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Abstract. Binary pulsars could help us probe into strong gravitational field situations. One of
the relativistic effects that could manifest itself in observations of such pulsars is the precession
of the pulsars’ spin axis due to spin–orbit coupling. This paper derives an analytical formula for
the precessional frequency of the spin of a test particle in a circular orbit around a nonrotating
massive black hole, that is not restricted to weak field regions only. Approximate analytical and
numerical solutions of the spin precession in case of other, noncircular, bound orbits have also
been investigated. Finally the observational implications of such a precession are discussed.

PACS numbers: 0425, 0480C, 9760G

1. Introduction

The recent expansion on the number of binary pulsars that have been detected by
radioastronomers and the promising future detection of gravitational waves from coalescing
compact binaries brings an imperative need for a full knowledge of the relativistic equations
of motion for binary systems, especially for those consisting of spinning bodies. This
knowledge is crucial both for extracting astronomical information by accurately timing
binary pulsars and for detecting gravitational waves.

Unfortunately, the fully relativistic two-body problem still remains very difficult so that
there is no hope for analytical treatment, but various special cases of the problem have
already been investigated analytically by a number of authors. Although these special cases
are often idealized situations, they serve as a useful source for gaining insight into realistic
situations. One of these special cases is the topic of our present work. Namely, the spin
evolution of a test body in the gravitational field of a nonrotating massive black hole.

Since 1951, when Papapetrou [1] first derived the equations of motion for a spinning test
particle in a gravitational field, several people have considered the problem of the motion of
spinning bodies in the gravitational field of a black hole or some other compact object such
as a neutron star [2, 3], by means of post-Newtonian approximations. The fully relativistic
equations of motion were not of much importance then, since all relevant observations and
experiments were only dealing with weak-field situations.

This is no longer the case. A rotating neutron star or a small rotating black hole
orbiting around a massive black hole will follow a precessional orbital motion, due to
spin–orbit coupling (and additionally to spin–spin coupling if the massive black hole is
rotating), while emitting gravitational waves. However, for close orbits this precessional
motion cannot be correctly deduced from the post-Newtonian equations of motion, see [4].
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Therefore a binary pulsar in a very close orbit around a massive black hole will be out of
sight, due to spin precession, in a different time period from the time period computed from
the post-Newtonian equations of motion [5, 6].

The purpose of this paper is to study the relativistic precession of the spin axis of
a spinning test body that is moving on a close orbit around a much more massive and
nonrotating black hole. Because of astrophysical limitations on the spin’s magnitude, the
test body hardly deviates from a geodesic and thus this special low-mass-ratio case does
not introduce any complications in the computation of gravitational waveforms. However,
the precession of the spin could substantially affect the observations of the relevant binary
pulsars.

The rest of the paper is organized as follows. In section 2 we review the equations
of motion, derived by Papapetrou [1] for a spinning test particle in a gravitational field,
and apply them to the gravitational field of a Schwarzschild black hole. We then show
that in realistic situations the particle’s spin is very small compared to its orbital angular
momentum and thus all the higher spin terms can be neglected. On the one hand, this
approximation simplifies considerably the equations of motion for the spin and on the other,
it leaves the orbital motion of the particle almost planar. We also show that for tiny mass
ratios, that is for the case we consider, the timescale for radiation reaction is much higher
than the timescale for spin precession. This makes radiation reaction quite irrelevant to our
calculations for the spin precession.

