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ABSTRACT
We have tested the appropriateness of two-soliton analytic metric to describe the exterior of all
types of neutron stars, no matter what their equation of state or rotation rate is. The particular
analytic solution of the vacuum Einstein equations proved quite adjustable to mimic the metric
functions of all numerically constructed neutron star models that we used as a testbed. The
neutron star models covered a wide range of stiffness, with regard to the equation of state
of their interior, and all rotation rates up to the maximum possible rotation rate allowed for
each such star. Apart from the metric functions themselves, we have compared the radius of
the innermost stable circular orbit RISCO, the orbital frequency � ≡ dφ

dt
of circular geodesics,

and their epicyclic frequencies �ρ , �z, as well as the change of the energy of circular orbits
per logarithmic change of orbital frequency �Ẽ. All these quantities, calculated by means of
the two-soliton analytic metric, fitted with good accuracy the corresponding numerical ones
as in previous analogous comparisons (although previous attempts were restricted to neutron
star models with either high or low rotation rates). We believe that this particular analytic
solution could be considered as an analytic faithful representation of the gravitation field of
any rotating neutron star with such accuracy, that one could explore the interior structure of a
neutron star by using this space–time to interpret observations of astrophysical processes that
take place around it.

Key words: accretion, accretion discs – equation of state – gravitation – relativistic pro-
cesses – methods: analytical – stars: neutron.

1 IN T RO D U C T I O N

The amount and accuracy of modern observations in various parts
of the electromagnetic spectrum have increased dramatically. In
order to give astrophysically plausible explanations of the various
problems related to the observations we have to rely on theoretical
assumptions that are at least as accurate as the data we are trying to
analyse. There is a large class of observations (see e.g. van der Klis
2006) that is related to the astrophysical environment of compact
relativistic objects (active galactic nuclei, Low Mass X-ray Binaries,
etc). Furthermore, the anticipated successful gravitational wave de-
tection will open a new window to observe such objects. In order
to understand these phenomena, one has to have a sufficiently ac-
curate analytic description of the space–time around such compact
objects. If the central object is a black hole, there is a unique choice
in the framework of general relativity: the Kerr space–time. On the
other hand, the geometry around a rotating neutron star is much
more complicated, since it depends on many parameters related to
the internal structure of the neutron star and the way it rotates.

� E-mail: gpappas@phys.uoa.gr

The assumption that the geometry around such an object is ap-
proximately that of a Schwarzschild, or a Kerr metric (see e.g. van
der Klis 2006) is very simplistic and it may lead to erroneous con-
clusions about the actual astrophysical processes that take place in
the close neighbourhood of the star itself (cf. Pachón, Rueda &
Valenzuela-Toledo 2012; Pappas 2012).

One can alternatively rely on numerical codes that are able to
describe the geometry around a realistic neutron star in a tabular
form on a given grid with sufficiently high accuracy. There are
various groups (see Stergioulas & Friedman 1995, and for an ex-
tended list of numerical schemes see Stergioulas 2003), which have
acquired expertise in building relativistic models of astrophysical
objects with adjustable physical characteristics and constructing the
metric inside and outside such objects by solving numerically the
full Einstein equations in stationary, axisymmetric cases.

Although studying astrophysical phenomena in a geometric back-
ground that has been constructed numerically is plausible, there are
certain drawbacks in using such metrics. (i) Computing various
physical quantities of a system, like the orbital frequencies, or the
innermost circular orbit, from a metric that is given in a tabular
form is not very practical and is often plagued by numerical errors.
(ii) Astrophysical observations from the environment of a compact
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object could be used to read the physical parameters that are related
to the structure of the compact object such as its mass, its equation
of state (EOS), its rotation, or to obtain the law of its differential
rotation, etc. This would be very difficult to achieve with a met-
ric that is numerically constructed. Solving the inverse problem by
means of a numerical metric is a blind process that cannot be eas-
ily led by physical insight. Instead, an analytic expression for the
corresponding space–time would be much more preferable.

There are various analytic metrics that have been used in the past
to describe the exterior geometry of a neutron star. As mentioned
above, the Schwarzschild metric is not accurate enough for rotating
neutron stars, while the Kerr metric is good only for a collapsed
object (a black hole) but it fails to describe the exterior of a neutron
star, as comparisons of Kerr with numerical geometries of rotating
neutron stars by Berti & Stergioulas (2004) have shown.

The Hartle–Thorne metric of Hartle & Thorne (1968), which has
been constructed as an approximate solution of the vacuum Ein-
stein equations (VEE) for the exterior of a slowly rotating star, has
been extensively used by various authors to describe neutron stars
of low rotation rate (see e.g. Berti et al. 2005). Finally, various other
analytic solutions of VEE have been constructed and some of them
have been used, especially during the last decade, to describe the
exterior geometries of neutron stars (see Stute & Camenzind 2002;
Berti & Stergioulas 2004; Pachón, Rueda & Sanabria-Gómez 2006;
Pappas 2009; Teichmüller, Fröb & Maucher 2011). Such solutions
are based on the formalism developed by Ernst (1968a,b) which
reformulates Einstein equations in the case of axisymmetric, sta-
tionary space–times. Manko et al. and Sibgatullin (see the papers of
Sibgatulin 1991; Manko & Sibgatulin 1993; Manko, Martin & Ruiz
1995b; Ruiz, Manko & Martin 1995; Manko, Mielke & Sanabria-
Gómez 2000) have used various analytic methods to produce such
space–times parametrized by various parameters that have different
physical context depending on the type of each solution.

Such an analytic solution, with its parameters appropriately ad-
justed to match numerical models of neutron stars, could then be
used to describe the stationary properties of the space–time around
the neutron star itself; that is, study the geodesics in the exterior
of the neutron star. More specifically, from the analytic solution
we could obtain bounds of motion for test particles orbiting the
neutron star, find the location of the innermost stable circular or-
bit (ISCO), compute the orbital frequency of the circular orbits on
the equatorial plane as well as the epicyclic frequencies around it
and perform any sort of dynamical analysis on the geodesics (see
e.g. Lukes-Gerakopoulos 2012). These properties of the space–time
could be used to study quantitatively astrophysical phenomena that
take place in the vicinity of neutron stars, such as accretion discs.
Inversely, one could use the astrophysical observations related to
such phenomena to determine the parameters describing the ana-
lytic space–time and from that acquire information for the central
object.

The central issue with analytic metrics is whether one can find
solutions that are able to describe with sufficient faithfulness all
kinds of rotating neutron stars; either slowly or rapidly rotating
ones, or even differentially rotating ones.

One solution that has been recently used by Stute & Camenzind
(2002) and later by Berti & Stergioulas (2004) to describe the ex-
terior space–time of rotating neutron stars is the three-parameter
solution of Manko et al. (2000) (also mentioned as Manko et al.).
Although this solution was shown to match quite well the space–
time of highly rotating neutron stars, it failed to match the slowly
rotating ones. The reason for failing to describe slow rotation is that
in the zero angular momentum limit, this particular solution has a

non-vanishing quadrupole moment, while one would expect slowly
rotating neutron stars to be approximately spherically symmetric.
This problem of the Manko et al. solution was not considered dis-
appointing by Berti and Stergioulas, since the space–time around
slowly rotating stars could be described equally well by the Hartle–
Thorne approximation.

The three-parameter solution of Manko et al. is a special case of
the so-called two-soliton solution, which was constructed by Manko
et al. (1995b). The two-soliton is a four-parameter analytic metric
which, contrary to the previous one, can be continuously reduced
to a Scwarzschild or a Kerr metric while it does not suffer from the
problematic constraints of the Manko et al. solution with respect
to the anomalous behaviour of its quadrupole moment. Actually,
the first four multiple moments of the two-soliton solution can
be freely chosen. Of course, the analytic form of the two-soliton
solution is not as compact as the Manko et al. solution, but this
is the price one has to pay in order to cover the whole range of
the physical parameters of a neutron star with a single analytic
metric.

In this work, which constitutes the extension and completion of
preliminary results presented by Pappas (2009), that were suitably
corrected with respect to the right extraction of the multipole mo-
ments of the numerical space–time as was recently demonstrated by
Pappas & Apostolatos (2012), we are using this two-soliton solu-
tion to describe the space–time around a wide range of numerically
constructed rotating neutron stars. We use the numerical multipole
moments to set the multipole moments of the analytic space–time.
Then we examine how well the two metrics match each other. More-
over, we have performed comparisons between astrophysically rel-
evant geometric quantities produced from the numerical and the
analytic space–times, like the position of the ISCO, the orbital
frequencies, the epicyclic frequencies that are related to slightly
non-circular and slightly non-equatorial orbits and the change of
energy of the circular orbits per logarithmic change of the orbital
frequency, �Ẽ. The overall picture is that the new metric matches
the numerical one with excellent accuracy for all rotation rates and
all (EOSs).

The rest of the paper is organized as follows. In Section 2, the
proposed analytic solution (two-soliton) is briefly presented and
some of its properties are thoroughly analysed. The parameter space
of the two-soliton is investigated and it is shown how to obtain the
limiting cases of Schwarzschild, Kerr and Manko et al. A brief
discussion of the physical properties of the space–time such as
the presence of singularities, horizons, ergoregions and regions of
closed time-like curves (CTCs) is also given. In Section 3, we
show how we match the analytic two-soliton solution to a specific
numerical one by matching the first four multipole moments and
show why this is generally the best choice. In Section 4, we discuss
various criteria that could be used to compare the two metrics.
Finally, in Section 5 the final comparison criteria and the results of
the corresponding comparisons are presented. In Section 6, we give
an overview of the conclusions obtained by our study.

