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Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their
moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q
relations), independently of the equation of state of the compact object. In the present Letter a similar, more
general, universality is shown to hold true for all rotating neutron stars within general relativity; the first
four multipole moments of the neutron star are related in a way independent of the nuclear matter equation
of state we assume. By exploiting this relation, we can describe quite accurately the geometry around
a neutron star with fewer parameters, even if we don’t know precisely the equation of state. Furthermore,
this universal behavior displayed by neutron stars could promote them to a more promising class of
candidates (next to black holes) for testing theories of gravity.

DOI: PACS numbers: 97.60.Jd, 04.25.D-, 26.60.Kp, 95.30.Sf

Introduction.—Neutron stars (NSs) constitute a class of
the most interesting laboratories for studying extreme phys-
ics in nature. The physical processes taking place in these
astrophysical objects involve on the one hand strong gravity
effects, second only to the inexorable gravitational effects
of astrophysical black holes (BHs), and on the other hand
microscopic effects that are related to the properties ofmatter
in densities that exceed nuclear density. Consequently, NSs
offer a valuable tool for broadening our understanding of
gravity, by testing the predictions of the established theory of
general relativity (GR) or alternative theories of gravity, as
well as our understanding of the microphysics ruling matter
at densities as high as those found at the centre of NSs. This
effort can be hindered by the complexities of the micro-
physics that enters the description of NSs and the way these
complexities propagate to the gravitational aspects of the
problem.Thus understandingNSs structure and gravitational
field is of paramount importance.
Recently, it was shown in [1] that for slowly rotating

NSs there exist some interesting and unexpected universal
relations between the normalized moment of inertia
Ī ≡ I=M3, the normalized quadrupole Q̄≡Q=ðM3j2Þ
(where M is the mass, j≡ J=M2 is the spin parameter,
and J is the angular momentum), and the normalized Love
number λ̄≡ λ=M5, that is, relations that are independent of
the specific equation of state (EOS) assumed to describe the
NS matter. It was argued that one could use these universal
relations in the gravitational wave analysis of NS/BH or
NS/NS binary inspirals to break the degeneracy, showing
up at 2PN order, between the quadrupole moment and the
spin-spin interaction terms of the two bodies, and thus

measure the properties of each member individually.
Moreover, it was argued that these relations could be used
to perform tests of the theory of gravity (i.e., to distinguish
between NSs in different theories of gravity and NSs within
GR), since any EOS uncertainties and their subsequent
gravitational effects could be eliminated.
However, it was shown in [2], that these relations do not

hold for rapidly rotating NSs, where the rotation was
parametrized with the rotation frequency of the NS.
Even for moderate rotation rates, i.e., rotation frequencies
above a few hundred Hz, deviations from the universal
relation of [1] between the normalized quadrupole and the
normalized moment of inertia (Ī − Q̄ relation) start show-
ing up. Therefore, a frequency dependence is introduced
beyond the slow-rotation approximation. This dependence
is weaker as one approaches the maximum mass limit
for NSs, since then NSs behave more like black holes. The
loss of universality at large rotation rates though, does not
lessen its significance, since NSs involved in inspiraling
binaries are not expected to rotate really fast [3]. The effects
of magnetic fields have also been explored in [4].
While studying the relativistic multipole moments of

compact objects [5] in order to use them as parameters to
construct analytic spacetimes that are mimicking the
geometry around such objects [6], we found an unexpected
universal connection between the first four relativistic
multipole moments, that was independent of which realistic
EOS was used to construct the NS models. Namely, the
values of the reduced parameters, j,

ffiffiffiffiffiffi−qp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q=M3

p
,

and
ffiffiffiffiffiffiffiffi−s33

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−S3=M43
p

, whereQ is the quadrupole and S3
is the spin octupole of the Geroch-Hansen moments [7,8],
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were found to lie on a single, almost planar, surface
independent of the EOS. This is analogous to the reduced
moments of Kerr black holes which lie on a line. Effectively
this universality could be considered as a “no hair” property
of neutron stars, resembling that of black holes.
The significance of this result has two aspects. On the