In section 3 we make an attempt to solve the equations of motion for the spin. Since
the orbital precession is very small compared to the spin precession, we can assume that
the spinning body moves on a geodesic orbit. In section 3.1 we focus on spinning test
bodies that move on circular orbits. We then show that for this kind of orbit the spin
precesses in a uniform fashion, and we derive an analytical formula for the precessional
frequency. We also discuss the difference between this exact (as long as we are dealing with
extremely low mass ratios) precessional frequency and the approximate frequency, that has
been extensively used in the literature (see [3, 4]), and which is based on post-Newtonian
equations of motion. As is expected, our formula for the frequency is approximately the
same as the post-Newtonian formula in the weak-field region of the large gravitating body.
In section 3.2 we extend our analysis to generic noncircular orbits. Now, since the spinning
particle finds itself in different regions of the gravitational background field of the black hole,
its spin precesses in a non-uniform fashion. Since we cannot derive an analytical expression
to describe the precessional motion in this case, we discuss the basic characteristics of this
motion and we analyse some limiting cases that admit an approximate analytical solution.
For completeness, we investigate numerically this general case and present several numerical
examples. In section 4 we summarize our results and discuss their implications on possible
future observations of binary pulsars with massive non-spinning companions. Finally, in
section 5 we conclude with the hypothetical situation of such a binary pulsar and present
the observational effects related to its spin-induced precession.

In the appendix we examine the validity of the Papapetrou equation and conclude that it
cannot be used for the comparable-mass case since the omission of higher-order spin terms
introduces a higher-order error than the error due to the assumption of a fixed background
geometry.

Throughout we use units whereG = c = 1.
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2. Equations of motion

In 1951, Papapetrou [1] derived the equations of motion for a spinning test particle in
an arbitrary gravitational field. His conclusion was that such a particle deviates from its
geodesic and moves on a different orbit according to

D

dτ

(
muα + uβ

DSαβ

dτ

)
+ 1

2
SµνuσRα

νσµ = 0 (1a)

while its spin moves according to

DSαβ

dτ
+ uαuρ

DSβρ

dτ
− uβuρ

DSαρ

dτ
= 0 (1b)

where D/dτ denotes a covariant derivative alonguα, Sαβ is the antisymmetric spin tensor of
the particle,m anduα are the particle’s mass and 4-velocity, respectively, andRα

νσµ is the
Riemann tensor describing the gravitational field background on which the particle moves.
In these equations the test particle is assumed so small in size and in mass that it does not
alter the gravitational background and the radiation reaction has a negligible effect on the
particle’s orbit. One can see from equation (1a) that for vanishing spin the particle moves
on a geodesic. By introducing the Pirani spin supplementary condition (SSC) [7]

Sαβuβ = 0 (2)

and the Pauli–Lubanski covariant spin vector

Sσ ≡ 1
2ερµνσ uρSµν (3)

with an inverse solutionSµν = εαβµνuαSβ , and after some simple manipulations, the
equations of motion (1) take the following form (cf [8]):

m
Duα

dτ
= −Sµuν

D2uβ

dτ 2
εαµνβ + 1

2
ελµρσRαν

λµuνuσSρ (4a)

and

εµναβuµ

DSν

dτ
= (ερναβuµ − εµνρβuα − εµναρuβ)uµSν

Duρ

dτ
. (4b)

In all the equations above,εαβγ δ is the completely antisymmetric Levi-Civita tensor. The
replacement of the tensorialSαβ by the vectorialSσ helps us to have a better understanding
of the spin precession, sinceSi , wherei = 1–3, are the components of what we have been
used to thinking of as the spin 3-vector. It is also easy to see that by construction (see
equation (3))Sα is kept orthogonal to the particle’s 4-velocityuα.

Now, in realistic situations, the magnitude of the spin for a black hole is strictly limited
to |S| 6 m2. For a neutron star its spin depends somewhat on the uncertain nuclear
equation of state. Most candidate equations of state yield an upper limit of|S| . 0.5m2 for
uniformly rotating neutron stars, see [9]. In these expressions,m is the mass of the object.
On the other hand, the orbital angular momentum of a small mass object orbiting around a
nonrotating massive black hole is

|L| = mM(r0/M)1/2(1 − 3M/r0)
−1/2 (5)

where m and M are the masses of the orbiting object and the massive black hole,
respectively, andr0 is the orbital radius that corresponds to the minimum of the effective
potential for the radial motion of the orbiting object in the Schwarzschild geometry of the
massive black hole. In other words,r0 is nearly the mean radial position of the orbiting
object around which it undergoes radial oscillations. Now, since the lowest value thatr0 can
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attain is 6M, it becomes obvious that the ratio of the spin to the orbital angular momentum
of a spinning astrophysical compact object is

|S|
|L| 6 1√

12

m

M
. (6)