2 T H E T WO - S O L I TO N SO L U T I O N

The vacuum region of a stationary and axially symmetric space–
time can be described by the Papapetrou line element, which was
first used by Papapetrou (1953),

ds2 = −f (dt − ω dφ)2 + f −1
[
e2γ

(
dρ2 + dz2

) + ρ2dφ2
]
, (1)

where f, ω and γ are functions of the Weyl–Papapetrou coordinates
(ρ, z). By introducing the complex potential E(ρ, z) = f (ρ, z) +
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ıψ(ρ, z), Ernst (1968a) reformulated the Einstein field equations
for this type of space–times in a concise complex equation

(Re(E))∇2E = ∇E · ∇E . (2)

The real part of the Ernst potential E is the metric function f,
which is also the norm of the time-like Killing vector tμ related to
the stationarity of the metric, while ψ is a scalar potential related
to the twist of the vector tμ, according to the formula, ∇aψ =
εabcd tb∇ctd.

A general procedure for generating solutions of the Ernst equa-
tions was developed by Sibgatulin (1991), Manko & Sibgatulin
(1993), Ruiz et al. (1995) and Manko et al. (1995b). Each solution
of the Ernst equation is produced from a choice of the Ernst po-
tential along the axis of symmetry of the metric in the form of a
rational function

E(ρ = 0, z) = e(z) = P (z)

R(z)
, (3)

where P(z), R(z) are polynomials of z of the order of n (where
n is a natural number) with complex coefficients in general. The
algorithm developed by Ruiz et al. (1995) works as follows. First,
the Ernst potential along the axis is expressed in the form

e(z) = 1 +
n∑

k=1

ek

z − βk

, (4)

where βk are the roots of the polynomial R(z) and ek are complex
coefficients appropriately chosen so that the latter form of e(z)
(equation 4) is equal to the former one (equation 3). Subsequently,
one determines the 2n roots of equation

e(z) + e∗(z) = 0, (5)

where ∗ denotes complex conjugation. These roots are denoted as
ξ k, with k = 1, 2, . . . , 2n and from these one defines the 2n complex
functions Rk =

√
ρ2 + (z − ξk)2. All these functions and roots are

then used as building blocks for the following determinants:

E± =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

±1

...

±1

C

0

...

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6)

G =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 R1 + ξ1 − z · · · R2n + ξ2n − z

−1

...

−1

C

0

...

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z 1 · · · 1

−β1

...

−βn

C

e∗
1

...

e∗
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (8)

K0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
ξ1−β1

· · · 1
ξ2n−β1

...
. . .

...
1

ξ1−βn
· · · 1

ξ2n−βn

e∗
1

ξ1−β∗
1

· · · e∗
1

ξ2n−β∗
1

...
. . .

...

e∗
n

ξ1−β∗
n

· · · e∗
n

ξ2n−β∗
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (9)

where C is the 2n × 2n matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R1
ξ1−β1

· · · R2n

ξ2n−β1

...
. . .

...
R1

ξ1−βn
· · · R2n

ξ2n−βn

e∗
1

ξ1−β∗
1

· · · e∗
1

ξ2n−β∗
1

...
. . .

...

e∗
n

ξ1−β∗
n

· · · e∗
n

ξ2n−β∗
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The Ernst potential and the metric functions are finally expressed
in terms of the determinants given above as

E(ρ, z) = E+
E−

, (11)

f (ρ, z) = E+E∗
− + E∗

+E−
2E−E∗−

, (12)

e2γ (ρ,z) = E+E∗
− + E∗

+E−
2K0K

∗
0

∏2n
k=1 Rk

, (13)

ω(ρ, z) = 2 � [
E−H ∗ − E∗

−G
]

E+E∗− + E∗+E−
. (14)

We should note that due to the form of the metric functions, the
parameters ek and their complex conjugates e∗

k that appear in the
determinants cancel out (the

∏n
k=1 eke

∗
k is a common factor of all

products of determinants that show up in the metric functions), so
they do not affect the final expressions.

The vacuum two-soliton solution (proposed by Manko et al.
1995b) is a special case of the previous general axisymmetric
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Table 1. Classification of the various two-soliton solutions depending on the values of the parameters d, κ±, ξ±, R± and r±. The table also shows the
various conjugation relations between the parameters. The types of solutions that have degeneracies are indicated with an asterisk (∗). � means real, �
means imaginary and C means complex.

Case d2 κ2+ κ2− ξ+ ξ− R+ R− r+ r−

Ia >0 >0 >0 � � � � � �
Ib∗ >0 >0 =0 � � � � � �

=ξ+ =R+ =R−

IIa >0 >0 <0 C C C C C C

=(ξ+)∗ =(R+)∗ =(R−)∗

IIb∗ >0 =0 <0 � � C C C C

=(ξ+)∗ =(R+)∗ =R− =R+
IIc >0 <0 <0 � � C C C C

=(R+)∗ =(r+)∗

III <0 C C � � � � C C

= (κ2+)∗ =(r+)∗

IVa∗ =0 >0 = κ2+ � =0 � � � �
=κ+ =r+

IVb∗ =0 =0 =0 =0 =0 – – – –

IVc∗ =0 <0 = κ2+ � =0 C C � �
=κ+ =r+

solution that is obtained for n = 2 from the ansatz (see also Sotiriou
& Pappas 2005)

e(z) = (z − M − ia)(z + ib) − k

(z + M − ia)(z + ib) − k
, (15)

where all the parameters M, a, k, b are real. From the Ernst potential
along the axis one can compute the mass and mass–current moments
of this space–time. Particularly, for the two-soliton space–time the
first five non-vanishing moments are (see Sotiriou & Pappas 2005
for the algorithm for calculating the moments as well as the par-
ticular moments, but with a different parametrization of the above
ansatz)

M0 = M, M2 = −(a2 − k)M,

M4 =
[
a4 − (3a2 − 2ab + b2)k + k2 − 1

7
kM2

]
M

J1 = aM, J3 = −[a3 − (2a − b)k]M. (16)

The mass moments of odd order and the mass–current moments of
even order are zero due to reflection symmetry with respect to the
equatorial plane (z = 0) of the space–time (this is actually ensured
by restricting all parameters of equation (15) to assume real values).
From the moments we see that the parameter M corresponds to the
mass monopole of the space–time, the parameter a is the reduced
angular momentum, k is the deviation of the reduced quadrupole
from the corresponding Kerr quadrupole (the one that has the same
M and a) and b is associated with the deviation of the current
octupole moment from the current octupole of the corresponding
Kerr.

For the two-soliton ansatz (15), the characteristic equation (5)
takes the form

z4 − (M2 − a2 − b2 + 2k)z2 + (k − ab)2 − b2M2 = 0. (17)

Since the coefficients of the polynomial are real, the roots can be
either real or conjugate pairs. The four roots of (17) can be written
as

ξ1 = −ξ3 = ξ+, ξ2 = −ξ4 = ξ−, (18)

where

ξ± = 1

2
(κ+ ± κ−) , (19)

with

κ± =
√

M2 − a2 − b2 + 2k ± 2d (20)

and

d =
√

(k − ab)2 − b2M2. (21)

Using these symbols for the four roots we redefine the four corre-
sponding functions Rk as

R± =
√

ρ2 + (z ± ξ+)2, r± =
√

ρ2 + (z ± ξ−)2. (22)

Next, we proceed to classify the various types of solutions de-
pending on whether the four roots have real, purely imaginary or
complex values. This classification is outlined in Table 1.

(i) This case is characterized by two real roots ξ±. The Kerr
family of solutions, which corresponds to k = 0 is definitely not
included in this family of solutions.

Ia. This subfamily of case I is the simplest to compute, since
all functions R±, r± are real.

Ib. This is a degenerate case where the roots ξ± coincide.
The degeneracy is due to κ− being zero which corresponds to
the parameter constraint M2 − a2 − b2 + 2k − 2d = 0. In
such degenerate cases, the computation of the metric function
is not straightforward since the expressions for the metric be-
come indeterminate, and a limiting procedure should then be
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applied.1In the reduced-parameter space (a/M, b/M, k/M2), the
previous constraint corresponds to a two-dimensional surface.

(ii) In this case, the roots ξ± are either complex or imaginary,
since κ2

− < 0. Furthermore, this means that there are non-vanishing
values of (ρ, z) where the functions R±, r± assume zero value, which
then leads to singularities at the corresponding points.

IIa. This subcase, as with case I, belongs to a class of solutions
that cannot have a vanishing parameter k.

IIb. Here, a degeneracy shows up again as in case Ib, which
admits the same treatment (limiting procedure) as in the former
situation. Contrary to all previous cases, case IIb admits a Kerr
solution that belongs to the hyperextreme branch (|a| > M).
Similar to case Ib this solution is also represented by a two-
dimensional surface in the reduced-parameter space.

IIc. This case is similar to the previous one, without the de-
generacy in the roots ξ±. It also includes hyperextreme Kerr
solutions.

(iii) In this case, one of the ξ+, ξ− is real while the other one is
imaginary. Thus, the same type of singularity issues, as in case II
arise. In particular, such problematic behaviour shows up on the
z = 0 plane. The Kerr and the Schwarzschild solutions lie entirely
within this family of solutions.

(iv) All types of solutions belonging to this case are degenerate
(there is a special constraint between the parameters) and as such
are probably of no interest to realistic neutron stars. Subcases IVa
and IVc have one double root (ξ− = 0), while subcase IVb has a
quadruple root (ξ+ = ξ− = 0) and the computation of the metric
functions needs special treatment. We should also note that cases
IVb and IVc include the extreme Kerr solution (|a| = M) as a special
case.

As we can see from the classification, the two-soliton solu-
tion can produce a very rich family of analytic solutions with
the classical solutions of Schwarzschild and Kerr being special
cases of the general solution. Also the Manko et al. solution of
Manko et al. (2000) that has been used previously by Berti &
Stergioulas (2004) and Stute & Camenzind (2002) to match the
exterior space–time of rotating neutron stars is a special case of the
two-soliton solution as we will see in what follows next.

