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We study the orbits in a Manko–Novikov type metric (MN) which is a perturbed Kerr metric.
There are periodic, quasi-periodic, and chaotic orbits, which are found in configuration space
and on a surface of section for various values of the energy E and the z-component of the angular
momentum Lz. For relatively large Lz there are two permissible regions of nonplunging motion
bounded by two closed curves of zero velocity (CZV), while in the Kerr metric there is only
one closed CZV of nonplunging motion. The inner permissible region of the MN metric contains
mainly chaotic orbits, but it contains also a large island of stability. When Lz decreases, the
two permissible regions join and chaos increases. Below a certain value of Lz, most orbits escape
inwards and plunge through the horizon. On the other hand, as the energy E decreases (for fixed
Lz) the outer permissible region shrinks and disappears. In the inner permissible region, chaos
increases and for sufficiently small E most orbits are plunging. We find the positions of the main
periodic orbits as functions of Lz and E, and their bifurcations. Around the main periodic orbit
of the outer region, there are islands of stability that do not appear in the Kerr metric (integrable
case). In a realistic binary system, because of the gravitational radiation, the energy E and the
angular momentum Lz of an inspiraling compact object decrease and therefore the orbit of the
object is nongeodesic. In fact, in an extreme mass ratio inspiraling (EMRI) system the energy E
and the angular momentum Lz decrease adiabatically and therefore the motion of the inspiraling
object is characterized by the fundamental frequencies which are drifting slowly in time. In the
Kerr metric, the ratio of the fundamental frequencies changes strictly monotonically in time.
However, in the MN metric when an orbit is trapped inside an island the ratio of the fundamental
frequencies remains constant for some time. Hence, if such a phenomenon is observed this will
indicate that the system is nonintegrable and therefore the central object is not a Kerr black
hole.

Keywords : Kerr black holes; perturbed integrable systems; Birkhoff islands.

1. Introduction

The geodesics in a Kerr metric are derived from
an integrable system of equations. The Kerr metric
itself is characterized by its mass M and spin S.
However, there are other solutions of the vacuum

Einstein equations, that are close to the Kerr solu-
tion, in which the geodesic equations of motion
are nonintegrable. The geodesic motions in such
backgrounds are either ordered or chaotic. It would
be of great interest to check whether the massive
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compact objects that lie at the center of galax-
ies are Kerr black holes or some other type of
exotic objects (see e.g. [Johannsen & Psaltis, 2010a,
2010b]). This could be attained by analyzing the
gravitational waves emitted by a compact object
(of mass 1 − 102 M�) spiraling around the central
massive object (with mass 105 − 109 M�) that lies
at the center of a galaxy; such binary systems are
called EMRIs (Extreme Mass Ratio Inspirals). It
is expected that future low-frequency detectors of
gravitational waves, like the space detector LISA
[Bender et al., 1998], will provide us sufficient
amount of information, by analyzing the spectrum
of the gravitational-wave signal, to answer the ques-
tion whether the central body is a Kerr black hole
or any other kind of a non-Kerr object.

In order to make this distinction more clear we
should analyze in detail all types of geodesic orbits
in a generic non-Kerr background and focus mainly
on the qualitative differences from the correspond-
ing orbits in a Kerr system.

Although there is a variety of vacuum solu-
tions of Einstein equations that could be used as
background metrics to study non-Kerr geodesics,
we have used a specific family of asymptotically flat
spacetimes that incorporates the basic characteris-
tics of a generic metric that could be formed as a
deviation from the Kerr metric. The particular fam-
ily MN is a one-parameter subfamily of the so-called
Manko–Novikov multiparametric family of metrics
[Manko & Novikov, 1992]. The Manko–Novikov
family of spacetimes was actually constructed to
describe the exterior vacuum of any axisymmetric
object one could consider. By setting the value of
the new parameter of MN equal to zero we get back
the Kerr metric and that is why the MN metric was
named by Gair et al. [2008] a “bumpy black hole
spacetime (it should be emphasized though that
there are infinite ways to create bumpy black hole
spacetimes, and MN is simply one of those). The
orbits in this metric were first studied in [Gair et al.,
2008] and more thoroughly later in [Apostolatos
et al., 2009; Lukes-Gerakopoulos et al., 2010]. In
the present paper we study in a more systematic
way the orbits in a MN metric for a great vari-
ety of parameter values and we discuss their effects
on the spectrum of the corresponding gravitational
waves.