This means, that for a very small ratio of massesm/M, as it is the case under consideration
since we are dealing with a test particle, the spin is very small compared to the orbital
angular momentum and thereby all the spin squared and higher terms could be omitted.
Then the equations of motion (4) simplify to

m
Duα

dτ
= 1

2ελµρσRαν
λµuνuσSρ + O(S2) (7a)

and sinceεµναβuµDSν/dτ = O(S2) ' 0, after multiplying this equation byερσαβuρ it can
be shown that

DSσ

dτ
= uσSλ

Duλ

dτ
= O(S2) ' 0. (7b)

In other words, the spin is to a good approximation parallel-transported along the particle’s
slightly nongeodesic orbit.

By specializing to the gravitational field of a Schwarzschild black hole in Schwarzschild
coordinates, equations (7) transform to

m
Dut

dτ
= −3M sinθ

r
ur(Sθuφ − Sφuθ )(1 − 2M/r)−1 (8a)

m
Dur

dτ
= −3M sinθ

r
ut (Sθuφ − Sφuθ )(1 − 2M/r) (8b)

m
Duθ

dτ
= −3M sinθ

r
uφ(Srut − Stur) (8c)

m
Duφ

dτ
= − 3M

r sinθ
uθ (Srut − Stur) (8d)

Ṡt = −M

r2
(urSt + utSr)(1 − 2M/r)−1 (8e)

Ṡr =
[
M

r2

(
− utSt + urSr

(1 − 2M/r)2

)
+ ruθSθ + r sin2 θuφSφ

]
(1 − 2M/r) (8f)

Ṡθ = −1

r
(urSθ + uθSr) + sinθ cosθuφSφ (8g)

Ṡφ = −1

r
(uφSr + urSφ) − cotθ(uφSθ + uθSφ) (8h)

where r, θ, φ are the spherical polar coordinates of the test particle,uµ is its 4-velocity,
Sr , rSθ , r sinθSφ are its polar spin components,St is its spin’s coordinate-time component
and an overdot represents ‘d/dτ ’. In equations (8) we did not write explicitly the covariant
derivatives of the particle’s 4-velocity since, as we shall show, these equations could be
very well approximated by the corresponding geodesic equations. Without any loss of
generality, let us assume that the particle is moving initially on a planar equatorial orbit
(θ = π/2, θ̇ = 0). Then equation (8d) transforms to

d|L|
dτ

= 0. (9)

Thus the orbital angular momentum is conserved in magnitude and the only spin effect on it
is a possible shift of theL direction. Now, the total angular momentumJ = L+S should
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be conserved. (This cannot be proved as an exact formula from equations (8) since they
are just an approximation, though a very useful one for our case, of the exact equations of
motion (4)). Moreover, sinceS/L � 1 (see equation (6)),L and consequently the orbital
plane hardly move. The low spin to orbital angular momentum ratio also guarantees that
the particle’s motion will hardly deviate from a geodesic, cf [11]. The only new effect, due
to the presence of the spin, will be the one connected to the motion of the spin and it will be
computed in the next section. (For further discussion on the validity of the approximations
made on equations (7) for small ratio of masses see the appendix.)

One effect that has not been taken into account in our previous discussion is radiation
reaction. The timescale for radiation reaction is

Tradiation = E

|dE/dt | ∼ M2

m

( r0

M

)5
. (10)

However, as we will show in the next section, the timescale for the spin’s motion (the
period of its precession) is given (see equation (21)), as an order of magnitude, by

Tprecess∼ Torbital

( r0

M

)
(11)

whereTorbital is the orbital period which is equal to 2πM(r0/M)3/2. Therefore

Tradiation

Tprecess
∼ M

m

( r0

M

)5/2
� 1. (12)

This means that, as long as we are dealing with a very small ratio of masses, we are free
to omit any radiation reaction effect from our calculations.