All types of solutions discussed above can be represented in a
three-dimensional parameter space, the reduced-parameter space
that was mentioned in case IIb. Although the two-soliton solution
is characterized by four parameters, one of them, the monopole
mass M, is simply a scaling parameter which can be used to reduce
the rest of the parameters to dimensionless ones. The three dimen-
sionless parameters thus formed, (a/M, b/M, k/M2), are related
to the multipole moments (see equation 16) of the corresponding
space–time in the following way. The first parameter a/M is the
spin parameter (where a is the reduced angular momentum) which
is the only parameter, besides the mass, that uniquely characterizes
a Kerr space–time. The second parameter k/M2 expresses the devia-
tion of the quadrupole moment of the solution from the quadrupole
moment of the corresponding Kerr (the one with the same a/M
value); an increase of the value of k/M2 produces solutions that are
less oblate than Kerr. The final parameter b/M controls in a linear

1 In such cases the metric is given as an indeterminate fraction of the form
0/0. In order to proceed, one could simply apply l’Hospital’s rule to obtain a
definite value for the corresponding metric function. This was also discussed
by Manko, Martin & Ruiz (1995a).

fashion the current octupole moment. The actual deviation of the
two-soliton octupole moment from the Kerr octupole moment de-
pends on all three parameters a/M, k/M2 and b/M. Of course, the
higher moments are also affected by these parameters.

In this three-dimensional parameter space, the plane k/M2 = 0
corresponds to all types of Kerr solutions. This is clear from the
form of the Ernst potential along the axis, where if one sets k = 0 it
reduces to the Ernst potential of the Kerr solution,

e(z) = z − M − ia

z + M − ia
. (23)

Obviously, in this case the parameter b/M is redundant; thus, each
line a/M = const., which is parallel to the b/M axis on the plane
k/M2 = 0, corresponds to a single Kerr (modulo the mass of the
black hole).

As mentioned in Section 1, the solution of Manko et al. (2000) has
been used to describe the exterior of rotating neutron stars. As it was
briefly discussed above this solution is included in the two-soliton
solution and can be obtained by imposing a specific constraint on
the two-soliton parameters. The Manko et al. solution is obtained
by setting

k = −1

4

[
M2 − (a − b)2

] − M2b2

M2 − (a − b)2
+ ab. (24)

This constraint defines a surface in the three parameter space (a/M,
b/M, k/M2) (see Fig. 1). The particular solution, depending on the
values of a, b, falls under either case Ib or case IIb, where either κ− or
κ+ is equal to zero, respectively. We should note that the Manko et al.
solution is the union of these two cases. By substituting the above
expression for k (equation 24) in the formula for the quadrupole
moment (16), the quadrupole moment takes the following value
when a = 0:

M2 = −M

4

(M2 + b2)2

M2 − b2
. (25)

This is why the quadrupole moment of the Manko et al. solution does
not vanish in the limit of zero rotation. From the above expression,
one can see that the metric is not spherically symmetric as one
would expect for a non-rotating object. Especially for |b| < M the
metric is oblate while for |b| > M the metric is prolate.

This anomalous behaviour of the quadrupole moment is an im-
portant drawback for using the Manko et al. solution to describe
every rotating neutron star and it was pointed out by Berti & Ster-
gioulas (2004). In fact, this analytic metric is good to match only
rapidly rotating neutron stars.

As shown by Manko et al. (2000) this particular metric turns into
a Kerr metric if b2 = a2 − M2. Since all the parameters are assumed
real, this corresponds to a hyperextreme Kerr metric (a ≥ M). In
Fig. 1, this is represented by the two hyperbolas that lay outside the
strip |a| < M on the Kerr plane (the plane k = 0) along which the
intricate surface of the Manko et al. solution tangentially touches
the corresponding plane.

The two-soliton solution, which we will thoroughly study later
on, is a much better metric to describe the exterior of an arbitrary
rotating neutron star than the Manko et al. solution because (i) the
former has four independent parameters (compared to the three in-
dependent parameters of the latter one) that offer more flexibility to
adjust the metric and (ii) these four parameters are able to cover the
whole space of the first four moments of the space–time, while the
first four moments of the latter metric are actually correlated with
each other through the dependence of k on the three independent
parameters M, a, b, that was mentioned previously. Exactly this re-
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Figure 1. The first two plots show the parameter space (a, b, k) of the two-soliton solution for a particular mass (M = 1) from two different view points so
that the intricate foldings of the surface are better understood. The two-dimensional surface plotted is the constraint of k which corresponds to the solution of
Manko et al. (2000) used by Berti & Stergioulas (2004). The third plot is the k = 0 plane of the parameter space which corresponds to all Kerr solutions. The
plots clearly show that the Manko et al. solution has no set of parameters to describe the case k = 0 which corresponds to the Kerr and the Schwarzschild (for
a = 0) solutions, since there is no intersection of the constraint of k and the Kerr plane in the appropriate range of parameters. The two hyperbolas plotted
on the plane k = 0 are the only points where the constraint of k touches the plane tangentially. As we can see these hyperbolas correspond to |a| > M, i.e. to
hyperextreme Kerr space–times.

striction renders the Manko et al. solution inappropriate to describe
slowly rotating neutron stars.

Before closing this section, we will give a brief description of the
space–time characteristics of the two-soliton solution for the range
of parameters that we are going to use.

A horizon of a space–time is the boundary between the region
where stationary observers can exist and the region where such ob-
servers cannot exist. For a stationary and axially symmetric space–
time, the stationary observers are those that have a four-velocity that
is a linear combination of the time-like and the space-like Killing
vectors that the space–time possesses, i.e.

uμ = γ (ξμ + �ημ), (26)

where ξμ, ημ are the time-like and space-like Killing fields, re-
spectively, and � is the observer’s angular velocity. The factor γ is
meant to normalize the four-velocity so that gμνuμuν = −1. In order
for the four-velocity to be time-like, γ should satisfy the equation

γ −2 = −gtt − 2�gtφ − �2gφφ, (27)

and it should be γ −2 > 0, which corresponds to an � taking values
between the two roots

�± = −gtφ ± √
(gtφ)2 − gttgφφ

gφφ

. (28)

This condition cannot be satisfied when (gtφ)2 − gttgφφ ≤ 0. Thus,
the condition (gtφ)2 − gttgφφ = 0 defines the horizon. In the case of
the two-soliton, expressed in the Weyl–Papapetrou coordinates, this
condition corresponds to have ρ = 0, since ρ2 = (gtφ)2 − gttgφφ .
Thus, the issue of horizons is something that we will not have to
face; in these coordinates the whole space described corresponds to
the exterior of any possible horizon.

Another issue is the existence of singularities. Singularities
might arise where the metric functions have infinities. From equa-

tions (11)–(14) one can see that singularities might exist where
the functions R± =

√
ρ2 + (z ± ξ+)2, r± =

√
ρ2 + (z ± ξ−)2 go

to zero, or where the determinant E− goes to zero, or where
E+E∗

− + E∗
+E− goes to zero. Whether or not some of these quan-

tities vanish depends on which case the solution belongs to. A
thorough investigation of the singularities of the two-soliton is out
of the scope of this analysis; so we should only point out that for all
the neutron star models that we have studied and the corresponding
parameters of the two-soliton solution, any such singularities, when
present, are always confined in the region covered by the interior
of the neutron star and thus they do not pose any computational
problems in our analysis.

The final issue is with regard to the existence of ergoregions (i.e.
regions where gμνξ

μξν = gtt < 0) and regions with CTCs (i.e.
regions where gabη

aηb = gφφ < 0). In Fig. 2, we have plotted the
boundary surfaces of such regions for the two-soliton metric. One
can see that there are three distinct topologies for these surfaces that
are observed for the different two-soliton cases. In any case though,
for all the models used here, these surfaces are again confined at
regions where the interior of the neutron star lays.

In the following sections, we analyse the method that we are going
to use to obtain the right values for the parameters of the two-soliton
solution for each neutron star model and compare its properties with
the corresponding numerical metric. In order to do that, we have
constructed several sequences of numerical neutron star models with
the aid of the RNS numerical code of Stergioulas & Friedman (1995).
The numerical neutron star models used are the same models used
by Pappas & Apostolatos (2012) for demonstrating how to correct
the numerical multipole moments. They are produced using three
EOSs, i.e. AU, FPS and L (for more details on the particular EOSs
see Appendix A). The scope of using these models is twofold.
First, we are using them to provide the appropriate parameters
describing realistic neutron stars in order to build the corresponding
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Figure 2. Typical types of the surfaces that define the static limit and the regions of CTCs for the various cases of the two-soliton. In the left-hand panels, we
have two typical figures that correspond to case Ia, in the middle panels the figures correspond to case IIa and on the right-hand panels the figures correspond
to case III. The solid curves correspond to the static limit and the dotted curves correspond to the boundary of the regions with CTCs. For case Ia, the region
of CTCs is in contact with the axis of symmetry while the same also applies to the surface of the static limit. For case IIa the static limit is in contact with
the axis, but the region of CTCs has been detached. Finally, for case III the inverse is true, that is the region of CTCs is in contact with the axis of symmetry
while the static limit is detached from the axis. In all cases, the upper plots correspond to slower rotation while the lower plots correspond to faster rotation.
As the rotation rate increases the upper configurations are continuously deformed to the lower ones. Although there is no clear distinction between slow and
fast rotation, as presented here, we assume a spin parameter j = J/M2 value of 0.3−0.5 as a rough boundary between the two cases.

analytic metrics. Then we use them as a testbed against which
we compare the analytic metrics and thus test their accuracy. As
we have already mentioned, we will use as matching conditions
between the analytic and the numerical metrics the first four non-
zero multipole moments. For the neutron star models that we have
studied, the corresponding analytic space–times that are produced
belong to three of the cases of the aforementioned classification, i.e.
to cases Ia, IIa and III.