The form of the MN metric is given in
[Gair et al., 2008; Lukes-Gerakopoulos et al., 2010].
We do not reproduce it here because it is given by a
rather long and complicated formula, which is used

by our numerical code in order to solve the geodesic
equations for a test particle in the corresponding
background.

The MN metric is assumed to have the same
mass M and spin S as the corresponding Kerr
metric, while its quadrupole moment

M2 = −M

[(
S

M

)2

+ qM2

]
(1)

differs from the corresponding Kerr moment
M2,K = −S2/M by the quantity −qM3, where q
is the new parameter of the MN metric that pro-
duces the deviation of the MN metric from the cor-
responding Kerr metric. Actually all higher than the
quadrupole multipole moments are different from
the corresponding multipole moments of Kerr as
well when q is nonzero. If q = 0 the MN metric
is reduced to Kerr. In the present paper we con-
sider only the case q > 0, which corresponds to an
oblate perturbation of the Kerr metric.

In Sec. 2 we study systematically the orbits
for a wide range of parameter values of the MN
metric. In Sec. 3 we study the characteristics of
the main periodic orbits. In Sec. 4, we focus our
attention on the effects of the nongeodesic orbits
on the corresponding gravitational waves through
which one could in principle distinguish a non-Kerr
from a Kerr metric. Finally in Sec. 5 we draw our
conclusions.

2. Orbits in the Manko–Novikov
(MN) Metric

In the framework of General Relativity, the Einstein
field equations play the role of the classical Pois-
son equation for a given mass and energy distribu-
tion. The metric of the spacetime induced by such
a distribution determines the geodesics followed by
the test particles, in analogy with the trajecto-
ries followed by test particles in a given “classical”
gravitational potential. One of the well-known and
astrophysically relevant vacuum solutions of the
Einstein field equations is the Kerr metric, which
is characterized uniquely by a mass and an angular
momentum. A broader family of vacuum solutions
of Einstein equations, known as Manko–Novikov
(MN) solutions, depend on one more parameter
than Kerr, the quadrupole-deviation parameter q.
By setting q = 0, we obtain the Kerr solution. This
new metric can be used to describe approximately
the exterior of an axisymmetric object that has a
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finite distribution of mass and angular momentum,
and it would be crucial if we could somehow detect
qualitative differences in the geodesics between the
two types of metrics.

In the following we use the Weyl–Pappapetrou
line element expressed in cylindrical coordinates
(t, ρ, z, φ) to describe the orbits (see e.g. [Gair et al.,
2008] or [Lukes-Gerakopoulos et al., 2010]). The
MN system has an axis of symmetry z and a plane
of symmetry z = 0. Thus we consider orbits on the
meridian plane (ρ, z), while the azimuth φ can be
easily computed from ρ(τ) and z(τ) (see [Lukes-
Gerakopoulos et al., 2010]), where τ is the proper
time.

The MN is a stationary axisymmetric metric,
thus the geodesic orbits are characterized by two
integrals of motion: the energy E = −pt and the
z-component of the angular momentum Lz = pz.
The test mass µ of the orbiting body is also fixed
and is represented by the constancy of the Hamilto-
nian function itself. In order to study various types
of geodesic orbits we have assumed fixed values for
the mass (M = 1) and the spin (S = 0.9M2) of the
metric, while we have chosen various values for
the orbital parameters E,Lz and the quadrupolar
parameter q. By choosing M = 1 the dimensionless
spin parameter χ = S/M2 is equal to the spin S
itself.

The velocities ρ̇ and ż satisfy an equation
analogous to a generic two-dimensional Newtonian

problem under conservative forces

1
2
(ρ̇2 + ż2) + Veff(ρ, z) = 0 (2)

where Veff is an effective potential that depends
on the coordinates ρ, z, the constants of motion
E,Lz, and the parameters of the metric M,S, q
(see [Lukes-Gerakopoulos et al., 2010] for details).
A test particle is allowed to move only in the regions
where Veff ≤ 0. The boundaries of these regions are
the so-called CZVs (curves of zero velocity) since
there the orbits assume zero velocity (ż = ρ̇ = 0).
For z = 0 (along the equatorial plane) the effective
potential Veff as a function of ρ has the form shown
in Fig. 1(a). The corresponding allowed region for
an orbit is either between A and B, or between A′
and B′, or between A′′ and ρ = 0. The correspond-
ing effective potential in the Kerr case is shown
in Fig. 1(b). In the Kerr case ρ can vary either
between A and B, or between A′ and ρ = 0. The
allowed regions that include the ρ = 0 point cor-
respond to plunging orbits, that is, to orbits that
will end up plunging to the central singularity of
the metric.