3. The solution

In this section, we attempt to derive a solution of equations (8e–h) by assuming that the
particle moves on a planar orbit, sayθ = π/2; an assumption that was justified in the
previous section. Equation (8g) then simplifies to

rSθ ≡ S‖ = constant. (13)

We have denoted this constant spin component byS‖ because it is parallel to the particle’s
orbital angular momentum which is assumed to be directed along thez-axis. Also,
equations (8a, b) simplify to

ṫ (1 − 2M/r) = a+ MLS‖
m2r3

(14a)

1

2
ṙ2 = b + x −

(
L2

2m2M2

)
x2 +

(
L2 + LS‖a

m2M2

)
x3 (14b)

where x = M/r and a, b are constants that arise from integration of the corresponding
equations. These two constants also are interrelated by

a2 − 2b = 1 (14c)

which is a consequence ofuµuµ = −1. In particular, a is of order unity, since for bound
quasi-adiabatic orbits the orbiting particle never passes very close to the black hole horizon,
but

MLS‖
m2r3

6 ML

r3
6

( m

M

) √
2

(
M

r

)5/2 ( r0

r

)1/2
� 1 (15)
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where we have taken into account the fact thatr0/r for bound orbits in a Schwarzschild
geometry cannot exceed a numerical value of order unity. It is also true that

S‖a � L (16)

therefore the two terms in equations (14a, b) that containS‖ could be omitted. One then
remains simply with the geodesic equations of motion without any spin influence on them.

Now, since the elements of the particle’s motion are given and do not depend on the
spin, it is very simple to analyse the spin motion. We shall start by considering spinning
test particles in circular orbits which turn out to admit an analytic solution for the motion
of their spin.

3.1. Circular orbits

For circular orbits, the equations of motion reduce to a simple set of equations:

r = r0 = constant θ = π/2 ṫ = a(1 − 2x0)
−1 φ̇ = L

mr2
(17)

wherex0 = M/r0. After plugging these results and the orthogonality relationuαSα into
equations (8f, h) and a few lines of algebra we obtain a simple coupled set of differential
equations:

dSr/dτ = L

mr2
0

(1 − 3x0)(rS
φ) d(rSφ)/dτ = − L

mr2
0

Sr (18)

with the obvious solution

Sr = A sin(ωτ + ϕ) rSφ = B cos(ωτ + ϕ) (19a)

where

ω = L

mr2
0

√
1 − 3x0 (19b)

and

A = B
√

1 − 3x0. (19c)

In equation (19a) ϕ is a constant phase related to initial conditions. The use of a frame of
reference not fixed to the moving particle has the disadvantage of seeing a spin contraction
along the motion of the particle and thus a nonconservation of the spin 3-vector’s magnitude.
This explains the difference between the two amplitudesA and B. By shifting to the
comoving orthonormal frame of reference, whereSt̂ ′ = 0 and S′ · S′ = constant, one
obtains a simple precessional spin motion

S′
⊥̂ ≡ S ′

x̂ + iS ′
ŷ = Bi

√
1 − 3x0

1 − 2x0
exp

[
i
(
φ

(
1 −

√
1 − 3x0

)
− ϕ

)]
(20)

whereS′
⊥̂ is the spin component perpendicular toL and φ is simply

∫
φ̇ dτ = Lτ/mr2

0,
while the spin component parallel toL, S′

‖̂ remains constant and is given by equation (13).

Then the precessional frequency of the spin is

�precess= 1

M
x

3/2
0

(
1√

1 − 3x0
− 1

)
(21)

where the magnitude ofL, given in equation (5), has been used. This result is in full
agreement with the post-Newtonian result (cf [3]) for the precessional frequency of the
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spin as long as the particle moves in an orbit not in very close to the massive black hole.
However, the two results deviate from each other for orbits in the strong-field region. This
is shown in figure 1. It is clear that the post-Newtonian approximation may offer a quite
accurate result forr0 & 30M but not for closer orbits. The dashed line in figure 1 shows
the relative error made if the post-Newtonian expression for the precessional frequency is
used instead of equation (21).