3 MATC H I N G TH E A NA LY T I C TO T H E
N U M E R I C A L S O L U T I O N

When one attempts to match an analytic solution to a numerical
one, it is desirable to find a suitable matching criterion that would
be characteristic of the whole structure of the particular numerical
space–time, instead of just a finite region of it. That is, the matching
should be global and not local. Berti & Stergioulas (2004) have
argued that a suitable global condition should be the matching of
the first few multipole moments. Indeed, the full set of multipole
moments (as defined relativistically by Geroch 1970; Hansen 1974;
Fodor, Honselaers & Perjes 1989) of a stationary and axially sym-
metric space–time can fully specify the Ernst potential on the axis
of symmetry. On the other hand, when the Ernst potential along

the axis of symmetry is given, there is a space–time which is un-
ambiguously specified by that Ernst potential as it was shown by
Xanthopoulos (1979, 1981), Hauser & Ernst (1981). Thus, the full
set of multipole moments are uniquely characterizing a space–time
and they can be used as a global matching condition.

When the space–time of a neutron star model is constructed from
a numerical algorithm, one can evaluate its mass moments M, Q,
. . . and current moments J, S3, . . . with an accuracy depending
on the grid2 used to present the numerical metric (for further dis-
cussion see Berti & Stergioulas (2004) and Pappas & Apostolatos
2012). Practically, the first few numerically evaluated moments can
be used as matching conditions to the analytic space–time. The first
four non-zero multipole moments of the two-soliton solution as a
function of its parameters M, a, b, k are shown in equation (16)
from which it is clear that once we specify the mass and the angular
momentum of the space–time, the parameter k is uniquely deter-
mined by the quadrupole moment Q ≡ M2, while the parameter
b is uniquely determined by the current octupole S3 ≡ J3. Thus,
having constrained the four parameters of the two-soliton, we have

2 For the specific grid used in the construction of the numerical neutron star
models the metric is evaluated with an accuracy of the order of 10−5 and
higher. The same is also true for the evaluation of the multipole moments.
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completely specified an analytic space–time that could be used to
describe the exterior of the particular neutron star model. What
remains to be seen is how well do the properties of the analytic
space–time compare to those of the numerical one.

At this point there is an issue that should be addressed. Having
specified the first four non-zero moments of the two-soliton metric,
we have fixed all the higher moments of the space–time in a specific
manner related to the particular choice of the analytic metric. These
higher moments will probably deviate from the ones of the numer-
ical space–time. So the question is, could one make a better choice
when trying to match the analytic to the numerical space–time than
the one of setting the first four analytic moments exactly equal to
the first four numerical moments? To answer this question we have
performed the following test. For several numerical models of uni-
formly rotating neutron stars that we have constructed, we formed
a set of two-soliton space–times for each neutron star model that
have the same mass M and angular momentum J with the numerical
model, while the quadrupoles and the current octupoles of each sin-
gle two-soliton space–time take the values M

(a)
2 = M

(n)
2 (1 − δM2)

and S
(a)
3 = S

(n)
3 (1 − δS3), respectively, with various δM2 and δS3

values. The quantities δM2 and δS3 denote the fractional differ-
ences of the corresponding analytic moments of each two-soliton
space–time from the numerical one. Then for each one of these
sets of moments we calculated the overall mismatch between the
analytic and the numerical metric functions, which are defined (see
Pappas & Apostolatos 2012) as

σij =
[∫ ∞

RS

(
gn

ij − ga
ij

)2
dr

]1/2

, (29)

where RS is the radius r at the surface of the star, and have thus
constructed contour plots of σ ij on the plane of δS3 and δM2, like
the ones shown in Fig. 3. The same type of contour plots were
drawn for other quantities as well, like the relative difference of the
RISCO and the overall difference between the analytic and numerical
orbital frequency � for circular and equatorial orbits (defined in
the same fashion as the overall metric mismatch was defined in

equation 29). The contour plots for the particular neutron star model
that is shown in Fig. 3 are typical of the behaviour that we observed
in all models. An important result is that the contours for the overall
mismatch σ tt combined with the contours for σ tφ give us the best
choice for matching a numerical to an analytic space–time, namely,
the equation of the first four multipole moments between the two
space–times. That is because gtt seems to be sensitive mainly in
deviations from the numerical quadrupole and thus the contours
appear to be approximately horizontal and parallel to the axis of
δS3, while gtφ seems to be sensitive mainly in deviations from
the numerical current octupole and thus the contours appear to be
approximately vertical and parallel to the axis of δM2 (the contours
of σ tφ are almost orthogonal to the contours of σ tt).

We should note here that the exact position of the optimum point
in the contour plots of σ tt, σ tφ did not deviate from (0, 0) by more
than 3 to 4 per cent in all cases studied. The largest deviations
showed up in some of the fastest rotating models.

The conclusion is what we expected to be true based on the-
oretical considerations turns out to be exactly the case after the
implementation of the aforementioned test. Therefore, in what fol-
lows, we will set the first four non-zero multipole moments of the
analytic space–time equal to that of the corresponding numerical
space–times.

4 C R I T E R I A F O R T H E C O M PA R I S O N O F T H E
A NA LY T I C TO T H E N U M E R I C A L
SPAC E–TIME

Once we have constructed the analytic metric, appropriately
matched to the corresponding numerical one, we proceed to
thoroughly compare the two space–times. In order to do that, we
should try again to use criteria that are characteristics of the geo-
metric structure of the whole space–time, and if possible coordinate
independent. It would be preferable if these criteria are also related
to quantities that are relevant to astrophysical observations. Thus,
if two space–times are in good agreement, with respect to these

Figure 3. Contour plots that point out what is the best choice for the parameters of an analytic metric so that it matches well a numerical one. The left-hand
plot shows the contour plots of the overall mismatch σ ij between the analytic and the numerical metric for the tt (black curves) and tφ components (grey
curves), respectively, as a function of the fractional deviation of the quadrupole, δM2, and the current octupole, δS3, of the analytic metric from those calculated
directly from the numerical metric (assuming the same mass and angular momentum though). Since the contours of σ tt (almost horizontal) are orthogonal
to the ones of σ tφ (almost vertical), the combination indicates an optimum choice for the multipole moments of the analytic space–time. This choice is of
the moments that have zero deviation from the moments of the numerical space–time. The next two contour plots are similar contour plots but the contours
correspond to different quantities. The middle one is for the relative difference between the analytic and numerical RISCO, while the right-hand one is for the
overall difference between the analytic and numerical orbital frequency � (defined analogously to the overall mismatch of the metric components). Both these
latter plots are consistent with the first one. All plots correspond to the model 15 of the AU EOS presented by Pappas & Apostolatos (2012) and they give a
representative picture of what is happening with all numerical models that we have computed.
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criteria, they could be considered more or less equivalent. On the
other hand, such criteria, as well as possible observations associated
with them, could be used to distinguish different space–times and
consequently different compact objects that are the sources of these
space–times.

As a first criterion of comparing the metrics we will use the direct
comparison between the analytic and the numerical metric compo-
nents themselves. Although the metric components are quantities
that are not coordinate independent, they have specific physical
meanings and can be related to observable quantities. Thus, the gtt

component is related to the gravitational redshift of a photon and the
injection energy of a particle. The gtφ component is related to the
frame dragging effect and the angular velocity ω = −gtφ/gφφ of the
zero angular momentum observers. Finally, the gφφ component is
related to the circumference of a circle at a particular radial distance
and defines the circumferential radius Rcirc = C/2π = √

gφφ . Also
gφφ together with grr are used to measure surface areas. So, if the
relative difference between the numerical and the analytic metric
components

gtt = −f , gtφ = gφt =f ω,

gφφ = f −1ρ2 − f ω2, gρρ = gzz = f −1e2γ (30)

is small, then one could consider the analytic metric as a good
approximation of the numerical metric.

Another criterion for comparing an analytic to a numerical space–
time is the location of the ISCO. Particles moving on the equatorial
plane are governed by the equation of motion (see for example Ryan
1995)

− gρρ

(
dρ

dτ

)2

= 1 − Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

ρ2
≡ V (ρ), (31)

where Ẽ and L̃ are the conserved energy and angular momentum
parallel to the axis of symmetry, per unit mass. V(ρ) is an effective
potential for the radial motion and in the case of orbits that are circu-
lar, we additionally have the conditions dρ/dτ = 0 and d2ρ/dτ 2 =
0, which are equivalent to the conditions for a local extremum of the
potential, i.e. V(ρ) = 0 and dV(ρ)/dρ = 0. The radius of the ISCO is
evaluated if we further demand the constraint d2V(ρ)/dρ2 = 0, the
physical meaning of which is that the position of the circular orbit is
also a turning point of the potential. From these three conditions we
can evaluate a specific ρISCO and from that RISCO = √

gφφ(ρISCO),
which we then compare to the corresponding numerical one. The
position of the ISCO is of obvious astrophysical interest since it is
the inner radius of an accretion disc and recently it has been used
to evaluate the rotation parameter of black holes from fitting the
continuous spectrum of the accretion disc around them (see work
by Shafee et al. 2006).