For a certain range of parameters there are two
distinct closed CZVs within which there are bound
geodesic orbits. The central points u0 (ρ ≈ 8.35,
z = 0) and u′

0 (ρ ≈ 0.886, z = 0), corresponding
to the values of the parameters shown in Fig. 2(a),
represent the initial conditions (along ρ̇ = 0) for
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Fig. 1. (a) The effective potential Veff as a function of ρ, for z = 0 (on the equatorial plane) and E = 0.95, Lz = 3, q = 0.95,
χ = 0.9, M = 1. (b) The corresponding Veff in the Kerr case (q = 0).
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Fig. 2. (a) The permissible regions (inside the CZVs) of motion on the meridian plane (ρ, z) for parameters E = 0.95, Lz = 3,
q = 0.95, χ = 0.9 and M = 1. (b) The permissible region in the corresponding Kerr case (q = 0; all other parameters as
in (a)).

the two main periodic orbits shown in Figs. 3(c)
and 3(d). These orbits oscillate periodically around
the equatorial plane z = 0. Close to ρ = 0 there are
five more CZV curves that are in contact with the
neighborhood of ρ = 0. Orbits inside these CZVs
eventually plunge through the horizon which lies
along the segment ρ = 0, |z| ≤ k, where

k = M
χ2 − (

√
χ2 − 1 − χ)2

χ2 + (
√

χ2 − 1 − χ)2
. (3)

The horizon of the MN metric does not fully enclose
the central singularity. Therefore the fact that the
MN metric is not characterized only by its mass
and spin, but also by its oblateness q, is compat-
ible with the no-hair theorem. In fact, the hori-
zon of MN is cut by a line singularity across the
equatorial line ρ = z = 0 [Gair et al., 2008], while
this singularity does not exist in the case of the
Kerr metric. As mentioned before the Kerr met-
ric has only one closed CZV around the point u0

[ρ ≈ 8.44, z = 0 corresponding to the values of the
parameters shown in Figs. 2(a) and 2(b)]. The u0

point marks the initial condition (with ρ̇ = 0) for
the periodic orbit in Kerr.

Inside the outer CZV of the MN metric most
orbits are ordered [Fig. 3(b)], while in the inner
CZV most orbits are chaotic [Fig. 3(a)]. A method
to distinguish between ordered and chaotic orbits is
by considering a Poincaré surface of section, i.e. a
surface intersecting all the orbits in phase space and

finding the successive intersections of every orbit
by this surface. The successive intersections of an
ordered orbit are along a curve that is called invari-
ant curve (Fig. 4), while the successive iterates of a
chaotic orbit are scattered irregularly. The invariant
curves either encircle the central periodic orbit (the
one that passes through the point u0 with ρ̇ = 0)
or form a chain of islands of stability around sta-
ble resonant periodic orbits. In Fig. 4 we see three
islands of stability around a resonant orbit (reso-
nance 2/3), and two couples of islands around two
different resonant periodic orbits of the resonance
1/2. Between the three islands of stability there are
three points corresponding to an unstable periodic
orbit of the 2/3 resonance. Between the four islands
of stability there are four points corresponding to
two unstable periodic orbits of the resonance 1/2,
located at symmetrical positions with respect to the
axis z = 0. Near the unstable periodic orbits the
orbits are chaotic and their iterates on the Poincaré
surface of section are scattered. In the case of Fig. 4
this scatter lies in extremely thin zones around and
between the islands of stability. These zones are not
visible in the figure.