Figure 1. The two full curves show, in arbitrary units,�precessas a function of the radius of the
orbit (i) according to the post-Newtonian calculation (thin curve) and (ii) according to the exact
equation (21) (thick curve). It is clear, from the figure, that the post-Newtonian result deviates
substantially from the true one only for orbits that are very close to the massive black hole
(r0 . 30M). The dashed curve shows the percentage error made by using the post-Newtonian
approximate formula instead of the exact one, given in equation (21).

3.2. Generic bound orbits

We now extend the analysis of the previous section to include generic noncircular bound
orbits. These orbits are characterized by two frequencies, the azimuthal and the radial one.
Thus, it is expected that in this case the spin precesses in a more complicated manner; faster
near the periastron position where the field is stronger and slower near the apastron position
where the field is weaker.

The equations of motion are given now in terms of elliptic functions

x ≡ M

r
= x0 + δ− + (δ+ − δ−) sn2

(√
δ0 − δ−

2
φ

∣∣∣∣ sin−1

√
δ+ − δ−
δ0 − δ−

)
θ = π/2 ṫ = a(1 − 2x)−1 φ̇ = L

mr2
(22)

whereδ0 > δ+ > δ− are the three roots of the cubic equation 2z3 − (1 − 6x0)z
2 + x2

0(1 −
4x0) + 2x0b(1 − 3x0) = 0 that arises from equation (14b), after omitting theS‖ term,
substituting the value ofL given in equation (5), replacingx by x0 + z and settingṙ = 0.
The physical meaning of these new parameters is the following:x0 + δ± correspond to the
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value ofx when the particle is at the periastron or apastron position. Also, sn(y|m) is the
corresponding Jacobian elliptic function.

Then equations (8f, h), transform to

dSr

dφ
= (rSφ)(1 − 3x)

d(rSφ)

dφ
= −Sr . (23)

Now, x is no longer a constant, as in equation (18), but a complicated function of the
azimuthal angleφ, given in the first of equations (22). These two coupled first-order
differential equations lead to one decoupled second-order differential equation forrSφ ,

d2(rSφ)

dφ2
+ (rSφ)[1 − 3x(φ)] = 0 (24)

while the other spin component is given by

Sr = −d(rSφ)

dφ
. (25)

Equation (24) has roughly the form of Mathieu’s equation, but instead of the simple
sinusoidal term appearing in Mathieu’s equation there is a periodic elliptic function here;
see equation (22). Therefore, we can proceed analytically only for some limiting cases (for
example, when the particle orbits far away from the black hole or when its orbit is slightly
noncircular) and rather treat the general problem numerically.

3.2.1. Noncircular orbits far from the black hole.If the spinning particle moves in the
weak-field region of a black hole, or in other words whenx0 → 0, it can be shown that
δ0 = 0.5 − 3x0 + O(x2

0), δ+ = px0 + O(x2
0) and δ− = nx0 + O(x2

0), where p/n is a
positive/negative number of order unity. Hence, if we only keep terms up toO(x0), then
the x(φ) function, given in equation (22), will acquire its desirable sinusoidal form,

x = x0 − p − n

2
cos[(1 − (3 + p)x0)φ] (26)

and thus equation (24) can be brought to a Mathieu equation form,

d2P

dz2
+ (a − 2q cos 2z)P = 0 (27a)

where

P ≡ rSφ 2z = (1 − (3 + p)x0)φ

a = 4 + (12+ 8p)x0 − 2q = 6x0(p − n).
(27b)

The general solution of such an equation is

P = AFν(z) + BFν(−z) (28a)

whereFν(z) is a function that can be expanded in terms of the small parameterq [10] as

Fν(z) = c0

[
eiνz − q

(
ei(ν+2)z

4(ν + 1)
− ei(ν−2)z

4(ν − 1)

)]
+ · · · (28b)

andν is a parameter that can be expressed as an expansion of
√

a in terms of powers ofq:

