillatory term has been carried out. Here, the signal ifneans that we need about 60 value$ o6 cover all possible
assumed to have a simple sinusoidal phase given bghase displacements up ter2(iii) Since our example sug-
¢°9"(x) =cos§), while the template is assumed to have agests that nearby values Bfshould differ by no more than
similar phase form with slightly different amplitude, initial 0504, the number of3 one would then need is
phase, and wave number. The integration over ten cycles is|n(3,.../B,,,)/IN0.995. The minimum and maximum
justified from the fact that ten is roughly the number of pre-yajue of B, By,,, and By respectively, depend on the
cessions occur in the range of frequencies over which thﬁange of masses, Spin magnitudes, and misa“gnment ang|es
advanced LIGO detectors have high sensitivity. From Fig. 1letween spin and orbital angular momentum. After exploring
it is clear that in order to achieve sufficiently good phasethe values off2/3[a(f)—a(f:oo)], wherea(f) is the pre-
matching[producingc(a; ,a,,a3)=0.99 one should choose cession angle, for the most extreme parameter values we
templates spaced by roughlyf0.1,0.1,0.005 in the have inferred that the ratiB, ./ BnaxiS of the order of 1:20;
[a;,a,,a3] parameter space. therefore one should use-600 individual values of55.
Now, going back to the somewhat different phase termHence, every single old template should be split to
Ccos@+B/T%3), that was introduced in Eq12) as an im- 30X 60X 600X 2=2x 10° new templates to make it possible
provement of the podt-Newtonian templates, these num- to improve the correlation between templates and a true sig-
bers could be interpreted as follow§) The values ofC nal from a precessing binary. The factor 2 comes from the
should be spaced by about 0.1; that means that we neddct that for large opening anglas , the orbital precession
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could be such that the modulated phase oscillates with twicent secular evolution of the modulated phase. For each of
the frequency of precession; sgH. these regions, one needs a different combination of

One should also keep in mind that there are two or moreAtc ,A(M %%, A(MY3) parameters to cancel out these
depending on the magnitude ®f , regions in the space of secularly or nonsecularly evolving phases. That raises the
the binary-detector geometry that are characterized by differtotal number of templates to a formidabte10*—10"2.
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