In order to find the islands of stability in Fig. 4,
it is necessary to proceed along small steps in mov-
ing from one invariant curve to the next one. A
systematic way to find the resonant islands and
the respective chaotic domains is by calculating the
rotation numbers along successive orbits at various
distances from the central orbit u0 (for a review see
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Fig. 3. (a) A chaotic orbit inside the inner CZV of Fig. 2(a). (b) Two ordered orbits inside the outer CZV of Fig. 2(a).
(c) The periodic orbit starting from the point u′

0. (d) The periodic orbit starting from the point u0, and a periodic orbit of
multiplicity 3 on the surface of section z = 0. Note that only the edge points of the latter orbit touch the CZV.

[Contopoulos, 2002]). Thus in Fig. 4, we have drawn
the first four iterates of a regular orbit that has a
rotation number larger than 2/3. In order to mea-
sure the rotation number we compute the average
fraction of a circle as we advance from one iterate to
the next moving clockwise. The rotation number νθ,
as a function of ρ along the axis ρ̇ = 0 (on the sur-
face of section at z = 0) looks like a smooth mono-
tonic curve [Fig. 5(a)]. This is actually a smooth
strictly monotonic curve in an integrable case, like
the Kerr metric. However, in a nonintegrable case
there are many (in fact infinite) plateaus near every
resonant value (rational number), like the plateau of

Fig. 5(b). In order to find these plateaus we require
a small step ∆ρ between successive initial values
of ρ. The orbits corresponding to the initial con-
ditions of a plateau form a chain of islands around
the stable resonant orbit, all with the same rotation
number as the periodic orbit that lies at the cen-
ters of these islands, e.g. the orbits in the plateau
2/3 form three islands, all having the same rotation
number 2/3.

In an integrable case, like the Kerr metric, there
are no islands of stability. All the resonant periodic
orbits are neutrally stable and do not form islands
around them. In fact, a resonant invariant curve on
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Fig. 4. The Poincaré surface of section (z = 0) in the MN
case containing orbits of the outer CZV.

which lies a periodic orbit of period T has all its
points as initial conditions of periodic orbits with
the same period T . Thus the existence of islands of
stability is an indication of nonintegrability. How-
ever, there are particular integrable systems with
one type of island of stability [Contopoulos, 1978],
e.g. a Hamiltonian system of two degrees of freedom
expressed in action angle variables which depends
on the two actions J1, J2 and a particular combi-
nation of the angles nθ1 − mθ2,with n,m ∈ N.
Nonetheless, a system with more than one type of

islands (e.g. both double and triple islands in the
same system) cannot be integrable. This is consis-
tent with the nonexistence of a Carter-type integral
in generic non-Kerr cases [Flanagan & Hinderer,
2007; Brink, 2008]. However, the outer permissible
region of the MN system (the surface of section of
which has been drawn in Fig. 4), is quite close to an
integrable one. In this system chaos is very limited
and thus not visible in Fig. 4. It exists mainly close
to the unstable periodic orbits that lie between the
islands of each chain of islands.

On the other hand, the inner CZV [Fig. 2(a)]
contains many chaotic orbits, but it contains also
some ordered orbits. On the Poincaré surface of sec-
tion (Fig. 6) we see the chaotic domain and a large
island of stability around a point u′

0. There are also
some very small islands of stability of multiplicity 3.
The orbits in the inner regions of the MN system
have not been studied in detail up to now and they
have been considered “a very interesting puzzle”
[Brink, 2008]. For this reason, we study them in
some detail in the present paper.

If we decrease Lz, while keeping E and q fixed,
the topology of the CZV changes [Fig. 7(a)]. Namely
for Lz = 2.98, just a little smaller from the value
Lz = 3 of Fig. 2(a), the two main CZVs have
joined. At the point of junction, an unstable peri-
odic orbit is formed between the two previously
separate CZVs. This saddle point exists for Lz <
2.99761912 and corresponds to the local maximum
of the effective potential Veff near ρ = 2 (Fig. 2).
On the corresponding Poincaré surface of section
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Fig. 5. (a) The rotation number νθ as a function of ρ along the line ρ̇ = 0 (and z = 0, ż > 0). (b) A magnification of the
region close to the plateau at νθ = 2/3.
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Fig. 6. The Poincaré surface of section of the inner permis-
sible region in the case of Fig. 2(a).

the permissible regions are joined; that is, there are
chaotic orbits that move in both regions. In this
case the chaotic sea of the inner region has now
been extended into the outer region as well, form-
ing a chaotic layer around the whole ordered region
which surrounds the point u0 [Fig. 7(b)].