ν = √
a + O(q2) + · · · . (28c)
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By substituting the values of the various parameters introduced in equation (27b) we obtain
the following solution to equation (27a) up to orderO(x0):

P = P0

[(
1 − p − n

2
x0 cos 2z

)
sin[(2 + (3 + 2p)x0)z]

+((p − n)x0 sin 2z) cos[(2 + (3 + 2p)x0)z]

]
(29)

where an extra phase that should show up in all the sinusoidal terms has been omitted
for the sake of simplicity. (A suitable choice of the initial data could make this
phase vanish.) The function appearing in equation (29) is not exactly periodic but its
successive zeros are separated by the constant1z = π − (3+ 2p)πx0/2+ O(x2

0) and thus
1φ = 2π(1 + 3x0/2 + O(x2

0)) can be considered as the period ofrSφ , which in its turn
means that the precessional frequency of the spin is

�precess= �orbit

[
3x0

2
+ O(x2

0)

]
. (30)

This result is in agreement with the post-Newtonian result of Barker and O’Connell [3].

3.2.2. Slightly noncircular orbits. In this section we examine the equation of motion for
the spin of a particle moving in a slightly noncircular orbit. The orbit, now, is parametrized
by a small parameterε which is connected to the low eccentricity of the orbit. The particle
is assumed to oscillate radially betweenr0(1 + ε) and r0(1 − ε + O(ε2)), hence the three
rootsδ0, δ+, δ− obtain the following values, up to first order with respect toε:

δ0 = 1 − 6x0

2
− εx0 + O(ε2) δ+ = εx0 + O(ε2) δ− = −εx0 + O(ε2). (31)

Then, by following the same analysis as in section 3.2.1, we end up again with a Mathieu’s
equation, up to first order with respect toε,

d2P

dz2
+

(
4

1 − 3x0

1 − 6x0
+ ε

12x0

1 − 6x0
cos 2z

)
= 0 (32)

where nowz = √
1 − 6x0φ/2. As expected, the precessional frequency of the spin is

approximately equal to the precessional frequency for a circular orbit, given in equation (21).
As is always the case, the solution of a Mathieu equation is not exactly periodic but it has
equally spaced roots. From this we find that the precessional frequency is given by

�precess= x
3/2
0

M

[
1√

1 − 3x0
− 1 + ε

x0

1 − 2x0

sin(2π
√

(1 − 6x0)/(1 − 3x0))

2π
+ O(ε2)

]
. (33)

3.2.3. General case.We now examine numerically the general solution of equation (24)
for generic eccentric orbits in the vicinity of a black hole. The precession of the spin is
no longer uniform around the axis of the angular momentum. In figure 2 we show various
plots of one of the spin components along the orbital plane as a function of the particle’s
azimuthal angleφ. The plots are parametrized by the mean distance to the black holer0

while the eccentricity has been chosen to benearly the maximum for eachr0 case. (We have
avoided the use of the maximum possible eccentricity since then, for orbits withr0 6 12M,
the orbiting particle would spend a considerable part of its time period close to the black
hole and thus the spin would precess for a long time with the fast rate that the strong field
there dictates.) In each diagram, an additional curve is shown in order to compare the spin
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Figure 2. This is a series of diagrams showing the evolution of one of the components of the
spin on the orbital plane for a highly noncircular orbit (full curves). The spin componentS′

x̂
that

is plotted here refers to an orthonormal comoving frame of reference. The sinusoidal dashed
curves show the corresponding spin component evolution for a circular orbit with the samer0.
On the right-hand side we have drawn a part of the orbit that corresponds to the parameters of
each spin plot. The innermost circle in each of these orbital diagrams corresponds to 6M.

precession for the very eccentric orbit (full curve) with the corresponding spin precession
for a circular orbit with the samer0 value (dashed curve).