Another criterion for comparing the metrics can be the orbital
frequency of circular equatorial orbits �. The orbital frequency is
given by the equation

�(ρ) = −gtφ,ρ + √
(gtφ,ρ)2 − gtt,ρgφφ,ρ

gφφ,ρ

. (32)

Apart from the orbital frequency one could also use the precession
frequencies of the almost circular and almost equatorial orbits, i.e.
the precession of the periastron �ρ and the precession of the orbital
plane �z. These frequencies are derived from the perturbation of
the equation of motion

− gρρ

(
dρ

dτ

)2

− gzz

(
dz

dτ

)2

= V (ρ, z) (33)

around the circular equatorial orbits. In this expression, V(ρ, z) is the
same effective potential which was defined in the second equation
of (31) the z dependence of which now has not been omitted as in
equation (31). The perturbation frequencies derived from the above
equation are then given with respect to the metric functions as

κ2
a = −gaa

2

{
(gtt + gtφ�)2

(
gφφ

ρ2

)
,aa

− 2(gtt + gtφ�)(gtφ + gφφ�)

(
gtφ

ρ2

)
,aa

+ (gtφ + gφφ�)2

(
gtt

ρ2

)
,aa

}
, (34)

where the index a takes either the value ρ or z to obtain the fre-
quency of the radial or the vertical perturbation, respectively. These
expressions are evaluated on the equatorial plane (at z = 0); thus
they are functions of ρ alone. The corresponding precession fre-
quencies are given by the difference between the orbital frequency
and the perturbation frequency

�a = � − κa. (35)

These quantities are quite interesting with respect to astrophysical
phenomena as well. More specifically, they can be associated with
the orbital motion of material accreting on to a compact object
through an accretion disc. These very frequencies have been pro-
posed to be connected to the observed quasi-periodic modulation
(QPOs) of the X-ray flux of accretion discs that are present in X-ray
binaries (see Stella 2001; Boutloukos et al. 2006; van der Klis 2006;
Lamb 2003).

Finally, the last criterion that we will use to compare metrics
is the quantity �Ẽ of circular orbits, which expresses the energy
difference of the orbits per logarithmic orbital frequency interval as
one moves from one circular orbit to the next towards the central
object. This quantity is defined as

�Ẽ = −�
dẼ

d�
, (36)

where the energy per unit mass Ẽ is given by the expression

Ẽ = −gtt − gtφ�√−gtt − 2gtφ� − gφφ�2
. (37)

The quantity �Ẽ is a measure of the energy that a particle has to
lose in order to move from one circular orbit to another closer to
the central object so that the frequency increases by one e fold.
The quantity, �Ẽ, is associated with the emission of gravitational
radiation and was used by Ryan (1995) to measure the multipole
moments of the space–time from gravitational waves emitted by
test particles orbiting in that background. The same quantity can
also be associated with accretion discs and in particular, in the case
of thin discs, it would correspond to the amount of energy that the
disc will radiate as a function of the radius from the central object
and thus it will be related to the temperature profile of the disc and
consequently to the total luminosity of the disc (for a review on
accretion discs see Krolik 1999).

The last set of criteria, i.e. the frequencies and �Ẽ are related to
specific observable properties of astrophysical systems, in particu-
lar, of accretion discs around compact objects; thus, they are very
useful and relevant to astrophysics (for an application see the work
by Pappas 2012).
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5 R E S U LT S O F T H E C O M PA R I S O N

The results of the comparison between the analytic and the numer-
ical metrics, describing the exterior of realistic neutron stars, that
are presented here are indicative of all comparisons performed for
every numerically constructed neutron star model. The models that
we have used as a testbed of comparison are briefly presented in the
Appendix and are the same models used in Pappas & Apostolatos
(2012).

For illustrative reasons we have also plotted comparisons be-
tween the numerical and the Manko et al. solution (Manko et al.
2000) which was used by Berti & Stergioulas (2004), as well as
comparisons between the numerical and the Hartle–Thorne metric
(Hartle & Thorne 1968). The reason for using these two metrics
is that on the one hand, the Hartle–Thorne metric is considered to
be a good approximation of slowly rotating relativistic stars and on
the other hand, the Manko et al. metric has been shown by Berti &
Stergioulas (2004) to be a good approximation for relativistic stars
with fast rotation. In cases with slow rotation rates, for which corre-
sponding models of the Manko et al. metric cannot be constructed,
we have used only the Hartle–Thorne metric to compare, though.
In the case of models with fast rotation besides the Manko et al.
metric, we have used the Hartle–Thorne metric as well. For these
cases, we treated the Hartle–Thorne metric as a three parameter
exterior metric, where the three parameters are the mass M, the an-
gular momentum J and the reduced quadrupole q = M2/M3 of the
neutron star. It should be noted that this is not a consistent way to
use the Hartle–Thorne metric, since the quadrupole and the angular
momentum in the Hartle–Thorne cannot take arbitrary values, while
the metric is essentially a two parameter solution (parametrized by
the central density of the corresponding slowly rotating star and a
small parameter ε that corresponds to the fraction of the angular
velocity of the star relative to the Keplerian angular velocity of the
surface of the star) that has to be properly matched to an interior
solution following the procedure described by Berti et al. (2005).
Here, we are taking some leeway in using Hartle–Thorne for fast
rotation since it is used simply for illustrative purposes and not in
order to draw any conclusions from it.

In Fig. 4, we present the comparison of the various analytic
metric functions (using the two-soliton, the Manko et al. and the
Hartle–Thorne solutions) to the corresponding numerical ones for
a single model constructed using the EOS AU (model 10 of the
AU EOS the characteristics of which are presented in table II
of the supplement of Pappas & Apostolatos 2012). The figures
display the relative difference between the various analytic and
the numerical metric functions gtt , gtφ,

√
gφφ and gzz = gρρ on

the equatorial plane, as well as the function gtt on the axis of
symmetry.

The general picture we get from these figures is typical for all
models constructed using all three EOSs, i.e. AU, FPS and L.
The overall comparison of the two-soliton to the numerical met-
rics shows that this analytic metric is an excellent substitute of
the numerical space–time both for slow and fast rotating models,
with an accuracy that is everywhere outside the neutron star always
better than about 1/1000 for all the metric functions (there is an
exception to that for the comparison of the gtt metric component
right at the pole where for some models their fractional difference
is a bit smaller than 1/100). In comparison to the other two analytic
metrics discussed above, we see that for the models for which a
Manko et al. metric can be found, that is for the rapidly rotating
neutron stars, both this metric and the two-soliton metric perform
very well [actually the Manko et al. solution performs better than

Berti & Stergioulas (2004) had initially found as was shown by
Pappas & Apostolatos 2012] and there are only tiny differences
between the two-soliton and the Manko et al. analytic metric com-
ponents gtt and gzz. However, the gtφ component is reproduced much
more accurately by the two-soliton metric than by the Manko et al.
(cf. top-right graph of Fig. 4). This was anticipated because the gtφ

component of the metric is, as we have shown in Section 3, more
sensitive to the value of S3, which can be suitably adjusted in the
two-soliton metric, but not in the Manko et al. solution. For the
rapidly rotating models the Hartle–Thorne is not such a good rep-
resentation of the numerical metric as the other two metrics. That
was also expected since the Hartle–Thorne metric is not suitable
for fast rotation. Hartle–Thorne’s failure is more evident in the gtφ

component of the metric which is consistent with Hartle–Thorne’s
vanishing spin octupole S3 (in the Appendix we show that S3 = 0
for the Hartle–Thorne metric).

For the slowly rotating models, there are no Manko et al. solu-
tions to compare to the numerical metric, so in these cases the only
alternative is the Hartle–Thorne metric. We should say again that
the consistent way to calculate the Hartle–Thorne parameters is the
one described by Berti et al. (2005), but as it is discussed by Pappas
& Apostolatos (2012) the parameters of the Hartle–Thorne metric
(specifically the parameter q which is the reduced quadrupole) con-
sistently calculated are in very good agreement with the numerical
multipole moments, so these moments were used straightforwardly
for the construction of the Hartle–Thorne metric. Again we saw
that the two-soliton performs better when compared to the numer-
ical space–time than the Hartle–Thorne metric. We should note
though that the problem of Hartle–Thorne’s metric to accurately
describe the gtφ metric component is present even at slow rotation.

Having demonstrated the benefits of the two-soliton, compared to
Manko et al. and Hartle–Thorne, to accurately describe the metric
functions of any numerical neutron star model, in the following
comparisons we will only compare the two-soliton quantities to the
corresponding numerical ones.

The next quantity we have used for comparison is the position
of the ISCO. In Fig. 5, we present the relative difference between
the numerical and the analytic ISCO for all neutron star models
constructed with the AU EOS for both prograde and retrograde
orbits (the latter are indicated by negative parameter j ≡ J/M2). The
general conclusion is that for all models constructed using all three
EOSs the ISCO of the analytic metric does not deviate by more than
4 per cent from the ISCO of the corresponding numerical model and
such deviations are observed for the prograde orbits of the fastest
rotating models. We should note that for all the numerical models
for which the ISCO is located at a smaller radius than the equatorial
radius of the corresponding neutron star, we do not perform any
comparison with the ISCO of the analytic solution; therefore, the
points that would correspond to these models are missing from the
plots. At this point, we should mention that apart from the position
of the marginally stable circular orbit for the particles, there is also
the position of the unstable photon circular orbit that could also be
used as a criterion for comparison. This orbit though is usually, for
the prograde case, below the surface of the neutron star (while for
the retrograde it is usually outside the star) and it does not have an
immediately measurable effect.3

3 One could argue that it could be associated with the optics around neutron
stars and possibly to quasi-normal modes of the space–time around the
neutron star (see p. 15 of Kokkotas & Schmidt 1999 or Frolov & Novikov
1998, section 4.4).
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Figure 4. These are the plots of the logarithm of the relative difference of the analytic to the numerical metric components gtt, gtφ ,
√

gφφ = Rcirc and gzz on
the equatorial plane, as well as gtt on the axis of symmetry. The plots shown here are indicative of all comparisons performed for all the neutron star models that
we have constructed. These particular plots are drawn for the model 10 of the AU EOS, the characteristics of which are presented in table II of the supplement
of Pappas & Apostolatos (2012). Different curves correspond to different metrics, i.e. the two-soliton (solid curve), the Manko et al. solution with the negative
root for b (dash–dotted curve) and the one with the positive root (dashed double dotted) and finally the Hartle–Thorne (dashed) metric. In most cases shown
here, the Manko et al. curves are on top of the two-soliton curve. The case of the gtφ component, where the two-soliton curve is almost an order of magnitude
below the Manko et al. one for a large interval of radii, is a notable exception. The Hartle–Thorne’s characteristic failure to describe gtφ is also evident.