As Lz decreases further, the neck joining the
inner and the outer regions of the CZV, containing

the nonplunging orbits, expands [Fig. 8(a)]. Now
the minimum ρ of the former CZV does not lie
on the ρ-axis (z = 0), as in Fig. 7(a). In fact
there are two minima with z �= 0, at symmetrical
locations with respect to the ρ-axis, which define the
tips of two extensions of the CZV each approaching
one of the two inner lobe-like CZVs which contain
plunging orbits. These two CZVs lie on either side of
the central lobe-like CZV which also contains plung-
ing orbits. The permissible region of nonplunging
orbits near these extensions contains mostly chaotic
orbits [Fig. 8(b)].

For even lower values of Lz (Lz = 1.6, E =
0.95, q = 0.95) the aforementioned extensions join
the two symmetrical plunging areas around the
central one [Fig. 9(a)] and all the chaotic orbits
belonging to the chaotic sea, surrounding the island
around the stable orbit u0, eventually plunge
through the horizon. In Fig. 9(a) we observe the
formation of another two symmetrical extensions of
the main CZV for |z| values a little higher than
for the already joined extensions. These extensions
for still smaller Lz values (Lz = 1) join the two
more distant plunging permissible areas [Fig. 9(b)]
and create two more channels for chaotic orbits to
plunge in.

While Lz decreases (with constant E = 0.95
and q = 0.95) the proportion of phase space sur-
face occupied by the chaotic orbits on the surface
of section z = 0 increases. For Lz = 3 most of the

(a) (b)

Fig. 7. (a) The CZVs on the (ρ, z) plane for E = 0.95, Lz = 2.98 and q = 0.95. The thick dots represent initial conditions
(along with ρ̇(0) = 0) for stable periodic orbits while the “x” marks the initial condition of an unstable periodic orbit. (b) On
the surface of section z = 0 the chaotic domain of the inner permissible region expands and forms a chaotic layer just inside
the boundary of the outer region.
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(a) (b)

Fig. 8. (a) The CZVs for Lz = 1.7, E = 0.95, q = 0.95. The dot at the center of the diagram represents the initial condition
for the stable orbit u0 and the “x” represents the initial condition for the unstable periodic orbit. (b) A chaotic orbit in the
inner part of the permissible space.

chaotic orbits are inside the inner closed CZV, but
this region contains also an important island of sta-
bility (see Fig. 6). There are also very small regions
of chaos around the unstable periodic orbits of the
outer permissible region. The proportion of the area
on the surface of section z = 0 that is occupied by
chaotic orbits is about 20%. In order to estimate
this fraction, we measured the area occupied by
the chaotic orbits on the surface of section and we

divided it by the total area covered by the allowed
orbits. At lower values of Lz, the inner island of sta-
bility (around u′

0) shrinks in size, and chaos starts
occupying the envelope of the ordered region in
the outer part of the now joined permissible region
[Fig. 7(b)]. The proportion of the total area on the
surface of section z = 0 occupied by chaotic orbits
as a function of Lz is given in Fig. 10(c). We see
that the proportion of chaotic orbits increases as Lz

(a) (b)

Fig. 9. (a) The CZVs for Lz = 1.6, E = 0.95, q = 0.95 and (b) the CZVs for Lz = 1, E = 0.95, q = 0.95 near the horizon
ρ = 0.
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Fig. 10. Chaos on the Poincaré surfaces of section for (a) Lz = 2.7 and (b) Lz = 1.7, surrounding a large region containing
ordered orbits (the closed blank area). (c) The proportion of the available phase space covered by chaotic orbits as a function
of Lz for E = 0.95, q = 0.95.

decreases [Figs. 10(a) and 10(b)], and for Lz ≤ 1.6
it is already larger than 80%.