From these figures the following remark can be drawn. By reducingr0, for example for
orbits that are closer and closer to the black hole, the spin precesses in a more complicated
manner and deviates more from the spin precession of circular orbits. However, then, for
very close orbits (r0 ≈ 6M) the orbits are again approximately circular and spin precession
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Figure 3. This is an illustrative example of a pulsar that comes in and out of sight because of
its spin precession. The fast oscillations shown in the diagram are due to pulsar rotation. The
envelope of these oscillations is changing because of the precessional motion of the spin. Two
thin grey strips, one at the top and one at the bottom of the diagram, correspond to magnetic
axis’ orientations that miss the direction to Earth by no more than 10◦. Therefore the pulsar
is visible from the Earth whenever the oscillating curve enters one of these grey strips. Here
the spin precessional frequency is assumed to be 1% of the pulsar frequency. The timescale
is in arbitrary units, but it covers a full spin precession. In the inset we have drawn, for
clarification, the corresponding pulsar with its orbital angular momentum oriented along the
z-axis. Its magnetic axism̂ is rotating around its spin axiŝs which in its turn is precessing
around thez-axis. The unit vector to Earth is denoted byn̂.

is very uniform and approaches the spin precession of the circular orbits that is given
analytically in equation (20).

4. Implications on observations

We have thoroughly analysed the precessional motion of the spin for any possible bound
orbit around a Schwarzschild black hole. Now, we can infer its implications for pulsars
orbiting a nonrotating massive black hole. According to equation (21) the spin axis of a
pulsar precesses around its orbital angular momentum axis with a frequency�precess(given
in equation (21)) if its orbit is circular, and with about the same�precess(give or take a
factor of two) if its orbit is eccentric. This means that in a time period less than 2π/�precess

the emission cone of a pulsar may go out of sight of the Earth and within a time period
of 2π/�precessshow up again. In figure 3 this situation is illustrated for some arbitrary
geometry. As long as the oscillating curve enters the thin grey strip on the top and/or the
bottom of the diagram the pulsar is visible from the Earth. For the rest of this time period
the pulsar is completely invisible from the Earth. The light deflection by the black hole and
the aberration effect may alter the details of the fast-oscillating curve in figure 3, but since
they are periodic effects they do not alter the secular evolution of its envelope that is due
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Figure 4. This 3D diagram shows the precessional period as a function of the orbital period
and the black hole’s mass. A few lines that correspond to points on the diagram with constant
orbital radius are drawn on the 3D surface. The larger the mass of the black hole and the closer
the orbit to the massive black hole the lower the precessional period of the pulsar’s spin and
the easier to detect the precessional effects. It should be noted that the formula used for the
precessional period is based on equation (21) which is true for circular orbits. For noncircular
orbits the time period is different but the numbers shown for theTprec are still meaningful as an
order of magnitude.

to precession.
For some special geometric configurations the pulsar may be visible from the Earth

twice in this 2π/�precesstime period. This will happen if the envelope of the oscillating
curve extends in both grey strips of the diagram; and on more physical grounds if both
pulsar’s magnetic poles come close to the direction to the Earth during the precessional
motion of the spin.

In order to get a better feeling for this time period, in figure 4 we have plotted the
period of precession for circular orbitsTprecess= 2π/�precess(in hours) as a function of the
orbital period (in hours again) and the mass of the black hole. Also the distance from the
black hole in black hole mass units is marked on the plot. From this plot it is clear that
only for binary pulsars with massive black holes and very close orbits will the precession
period be sufficiently small to see pulsars driven in and out of sight. As we have shown in
previous sections, for noncircular orbits the precessional frequency is no longer given by
equation (21), since the spin precession is no longer uniform. However, the precessional
frequency for circular orbits gives the right order of magnitude for the precessional frequency
of any orbit having the samer0 as the circular one.