We continue to the results of the comparison of the various fre-
quencies associated with the circular orbits on the equatorial plane,
i.e. �, �ρ , κρ , �z and κ z. The analytic orbital frequency compares
very well to the numerical orbital frequency for all the models with
the relative difference being in all cases smaller than ∼10−3. This
result is very important, since the orbital frequency together with
the RISCO are relevant to observations from accretion discs. Typical
plots of � and the relative difference between the analytic and the

numerical one as functions of the logarithm of the distance from the
central object are shown in Fig. 6.

With regard to the comparison of the radial and vertical pertur-
bation frequencies κρ and κ z, respectively, and the corresponding
precession frequencies �ρ and �z, things are more complicated.
These frequencies include second derivatives of the metric functions
in their calculation. Consequently, the results of the correspond-
ing numerical calculations are plagued by accuracy problems. In
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Figure 5. These plots show the relative difference between the numerical and the analytic RISCO for the neutron star models calculated using the AU EOS.
The relative difference is shown only for the models that have their ISCO outside the surface of the neutron star. The negative values of j correspond to
counter-rotating orbits (retrograde). The data for the corotating orbits can be found in Table 2.

Figure 6. The plots show the various frequencies and the relative difference of the analytic to the corresponding numerical ones. The top row of plots shows
on the left the numerical (dotted) and the analytic (solid) orbital frequency � for comparison reasons (they are hardly distinguishable), while on the right is
plotted the logarithm of their relative difference. The middle row shows on the left the numerical (dotted) and analytic (solid) precession frequencies �ρ , in
the middle the corresponding radial oscillations frequencies κρ (same correspondence of lines) and on the right the logarithm of the relative difference of
the latter oscillation frequencies. Finally, the bottom row shows the corresponding plots for the plane precession (left) and the vertical oscillation frequencies
(middle), �z and κz, respectively, as well as the logarithm of the relative difference of the latter frequencies (right). All plots are for the model 10 of the AU
EOS presented by Pappas & Apostolatos (2012).

particular, numerical calculation of the second derivatives induces
artificial oscillations in the results. These issues have been dis-
cussed earlier by Berti et al. (2005). Following the suggestions of
Stergioulas, we found two ways to mitigate the problem. The first
one is to calculate the frequencies directly in the coordinates that the
RNS code produces the metric functions so as to avoid any numeri-
cal errors caused by the transformations of the coordinates and the
metric functions themselves. Then one would have to only identify

the coordinates of the points at which the frequencies are calculated
with the corresponding Weyl–Papapetrou coordinates (the calcu-
lated frequencies themselves are the frequencies that static observers
at infinity measure so they do not depend on the coordinate system
used). The second one is to smooth out these artificial oscillations
by taking a three point average of the frequencies. The efficiency of
this technique has been tested in the case of the non-rotating mod-
els (the exterior of which is described by a Schwarzschild metric)
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Figure 7. Plots showing the analytic (solid) and numerical (dotted) �Ẽ (left) as well as the logarithm of their relative difference (right) for the model 10 of
AU EOS presented in Pappas & Apostolatos (2012).

and has been verified to give trustworthy results. Another thing that
we should also consider is that in the case of κz, the values are
very close to the corresponding values of �; consequently, there is
low accuracy in the calculation of the precession frequency �z =
� − κ z in some cases. That is why we consider this as a better
indicator of the actual ability of the analytic metric to capture the
behaviour of the numerical metric, the deviations in the oscilla-
tion frequencies κρ and κ z, instead of �ρ and �z. Nevertheless,
we present both the precession and the oscillation frequencies of
the analytic metric in comparison to those of the numerical metric,
together with the relative difference between the analytic and the
numerical oscillation frequencies, in order to get a clearer picture
of the comparison. All these plots, again for the model 10 of the
AU EOS, the characteristics of which are presented in table II of
the supplement of Pappas & Apostolatos (2012), are shown in Fig. 6.

Generally, the relative difference in κρ between the numerical
and the analytic metrics is small, although in some cases it could
climb up to 10 per cent near the ISCO. This is due to the fact that
the radial oscillation frequency κρ tends to be zero as the ISCO
is approached, causing an increase of the relative difference. In
contrast, for κ z, the relative difference is always below 1 per cent
at the ISCO. However, the picture is inverted for the precession
frequency �z, which is related to the fact that in this case the small
quantities are the �zs themselves.

The overall picture we obtain is that the analytic frequencies
capture quite well the behaviour of the numerical frequencies both
qualitatively and quantitatively. Especially for the κz frequency,
which in some cases becomes greater than the orbital frequency
(an effect more prominent in the models of EOS L, cf. discussion
in Section 6), the two-soliton metric can reproduce its values quite
faithfully. The importance of capturing the vanishing of �z = � −
κ z by means of an analytic function and its relevance to QPOs is
further discussed by Pappas (2012).

The final comparison criterion is the quantity �Ẽ. The numerical
computation of this quantity has similar difficulties with the pre-
cession frequencies; these issues could be fixed by performing the
same tricks to avoid numerical oscillations. In Fig. 7, we show for
the same model of a rotating neutron star as in the previous cases,
the quantity �Ẽ computed from the numerical and the analytic
metric on the left, and their relative difference on the right. Again
we see that the two-soliton metric describes with high accuracy
�Ẽ which we obtain numerically from the numerical models. We
recall here that this quantity is relevant for the emitted spectrum of
a thin accretion disc and its temperature profile, as well as for the

Figure 8. Plot showing the numerical (dotted) and analytic (solid) preces-
sion frequencies �z for the model 10 of the L EOS. One can see how the
frequencies that are calculated from the analytic metric capture the qualita-
tive behaviour of the corresponding numerical frequencies. The parameters
(i.e. the multipole moments) for this model can be found in Pappas &
Apostolatos (2012).

efficiency of the disc, i.e. the amount of kinetic energy transformed
to radiation.

We close this section with Table 2, where we present for all
numerical models of EOS AU (the multipole moments of which are
given in the tables of Pappas & Apostolatos 2012) the parameters
and the type of the two-soliton metric along with a few quantities
of astrophysical interest, and specifically their comparison between
the ones calculated using the analytic and the numerical space–
times. These quantities are, the circumferential radius at the ISCO
RISCO, the efficiency η = 1 − ẼISCO of a thin accretion disc (if there
was one around the particular neutron star), the orbital frequency
at the position of the ISCO �ISCO (this is a frequency expected to
show up in QPOs if the latter are related to the orbital motion) and
finally, the vertical oscillation frequency at the ISCO (κz)ISCO (this
could also be related to QPOs). The table shows that the relative
differences between the numerical and the analytic quantities is of
the order of 1 per cent or lower.

6 C O N C L U S I O N S

In this work, we have tested whether the four-parameter two-soliton
analytic metric, which was derived by Manko et al. (1995b), can
be used as a trustworthy approximation for the space–time around
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Table 2. For each neutron star model, that was constructed by the RNS code using the AU EOS, we have computed a number of parameters that are
related to the particular analytic two-soliton metric which better approximates the numerical metric. These parameters are (i) the type (Case) of the
two-soliton space–time that each particular model corresponds to, (ii) the parameters k and b of the two-soliton as well as the spin parameter j and (iii)
the relative difference between the following analytic and numerical quantities: RISCO, η, �ISCO and (κz)ISCO, for the models that the ISCO lies outside
the surface of the star. The models shown here are the same models presented in Pappas & Apostolatos (2012). The rest of the physical parameters
of these models, such as the mass and all the other multipole moments of the models, can be found there. All the relative differences are given as a
percentage.

Model Case j b k �RISCO �η ��ISCO (�κz)ISCO

(km) (km2) (per cent) (per cent) (per cent) (per cent)

1 III 0.0 −3.0 0 0.003 0.032 0.006 –
2 Ia 0.2015 −0.0784 −0.5271 0.013 0.019 0.003 0.024
3 IIa 0.3126 −0.1305 −1.2503 0.283 0.142 0.027 0.141
4 IIa 0.414 −0.1858 −2.1664 – – – –
5 IIa 0.4749 −0.224 −2.8362 – – – –
6 IIa 0.5297 −0.2626 −3.517 – – – –
7 IIa 0.5789 −0.3014 −4.1972 – – – –
8 IIa 0.617 −0.3351 −4.7738 – – – –
9 IIa 0.651 −0.368 −5.3277 – – – –

10 IIa 0.6618 −0.3793 −5.5114 – – – –

11 III 0.0 −3.0 0 0.003 −0.021 −0.004 –
12 III 0.194 524 −0.0915 −0.1528 −0.021 0.022 0.002 −0.034
13 III 0.309 849 −0.1669 −0.4288 −0.018 0.025 0.003 −0.071
14 III 0.406 932 −0.2417 −0.8163 0.019 0.03 0.005 0.113
15 III 0.485 572 −0.3158 −1.2698 0.148 0.114 0.019 0.04
16 III 0.550 214 −0.3897 −1.7658 0.391 0.204 0.035 0.217
17 III 0.603 381 −0.4628 −2.279 0.778 0.463 0.077 0.477
18 III 0.645 447 −0.5317 −2.7705 1.274 0.83 0.137 0.815
19 III 0.676 639 −0.5916 −3.197 1.798 1.205 0.197 1.15
20 III 0.706 299 −0.6585 −3.6602 2.453 1.831 0.297 1.638

21 III 0.510 282 −0.3726 −0.7958 0.043 0.026 0.005 0.15
22 III 0.510 617 −0.3717 −0.8179 0.054 0.046 0.008 0.058
23 III 0.514 032 −0.3731 −0.8721 0.063 0.05 0.009 0.031
24 III 0.520 506 −0.3789 −0.9409 0.083 0.016 0.004 0.065
25 III 0.547 452 −0.4083 −1.1827 0.164 0.072 0.013 0.153
26 III 0.587 439 −0.4607 −1.5504 0.346 0.206 0.034 0.164
27 III 0.626 593 −0.5214 −1.9574 0.63 0.391 0.064 0.362
28 III 0.659 098 −0.5806 −2.3502 0.991 0.645 0.104 0.64
29 III 0.694 585 −0.6577 −2.8456 1.551 1.018 0.162 0.948
30 III 0.713 165 −0.7054 −3.1406 1.95 1.349 0.214 1.221

all kind of neutron stars. To match the particular analytic metric
to a specific neutron star model, which was produced through the
numerical code RNS of Stergioulas & Friedman (1995), we have
used as matching conditions the first four non-zero multipole mo-
ments. Our choice was justified, apart from theoretical reasoning,
by comparing the numerical metrics with different analytic metrics
produced by slightly varying two of their moments (quadrupole and
spin octupole). The comparison showed clearly that the best match-
ing comes from imposing the condition that the parameters of the
analytic metric should be such that the analytic space–time acquires
the first four non-vanishing moments of the numerical metric.