one hand, the observed behavior implies that the extra
degrees of freedom that are encoded in realistic EOSs
(realistic EOSs can be described as piecewise polytropes
with several parameters varying from the one EOS to the
other) are irrelevant to the relations between the multipole
moments. Thus one could obtain a simple description of
the spacetime around NSs and its stationary properties,
independently of the details of the EOS. Furthermore, the
relations between the moments could be used to extract
information from astrophysical systems in the gravita-
tional-wave window, as it is elaborated in [1], as well as
in the electromagnetic window, where the moments are the
parameters to be extracted from the observations (see, for
example, [9–12]).
On the other hand, this behavior of NSs in GR offers,

at least in principle, the possibility of new tests of gravity.
One possible avenue of exploration could be to attempt an
observational verification of this behavior of NSs, although
such an endeavor will be really challenging. Another
aspect, worth exploring, is whether NSs in alternative
theories of gravity display similar behavior. That, if nothing
else, would be an interesting theoretical investigation in
the properties of alternative theories (some first results
have been produced in Chern-Simons [1] and in Eddington-
inspired Born-Infeld [13] gravity). However, it should be
emphasized that any comparison between GR and alter-
native theories of gravity should be preceded by a careful
construction of appropriate corresponding quantities in
other theories.
Finally, we should note that when a scale, such as the

mass or the rotational frequency of the star, is introduced in
the description, the universality of the reduced moments
between different EOSs breaks and individual EOSs can be
discerned.
The rest of this Letter is organized as follows. First, we

present the setup of our analysis and briefly discuss some
aspects of the Newtonian theory to gain some insight on
the behavior of the moments. Then we present our results
regarding the universal behavior, followed by a comparison
with the previously established I-Love-Q universality. We
conclude with a short discussion on how one can break the
degeneracy between the different EOSs.
Numerical models and the parameter space.—For our

analysis we have constructed NS models using the RNS
numerical code of [14]. For these models we computed the
multipole moments according to the prescription presented
in [5] (some first results for the moments of NSs have been
presented in [15]). The EOSs that we have used [16–23] to
construct the NS models are presented in Table I of [30].

Apart from the nuclear matter EOSs, we have also used
the two proposed EOSs in [24] as inferred by Bayesian
analysis from astrophysical observations of type I x-ray
bursters with photospheric radius expansion and from
thermal emission from quiescent low-mass x-ray binaries.
We will generally refer to all these EOSs as “the realistic”
EOSs. For our analysis we have used models from a
little less than 1M⊙, up to the maximum stable mass for
each EOS. The masses are expressed in geometric
units (1M⊙ ¼ 1.477 km).
For each of these models (see details in [30]) we obtain

a multitude of physical parameters, among which are the
first nonzero multipole moments, i.e., the mass M, the
angular momentum J, the mass quadrupoleQ, and the spin
octupole S3. As shown in [5,25], the higher reduced
moments scale with some appropriate power of the spin
parameter j, i.e.,

q ¼ −aðM;EOSÞj2; (1)

s3 ¼ −βðM;EOSÞj3; (2)

where the coefficients a and β depend in general on the
mass of the NS and the EOS. Here, we will consider the
three dimensional parameter space of j,

ffiffiffi
a

p ≡ ffiffiffiffiffiffi−qp
=j,

and
ffiffiffi
β3

p ≡ ffiffiffiffiffiffiffiffi−s33
p

=j.
We should note at this point that, as it was shown in [6],

by using the two-soliton analytic spacetime [26], the first
four nonzero moments are capable of producing an accurate
description of the spacetime exterior of NSs, while the
first moments could in principle be measured by using for
example quasiperiodic oscillations as probes of the geom-
etry around NSs [9], or other methods [10–12]. Therefore
these four moments constitute in practice all the necessary
information for the description of the spacetime around aNS
andare in principle accessible by astrophysical observations.
Before presenting our results, it would be useful if we

could gain some insight into what to expect. For slowly
rotating Newtonian polytropes [including deformations of
OðΩ2Þ] one can show that the multipole moments scale as

J ∝ ρð5−3nÞ=2nc Ω⋆ ⇒ j ∝ ρð−1−nÞ=2nc Ω⋆ ∝ ρ−1=2nc

�
Ω⋆
ΩK

�
; (3)