5. Conclusions

In this paper we have investigated the results of a highly relativistic effect on the observations
of binary pulsars. For all the presently known binary pulsars the spin precessional effects
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are non-observable. For example the precessional period for PSR 1913+16 is of the order
of 300 years (this number is based on post-Newtonian calculations of a binary system
with comparable masses and therefore it does not agree with the result of our test body
calculations), see [12]. Only for pulsars moving in close orbits around massive black holes
will it be plausible to observe this strong-field effect. Even though the precessional effects
may show up in ordinary neutron star–neutron star binaries, they are very tiny and difficult
to draw conclusions from since the spins precess very slowly and they might interfere with
other effects like radiation reaction or internal changes of the pulsar’s emission mechanism.
Thus only pulsars with massive black holes as companions (see figure 4) could be accurately
timed for measuring their spin-induced precessional effects. For example, a pulsar orbiting
a nonrotating 106M� in the centre of our Galaxy, in a circular orbit ofr0 = 100M, will
have an orbital period of∼ 8.6 h and a precessional period of∼ 580 h. This means that
once every 24 d (or 12 d for some special geometries) the pulsar could be observable from
Earth for some time and then unobservable for the rest of time. Such observations could
be cross checked with measurements from space-based gravitational-wave detectors such as
LISA which is expected to be able to ‘hear’ the gravitational waves emitted from such a
source. As we have shown in section 2, the presence of spin will hardly make the pulsar’s
orbit precess, thereby leading to gravitational waveforms without the complications of the
spin-induced wave modulation considered in [4].

In the future we plan to extend our analysis to spinning test particles orbiting a massive
rotating black hole.
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Appendix. On the validity of the Papapetrou equations for massive spinning objects

Our whole analysis of the problem of spinning objects in the gravitational field of a
nonrotating black hole has been based on the assumption that the spinning object has a
far lower mass than the black hole. This allowed us to ommit essentially all the spin terms
on the right-hand side of equations (7) and remain with the geodesic equations for the test
particle and the equations of parallel transport for its spin. The question that arises then
is whether we have the right to omit these terms in the case of comparable masses. The
answer is, of course, no, but in that case the Papapetrou equations would not be valid in
the first place. If the masses of the spinning object and the black hole were comparable, we
could not assume that the spinning object is moving on the fixed gravitational background
of the black hole, an assumption on which the Papapetrou equations have been based.

In this appendix we show that the errors on the equation of motion of a spinning object
that are due to the assumption of a fixed gravitational background because of a low mass
ratio are of higher order than the ones made by omitting the spin terms on the right-hand
side of equation (7a) for the same low ratio of masses. Our proof will be based on the
post-Newtonian equations of motion for a binary with a low ratio of masses with one of
the bodies, in our case the less massive one, spinning.

Following the ordering of Will [13] for the post-Newtonian expansion terms of the
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relative accelaration between the bodies we obtain

a = −M
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r2

[
n̂

(
− 4

M

r
+ v2

)
− 4ṙv
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]
+ m

M

M2α

r3
[6n̂[(n̂ × v) · Ŝ] − 3v × Ŝ + 3ṙ(n̂ × Ŝ)] + · · · (34)

whereM andm are the masses of the black hole and the spinning body, respectively,Ŝ is the
unit vector along the spin of the less massive body,α is the spin parameter (α = S/m2 6 1
for realistic astrophysical compact bodies),r is the distance between the two bodies,n̂ is the
unit vector alongr, v is the relative orbital velocity of the bodies andv its magnitude, and
an overdot represents ‘d/dτ ’. All the higher post-Newtonian terms and corrections ofm/M

have been omitted. Though a truncated post-Newtonian expansion, equation (34) is a good
guide to check the relative importance of the mass ratio on the deviation of the orbit due to
the motion of the massive companion (third term in the post-Newtonian expansion) and due
to the spin–orbit term (fourth term in the expansion), from the orbit on a fixed background
(first two terms in the expansion). It is obvious that the spin term is half a post-Newtonian
order (∼ v) higher than them/M correction on the acceleration in the absence of spin.

Although a post-Newtonian expansion is a good approximation only for weak-field
low-velocity situations, we have no reason to believe that the relative strength between the
two m/M terms will be much different in the strong-field high-velocity region. Thus our
omission of the spin terms in equations (7) is justified under the assumption of extremely
low mass ratios. For comparable masses the Papapetrou equation is not adequate and it
should be replaced by the complete Einstein equation for the two-body problem.
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