Having demonstrated the appropriateness of the matching con-
ditions, we proceeded to compare the various numerical neutron
star space–times with the corresponding analytic space–times. To
perform the comparison, we have assumed several criteria having in
mind that they should correspond to geometric and physical proper-
ties of the space–time, with a special interest in physical quantities
that could be associated with astrophysical processes that are usu-
ally observed from the vicinity of neutron stars.

The result of these comparisons is that the two-soliton space–
time can reproduce the properties of the space–time around realistic

neutron stars, and in particular it can reproduce all astrophysically
interesting properties. Probably the most important fact is that the
analytic metric can capture properties of the neutron star space–
time that a corresponding Kerr space–time could not, such as the
behaviour of the precession frequencies of almost circular and al-
most equatorial orbits. A typical example is shown in Fig. 8, where
we present the analytic and numerical frequencies of the precession
of the orbital plane for a model constructed using the L EOS. The
possible importance and implication of this, i.e. the capability of
the two-soliton to capture this particular behaviour in contrast to the
Kerr geometry, was further discussed in Pappas (2012).

Generally, the two-soliton metric can be a very useful tool for
studying phenomena that happen around all kind of neutron stars
and are quite sensitive to more realistic and accurate geometries
than the ones used so far. Relying on a single analytic metric for all
neutron stars is practically more favourable than using numerical
space–times, or more than one analytic metrics depending on the
type of the neutron star. Thus, the two-soliton metric can be further
used for more elaborate applications such as those of Psaltis (2008)
where the geodesics of particles or photons in the space–time around
a neutron star are discussed, or those of Bauböck et al. (2012a)
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and Bauböck, Psaltis & Özel (2012b) where ray tracing in the
background of a perturbed Kerr metric is studied, in order to obtain
a relationship between the deformed shape of a neutron star and its
multipole moments.
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Bauböck M., Psaltis D., Özel F., Johannsen T., 2012a, ApJ, 753, 175
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A P P E N D I X A : N E U T RO N S TA R M O D E L S

In order to construct the analytic space–time exterior to a compact
object, one has to choose the appropriate multipole moments. For
neutron stars, these moments could be computed from numerical
models that are constructed with realistic EOSs. There are several
schemes developed for numerically integrating stellar models (see
Stergioulas & Friedman 1995 and for an extended list of numerical
schemes see Stergioulas 2003). We have used Stergioulas’s RNS code
for the construction of the models.

In order to cover more space on the ‘neutron star parameter
space’, we constructed numerical neutron star models with EOSs of
varying stiffness. For that purpose, we have chosen AU as a typical
soft EOS, FPS as a representative moderate stiff EOS and L to de-
scribe stiff EOS. Having the numerical models ready, we proceeded
in evaluating their multipole moments according to the algorithm
described in Pappas & Apostolatos (2012). The parameters then
used to construct the analytic space–time models, i.e. M, a, k, and b,
are evaluated from the first four multipole moments (M, J, M2, S3)
of each model by inverting equation (16).

For the specifics of the various models chosen here, we have
followed Berti & Stergioulas (2004). We have constructed the same
constant rest-mass sequences as the ones presented in Berti & Ster-
gioulas (2004) for the corresponding EOSs. For every EOS, three
sequences of 10 models were constructed, which corresponded to

(i) a sequence corresponding to a neutron star of 1.4 M in the
non-rotating limit,

(ii) a sequence terminating at the maximum-mass neutron star in
the non-rotating limit and

(iii) a supermassive sequence that does not terminate at a non-
rotating model at its lower rotation limit.

All the sequences end at the mass-shedding limit on the side of
fast rotation, i.e. at the limit where the angular velocity of a particle
at the equator is equal to the Keplerian velocity at that radius. These
sequences are the so called evolutionary sequences.

All the parameters for the computed models can be found in
Pappas & Apostolatos (2012).

A P P E N D I X B : T H E F U N C T I O N S O F T H E
TWO-SOLI TO N

In this appendix, we present the full expressions for writing the
metric functions of the two-soliton. The determinants that are given
in Section 2 and appear in the formulas for the metric functions, can
be substituted with the following expressions, starting with E± =
A ∓ B, where the functions A, B are given as

A = −16 dk (r−r+ + R−R+) M2

− [
A−

1 (R−r+ + r−R+) − A−
2 (R−r+ − r−R+)

]
κ2

+

+ [
A+

1 (r−R− + r+R+) − A+
2 (r−R− − r+R+)

]
κ2

−, (B1)
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A±
1 = (

4(a − b)2(ab ± d − k) − 4((a − 2b)b ± d)M2
)
, (B2)

A±
2 = 4i

(
(a − b)(ab ± d − k) − bM2

)
κ±, (B3)

B = 2κ−κ+M
[
(R+ − R−) B−

1 + (r− − r+) B+
1

+ (R− + R+) B−
2 − (r− + r+) B+

2

]
, (B4)

B±
1 = i

(
2k(a − b) + b

(
M2 − a2 + b2 ± κ−κ+

))
× (κ+ ± κ−) , (B5)

B±
2 = 2d

(
M2 − a2 + b2 ± κ−κ+

)
. (B6)

The determinant H can be substituted as H = −L, where L is given
by the expressions

L = (r−r+ + R−R+) L1 + (r− + R− + r+ + R+) L2

− (r− − R− + r+ − R+) L3 + (r−R− − R+r+) L−
5

+ (r− − r+ + R− − R+)L−
4 + (r−R+ − R−r+) L+

5

+ (r− − r+ − R− + R+)L+
4 + (R−r+ + r−R+) L+

6

+ (R−r− + r+R+) L−
6 , (B7)

L1 = −16 dk(ia − ib + M − z)M2, (B8)

L2 = i4dM(a + iM)
[
M4 − 2

(
a2 − b2 − 2k

)
M2

+ (a − b)2
(
(a + b)2 − 4k

)]
, (B9)

L3 = 4dM
[
ia3 − Ma2 − i

(
b2 + M2 + 2k

)
a + M3

+ 2ibk + b2M
]
κ−κ+, (B10)

L±
4 = 4κ∓M

{
ibM5 + abM4

− i
(
2ba2 − ka − b

(
b2 ± d + 2k

))
M3

− (
2ba3 − ka2 − b

(
b2 ± d + 3k

)
a

+ k
(
2b2 ∓ d + k

))
M2

+ (
2k2 − (

a2 + 3ba ∓ 2d
)
k + b(a + b)

(
a2 ∓ d

))
×i(a − b)M

+ (a − b)(ab − k)
(
(a + b)

(
a2 ∓ d

) + (b − 3a)k
)}

,

(B11)

L±
5 = +4i

[
b(M − z)a4 + (

b2 ∓ d − k
)

(M − z)a3

+ (
(z − M)b3 + iM2b2

+ (
2M2 ± d + 5k

)
(z − M)b ∓ idM2

)
a2

+ (
(z − M)b4 + (

M2 ∓ d − 5k
)

(z − M)b2

− 4ikM2b + (k ± d)
(
M2 + 4k

)
(M − z)

)
a

− ib4M2 − ib2M2
(
M2 ∓ d − 2k

)

+ iM2
(
2k(k ± d) ± dM2

) + b
(
b2

(
M2 ± d + k

)

+ (
M4 + (k ± d)M2 − 4k(k ± d)

))
(M − z)

]
κ∓, (B12)

L±
6 = ±4

[
b(M − z)a5 + ((k ± d)(z − M) + ibM2)a4

+ (
2(z − M)b3 + 2

(
M2 + 2k

)
(z − M)b

− ikM2
)
a3

+ (−2iM2b3 + 2(5k ± d)(M − z)b2

− i
(
2M4 + 3kM2

)
b

+ (
(k ± 2 d)M2 + 4k(k ± d)

)
(M − z)

)
a2

+{
(M − z)b5 − 2

(
2k − M2

)
(M − z)b3

+ 7ikM2b2 + (
M4 + 4kM2 − 8k(k ± d)

)
(M − z)b

+ ikM2
(
M2 + 2(k ± d)

)}
a

+ ib5M2 − ib3
(
3k − 2M2

)
M2

+ ibM2
(
M4 + 3kM2 − 2k(k ± d)

)

+ (
M2

(
2k(k ± d) ± dM2

) + b4(k ± d)
)

(z − M)

+ b2
(
4k(k ± d) − (3k ± 2 d)M2

)
(M − z)

]
. (B13)

The determinant G can be expressed as G = −E, where E is given
by the expressions

E = E1 (r−r+ + R−R+) + E2 (r− + R− + r+ + R+)

+E3 (r− − R− + r+ − R+) + E+
4 (r−R+ − R−r+)

+E−
4 (r−R− − r+R+) + E+

5 (R−r+ + r−R+)

+E−
5 (r−R− + r+R+) + E+

6 (r− − r+ − R− + R+)