Q ∝ ρ½5ð1−nÞ�=2nc Ω2⋆ ⇒ q ∝ ρð−2−nÞ=nc Ω2⋆ ∝ ρ−2=nc

�
Ω⋆
ΩK

�
2

;

(4)

S3 ∝ ρ½7ð1−nÞ�=2nc Ω3⋆ ⇒ s3 ∝ ρð−5−3nÞ=2nc Ω3⋆ ∝ ρ−5=2nc

�
Ω⋆
ΩK

�
3

;

(5)

where ρc and Ω⋆ are the central density and the rotation
frequency of the star, respectively, n is the polytropic index
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of the polytrope, P ¼ Kρ1þ1=n, and ΩK is the Kepler
frequency, which is ΩK ∝ ρ1=2c (we should also note that

M ∝ ρð3−nÞ=2nc and R ∝ ρð1−nÞ=2nc , and that all these relations
hold also for GR polytropes, see [27]). From these exp-
ressions we can see that the parameters

ffiffiffi
β3

p
and

ffiffiffi
a

p
of

Eqs. (1) and (2) (these equations are valid for slow rotation,
as one can infer from the above formulas) can be related
as follows:

ffiffiffi
a

p ¼ ffiffiffiffiffiffi−qp
=j ∝ ρ−1=2ncffiffiffi

β3
p ¼ ffiffiffiffiffiffiffiffi−s33

p
=j ∝ ρ−1=3nc

�
⇒

ffiffiffi
β3

p
∝ ð ffiffiffi

a
p Þ2=3. (6)

We will use this Newtonian behavior as a guide to analyze
the behavior of NSs in GR. Namely, we will seek a relation
between the parameters

ffiffiffi
a

p
, and

ffiffiffi
β3

p
in GR of the formffiffiffi

β3
p ¼ Bð ffiffiffi

a
p Þν; if we had taken the Newtonian result at

face value we would have ν ¼ 2=3, while B would depend
on the EOS.
Universal behavior.—The question arising now is, what

is the behavior of the moments for the realistic EOSs in
GR and do different EOSs display different behavior?
Surprisingly, the answer is that all realistic EOSs behave
as a single polytropelike EOS with respect to the relations
between the multipole moments, forming a very well-
defined surface in the parameter space of (j,

ffiffiffi
a

p
,

ffiffiffi
β3

p
).

This surface is shown in Fig. 1. The central density of the
NS models increases as

ffiffiffi
a

p
decreases. The right edge of

the surface approaches the line of
ffiffiffi
a

p ¼ ffiffiffi
β3

p ¼ 1, which
corresponds to Kerr black holes. Notice that

ffiffiffi
β3

p
appears to

have almost no dependence on j; thus it can be fitted very
well with a function of the form

ffiffiffi
β3

p
¼ Bð ffiffiffi

a
p Þν; (7)

with fitting parameters, B ¼ 1.17, and ν ¼ 0.74. A better
fit can be obtained if we choose the function,ffiffiffi
β3

p ¼ Aþ Bð ffiffiffi
a

p Þν, with fitting parameters, A ¼ −0.36,
B ¼ 1.48, and ν ¼ 0.65, which is surprisingly close to 2=3.
An even more accurate fit (better than 2%) is also given in
[30]. This accuracy is indicative of how well all NS models
fall on a surface.

The fact that all the models seem to fall on the same
surface is intriguing and suggests that the moments, and
more specifically the parameters a and β of Eqs. (1) and (2),
depend on only two parameters (rotation and central
density) without any significant dependence on any other
EOS related parameter. Otherwise, the models would not
occupy a surface and would be more scattered in 3D.
The explanation of why different EOSs work the same

way with respect to the relations between the reduced
moments can be implied by the discussion of the moments
of Newtonian polytropes. The coefficients that have been
omitted in the expressions (3)–(5), which make them exact
equations, depend on the particular EOS; in the Newtonian
polytropic case, the coefficients depend on the constant K
of the polytropic equation, the polytropic index n, and
the radial profile of the specific Lane-Emden function.
Actually, K does not enter at all in the reduced quantities j,
q, and s3, since it has been scaled out by their definition as
dimensionless quantities. The remaining characteristics of a
specific EOS are anticipated to introduce a dependence of
the parameter B in Eq. (7) on the EOS. This dependence
should be carried over from the Newtonian theory to GR.
But then, why do different realistic EOSs lead to the same B
parameter? One could possibly suspect that there is a
conspiracy in the calculation of B so as to end up having the
same value regardless of the EOS. Alternatively, the answer
could be simply that all realistic EOSs behave as a single
quasipolytropic EOS, with respect to moment determina-
tion. Next, we will explain why we believe that the latter
explanation is the right one.
Most nuclear matter EOSs behave as if they have an

effective polytropic index n which is close to 1 (see, for
example, [28]), a property exhibited by an almost indif-
ference of the radius of the star to its central density
(see Fig. 1 in [30]).
In order to test our hypothesis that the observed behavior

is due to the fact that all realistic EOSs behave more or
less as a single quasipolytrope, we constructed families of
rotating fluid spheres with various polytropic indices and
plotted these models in the same parameter space.
The result is that all the polytropic models form surfaces,

similar to that formed by realistic EOSs, which are distinct
for every n and are described by a relation between

ffiffiffi
β3

p
andffiffiffi

a
p

that is almost independent of j and can be given in the
form of Eq. (7). In Fig. 2(a), we show the best fit curves for
the polytropes, which are essentially the projections of the
surfaces they form, on the j ¼ 0 plane (the parameters for
these curves are given in Table II in [30]). Figure 2(b)
shows the relative difference between the surfaces of the
polytropic EOSs and the surface of the realistic models.
From this plot one can see that the surfaces of the various
polytropes are indeed distinct and do not intersect with
each other.
Of course, a particular polytrope is expected to form a

surface in the j,
ffiffiffi
a

p
,

ffiffiffi
β3

p
) space, since polytropic solutions

0.2

0.4
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FIG. 1. Plot of the surface formed by all the models constructed
using realistic EOSs. All the models fall on one very well-defined
surface.
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depend on two parameters, central density and rotation.
Also the multipole moments of all polytropes follow
relations of the form (1) and (2), just as the realistic
EOS models do. This is a consequence of the fact that bothffiffiffi
β3

p
and

ffiffiffi
a

p
are almost independent of j. This behavior was

not anticipated in GR, since this is not the case at least in
Newtonian theory of rapidly rotating stars of uniform
density, as it is noted in [25]. One could conclude that,
from that point of view, the GR rotating fluid spheres
essentially behave as slowly rotating Newtonian fluid
spheres [including deformations OðΩ2Þ]. This behavior
has also been noted in [29], where it was found that when
comparing GR and Newtonian polytropic models with
n < 2.5 (for models of equal angular velocity and central
rest mass density), the relativistic models are more spheri-
cal. Additionally, since each polytrope falls on a distinct
surface (Fig. 2), the determinationof themultipolemoments,
or to be more specific, of the coefficients a and β, can
distinguish different polytropic EOSs.
The comparison of the realistic EOSs against the poly-

tropes in Fig. 2 suggests that the former ones behave, with
respect to their multipole moments, very much like a
polytrope with an index n≃ 1. More precisely, there seems
to be a monotonic variation of realistic EOSs’ behavior
between n ∼ 0.5 for high density models, which behave
more like fluid spheres of uniform density (these models
have multipole moments close to the moments of Kerr
black holes and are more compact), and n ∼ 1 for lower
density models. If we had included in our analysis very low

mass models with very low central densities, then these
models would tend towards the n ∼ 1.5 curve, correspond-
ing to NSs with EOSs closer to that of nonrelativistic
degenerate neutrons, with larger radii and larger multipole
moments. Furthermore, the rapidly rotating stars of low
mass, being less compact, are expected to be less relativistic
and therefore behave less like their slowly rotating
Newtonian counterparts and more like rapidly rotating
Newtonian stars (we have seen indications of that behavior
in some models of very low masses).
To summarize, one could say that the observed universal