+E−
6 (r− − r+ + R− − R+), (B14)

E1 = 16 dk(−ia + ib + M)M2, (B15)

E2 = 4 dκ2
−κ2

+(ia + M − z)M, (B16)

E3 = 4 d
[
2ik(a − b) + (

b2 + M2 − a2
)

(M − z + ia)
]

×κ−κ+M, (B17)

E±
4 = −4i

[
bM4 + i

(
b2 ∓ d

)
M3

− (a + b)
(
2ab − b2 ∓ d − k

)
M2

− i
(
2k2 + 2

(
b2 − 2ab ± d

)
k

+ (a2 − b2)
(
b2 ∓ d

))
M

+ (a − b)
(
(a + b)2 − 4k

)
(ab ∓ d − k)

]
κ∓M, (B18)

E±
5 = ±4M

[
ibM5 − (ab ∓ d)M4

− i
(−2b3 + 2a2b − 3kb − ak

)
M3

+ (
2k2 − (

a2 + 4ba − 3b2 ∓ 2d
)
k
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+ 2(a2 − b2)(ab ∓ d)
)
M2

+ i(a − b)
(
(a − b)b(a + b)2 + 2k2

− (
a2 + 4ba − 3b2 ∓ 2d

)
k
)
M

− (a − b)2
(
(a + b)2 − 4k

)
(ab ∓ d − k)

]
, (B19)

E±
6 = 4κ∓M

{
ba5 − (k + ib(M − z))a4

− (
b3 + (

2M2 ± d + 3k
)
b − ik(M − z)

)
a3

+ (
i(M − z)b3 + 5kb2 + i

(±d + 2
(
M2 + k

))

× (M − z)b + k
(
M2 ± d + 3k

))
a2

+ ((
M2 ± d − k

)
b3 − 3ik(M − z)b2

+ (
M4 + (3k ± d)M2 − 4k2

)
b

− ik
(
M2 + 2(k ± d)

)
(M − z)

)
a

− (k ∓ d)kM2 + b2k
(−2M2 ∓ d + k

)

− ib3
(
M2 ± d

)
(M − z)

− ib
(
M4 + (2k ± d)M2 − 2k(k ± d)

)
(M − z)

}
, (B20)

and finally the determinant K0 can be expressed as

K0 = −16dκ2
−κ2

+. (B21)

In order to get the metric functions one should substitute these
expressions to the equations (11–14). We should note here that the
above expressions are not equal to the corresponding determinants
since a common factor to all the determinants, i.e. the quantity∏n

k=1 eke
∗
k , has been simplified out of the expressions.

A P P E N D I X C : T R A N S F O R M AT I O N TO
W E Y L – PA PA P E T RO U C O O R D I NAT E S
F O R A G E N E R A L M E T R I C

As we have mentioned, a stationary and axially symmetric space–
time gμν(xμ) can be cast in the form of the Papapetrou line element
(1)

ds2 = −f (dt − ω dφ)2 + f −1
(
e2γ (dρ2 + dz2) + ρ2dφ2

)
,

by an appropriate coordinate transformation, where the metric func-
tions are functions of the Weyl–Papapetrou coordinates (ρ, z). These
coordinates expressed as functions of the previous coordinates xμ

are harmonic conjugate functions. That is, the coordinate ρ(xμ) is
defined as ρ2 = (gtφ)2 − gttgφφ and satisfies the Laplace equa-
tion while z(xμ) is its harmonic conjugate. Thus, the integrability
conditions for z are the Cauchy–Riemann conditions which can be
used to calculate that coordinate. In an earlier work (see Pappas
& Apostolatos 2008), we have shown the correct way to integrate
these conditions when one has to transform a metric given in quasi-
isotropic coordinates

ds2 = −e2νdt2 + e2ψ (dφ − ωdt)2 + e2μ
(
dr2 + r2dθ2

)
, (C1)

which are commonly used in numerical integrations of the Einstein
field equations, to the Papapetrou form. In that case, the quasi-
isotropic coordinates, r, θ enter the metric in a way that can be easily

cast in a Cartesian form and thus the Cauchy–Riemann conditions
are given from the usual expressions

∂z

∂�
= −∂ρ

∂ζ
,

∂z

∂ζ
= ∂ρ

∂�
,

where we have defined the Cartesian coordinates � = r sin θ =
r
√

1 − μ2, ζ = r cos θ = rμ.
In the case of a metric given in a general form though, like the

Hartle–Thorne metric, the Cauchy–Riemann conditions cannot be
used as given in the previous equations. So, one has to calculate
the general form of these conditions. The general expressions for
the Cauchy–Riemann conditions can be evaluated from the orthog-
onality condition that the functions ρ(r, θ ) and z(r, θ ) must satisfy.
Thus, for a metric given in the form

ds2 = gttdt2 + 2gtφdt dφ + grrdr2 + gθθ dθ2 + gφφdφ2, (C2)

the orthogonality condition between ρ and z is ∇ρ · ∇z = 0, which
gives the expressions for the Cauchy–Riemann conditions

∂z

∂r
=

√
grr

gθθ

∂ρ

∂θ
, (C3)

∂z

∂θ
= −

√
gθθ

grr

∂ρ

∂r
, (C4)

where we have expressed the conditions in the r, θ coordinates and
the function ρ(r, θ ) is defined as

ρ(r, θ ) =
√

(gtφ)2 − gttgφφ. (C5)

These general Cauchy–Riemann conditions are used in the same
way as prescribed in Pappas & Apostolatos (2008) in order to eval-
uate the z coordinate for the Hartle–Thorne metric and then com-
pare the latter metric with the numerical metric and the two-soliton
metric on the axis of symmetry. The metric functions given by the
metric in the general form can be directly associated with the metric
functions in the Papapetrou line element (1) by comparing the cor-
responding gtt, gtφ and gφφ values. The only component that needs
to be evaluated then is gρρ = gzz and it is given by the equation

gρρ = gzz = f −1e2γ =
(

1

grr

(ρ,r )2 + 1

gθθ

(ρ,θ )2

)−1

. (C6)

A P P E N D I X D : TH E H A RT L E – T H O R N E
METRI C

This is a metric produced by Hartle & Thorne (1968) as an expansion
up to order O(ε3), where ε = �/�∗ is a parameter that characterizes
the rotation of a star, and corresponds to the exterior space–time of
slowly rotating relativistic stars (�∗ =

√
M/R3 is the Kepler limit).

The components of the metric can be found in Berti et al. (2005)
and are given by the expressions

gtt = −
(

1 − 2M

r

) (
1 + j 2F1 − qF2

)
, (D1)

grr =
(

1 − 2M

r

)−1 (
1 + j 2G1 + qF2

)
, (D2)

gθθ = r2
(
1 + j 2H1 − qH2

)
, (D3)
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gφφ = sin2 θgθθ , (D4)

gtφ =
(

2jM2

r

)
sin2θ, (D5)

where

L = 80M6 + 8r2M4 + 10r3M3 + 20r4M2

− 45r5M + 15r6,

p = 1

8Mr4(r − 2M)
,

W = (
48M6 − 8rM5 − 24r2M4 − 30r3M3

− 60r4M2 + 135r5M − 45r6
)
u2

+ (
16M5 + 8rM4 − 10r3M2 − 30r4M + 15r5

)
×(r − M),

A1 = 15r(r − 2M)
(
1 − 3u2

)
ln

(
r

r−2M

)
16M2

,

A2 = 15
(
r2 − 2M2

) (
3u2 − 1

)
ln

(
r

r−2M

)
16M2

,

F1 = −pW + A1,

F2 = 5pr3(r − M)
(
2M2 + 6rM − 3r2

) (
3u2 − 1

) − A1,

G1 = p
(−72rM5 − 3

(
L − 56M5r

)
u2 + L

) − A1,

H1 =
(
16M5 + 8rM4 − 10r3M2 + 15r4M + 15r5

)
8Mr4

× (
1 − 3u2

) + A2,

H2 = 5
(
2M2 − 3rM − 3r2

) (
1 − 3u2

)
8Mr

− A2,

with u = cos θ . We will now try to evaluate the first five multipole
moments of the Hartle–Thorne space–time, following Ryan (1995).

From the metric functions one can calculate the rotation frequency
of circular equatorial orbits, which is given by equation (32). � can
be expressed with respect to a new parameter υ = (M�)1/3. This
new parameter is a function of r, which can in turn be expressed
as a function of another new parameter, x = (M/r)1/2. Then the
parameter υ can be expanded as a series in x. This series can then
be inverted and thus the parameter x can be expressed as a power
series in υ. Similarly, we can calculate the energy per mass, Ẽ, of
a test particle in circular orbit (37) as a function of the parameter
x. This quantity can then be expressed as an expansion on x which
by substituting the previously obtained power series can then be
expressed as a series expansion in υ. From that, one can calculate
the invariant quantity

�Ẽ = −�
dẼ

d�
= −υ

3

dẼ

dυ
, (D6)

which is related to the multipole moments of the space–time as
they are given by Ryan (1995). After following all the previously
mentioned calculations, the expansion of the above expression is

�Ẽ = υ2

3
− υ4

2
− 20jυ5

9
+

(
q − 27

8

)
υ6 − 28jυ7

3

+
(

80j 2

27
+ 70q

9
− 225

16

)
υ8 +

(
−6qj − 81j

2

)
υ9

+
(

115j 2

18
+ 35q2

12
+ 935q

24
− 6615

128

)
υ10

+
(

−1408j 3

243
− 572qj

27
− 165j

)
υ11 + O(υ12). (D7)

From comparing Ryan’s expressions to this expansion, we see that
the Hartle–Thorne metric, as given by Berti, has a rotation parameter
j defined as j = −J/M2, a quadrupole parameter q = Q/M3 and the
following moments S3, M4 are equal to zero. The above expansion
seems to be consistent with the aforementioned multipole moments
up to O(υ11).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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