behavior shows up because, on the one hand, all the realistic
EOSs behave as the same quasipolytrope, with an effective
polytropic index a little lower than 1, and on the other hand,
the NSs within GR, even when they are rapidly rotating,
behave as slowly rotating Newtonian fluid spheres.
Connection to I-Love-Q.—At this point we would also

like to explore a possible connection of our results with
those in [1] and [2]. Thus we plotted all our NS models in
the parameter space of (j,

ffiffiffi
a

p
,

ffiffī
I

p
), where a is by definition

the Q̄ of [1,2]) and Ī ≡ I=M3 (I is the moment of inertia
of the star). This is similar to the parameter space used in
[2], i.e., the parameter space of (f, Q̄, Ī), where f is the
rotation frequency of the NS, though not exactly equiv-
alent. Again all NSs form a single surface independent of
the EOS. A plot of this surface is depicted in Fig. 6 in [30].
The surface has some non-negligible dependence on the
spin parameter j, so we have attempted to fit it using a
simple polynomial function of the form

ffiffī
I

p
¼ A1 þ A2ð

ffiffiffi
a

p
− ξ0Þ þ A3ð

ffiffiffi
a

p
− ξ0Þ2; (8)

where, A2 ¼ B1 þ B2jþ B3j2, A3 ¼ C1 þ C2jþ C3j2,
and ξ0 is a constant. The best fitting values for the para-
meters are A1 ¼ 2.16, ξ0 ¼ 1.13, B1 ¼ 0.97, B2 ¼ −0.14,
B3 ¼ 1.60, C1 ¼ 0.09, C2 ¼ 0.23, and C3 ¼ −0.54. With
these parameters the fit is better than 1%. Our results are
equivalent to those in [2], although the use of different
parameters makes them seem different. Essentially the plots
in [2] are cross sections of our surface with surfaces of
f ¼ const (which are not identical to the planes j ¼ const).
The change from the picture given in [2] to our picture,
when passing from f to j (both used as measures of the
rotation), is the very reason for bringing the relation between
Ī and Q̄ into a very precise universal form, that is EOS
invariant. A comparison between our fit and previous results
at zero rotation is given in Fig. 7 in [30].
Thus, the universal relation between the moments of NSs

translates to a generalized Ī − Q̄ invariance that holds for
arbitrary rotation.
Breaking the degeneracy.—The universal relations pre-

sented in the previous paragraphs should not be mistakenly
regarded as a conclusion that the specific EOS used to
describe the interior of a neutron star is irrelevant to the
structure and the physical properties of the star in general; it
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FIG. 2. Plot (a) is the projection on j ¼ 0 of the best fit surfaces
for the realistic EOSs and the polytropic EOSs. Plot (b) is the
relative difference percent of the polytropic best fit surfaces from
the realistic EOSs best fit surface.
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is well established that different EOSs result in different
masses and radii. The relations so far described, are referred
to the reduced moments, not the moments themselves,
where the principal scale, the mass M, has been factored
out. Thus, the introduction of a scale to our description
would make the degeneracy between different EOSs
disappear. A choice for such a scale could be either the
mass or the rotation frequency f of the NS.
Indeed, a plot of the models in the parameter space

(M, j,
ffiffiffi
a

p
) and (j, f=j,

ffiffiffi
a

p
) shows that different EOSs

correspond to different surfaces. This can be seen in Fig. 3
where we have plotted for example the surfaces for the
EOSs L, APR, and A (see [30]). These surfaces can be
fitted using a function of the form,ffiffiffi

a
p ¼ A1 þ A2ðξ − ξ0Þ þ A3ðξ − ξ0Þ2; (9)

where, A2 ¼ B1 þ B2j, A3 ¼ C1 þ C2j, j is the spin
parameter, ξ0 is a constant, and ξ can be either the ratio
of the frequency to the spin parameter f=j in kHz or the
mass M in km. The results of these fits are shown in
Tables III and IV in [30].
Thus one could use the breaking of the degeneracy

between the various EOSs by the mass or the rotation
frequency in order to probe the properties of nuclear matter
inside NSs. Specifically, a measurement of the first three
moments of a NS (for example, see [9–12]), could constrain
the NS’s EOS.
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