For even smaller values of Lz (Lz � 1.6) all
the chaotic orbits belonging to the chaotic sea sur-
rounding the main island of stability plunge through
the horizon, while the chaotic orbits which appear
between the islands inside the main island remain
nonplunging. On the other hand, orbits just out-
side the boundary of the main island stay there
for a long time before they plunge in. These orbits
that stay close to the boundary of the main island

Fig. 11. A sticky chaotic domain (dark ribbon with holes)
surrounding the region of ordered orbits for Lz = 0.1, E =
0.95, q = 0.95. In the ordered region there are islands of sta-
bility of resonances 1/3 and 1/2. The sticky zone also contains
several higher order islands of stability.

exhibit stickiness (for a review about stickiness see
[Contopoulos, 2002]). In Fig. 11 we see this sticky
domain as a dark ribbon with small empty holes.
The empty holes contain higher order islands of sta-
bility. Orbits starting on the left of the dark ribbon
of Fig. 11 plunge in through the horizon very fast
and do not produce the densely populated chaotic
regions as in Figs. 10(a) and 10(b).

Next we consider the orbits for low values of
E. In order to study them we first examine how
the shape of the CZVs changes, if we keep Lz and
q constant (Lz = 3, q = 0.95), but decrease the
energy. What we get is the series of curves of Fig. 12.
As E decreases below E = 0.95 the two permissi-
ble regions of nonplunging orbits get further and
further apart and they shrink. For E ≈ 0.93210
the outer region disappears and for even smaller
E, there is only one permissible region with non-
plunging orbits, the one that was previously called
the inner region. This region shrinks further as
E decreases [compare Fig. 12(a) corresponding to
E = 0.935 and Fig. 12(b) corresponding to E = 0.7]
and for E = 0.2 it is restricted between the three
central CZVs of plunging orbits [Fig. 12(c)]. For
even smaller E the two CZVs of plunging orbits,
above and below the equatorial plane join. When
this happens most orbits plunge fast through the
horizon [Fig. 12(d)].

The details of the transition from Figs. 12(c)
and 12(d) are of particular interest. The nonplung-
ing region of Fig. 12(c) for E = 0.2 consists almost
exclusively of ordered orbits, which are shown in
Fig. 13(a). The orbits are deployed around a cen-
tral periodic orbit u′

0 at ρ ≈ 0.745. As E decreases
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(a) (b)

(c) (d)

Fig. 12. The CZVs for (a) E = 0.935, (b) E = 0.7, (c) E = 0.2 and (d) E = 0.1 while Lz = 3, q = 0.95.

the periodic orbit moves closer to the horizon, and
for E = 0.192 it is at ρ ≈ 0.736 [Fig. 13(b)]. In
Fig. 13(b) we see also another stable periodic orbit
(point u′′

0) at ρ ≈ 0.764 and an unstable periodic
orbit at ρ ≈ 0.775 (point u′′′

0 ). The latter pair of
orbits was first formed at E � 0.193 at a “tan-
gent bifurcation” (these orbits bifurcate only from
each other). Most orbits in Fig. 13(b) are ordered
and form closed invariant curves. In particular, the
invariant curves close to the boundary surround

both islands around u′
0 and u′′

0 . There is only a very
small chaotic region close to the unstable point u′′′

0

and its asymptotic curves.
As E increases further the chaotic region

around the unstable point u′′′
0 swells and diffuses

towards the boundary of the islands [Fig. 13(c)].
At particular values of E we have bifurcations of
higher order periodic orbits from the central point
u′′

0. For example in Fig. 13(c) (corresponding to
E = 0.191) we see a double island with rotation
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(a) (b)

(c) (d)

Fig. 13. Invariant curves and chaos on the surface of section (ρ, ρ̇, z = 0) for (a) E = 0.2, (b) E = 0.192, (c) E = 0.191 and
(d) E = 0.1903 (with Lz = 3, q = 0.95).

number νθ = 1/2 and a triple island with rotation
number νθ = 1/3.

For E = 0.1903 [Fig. 13(d)] chaos has increased
considerably and we see further bifurcating islands
around u′′

0 (now at ρ ≈ 0.760). In particular we see
two islands with rotation number νθ = 1 (ρ ≈ 0.756
and ρ ≈ 0.765); these two islands consist of two
distinct orbits, in contrast to what happens when
νθ = 1/2 where an orbit starting at one island
passes alternatively through both islands.

When E < 0.1901 the lobes of the curves of
zero velocity above and below the region of the
nonplunging region of Fig. 12(c) join the central
nonplunging region. Then most of the chaotic orbits
escape upwards or downwards along the z-axis, and
finally plunge through the horizon [see Fig. 14(a)
which corresponds to E = 0.1899]. However, an
island of stability still remains around ρ = 0.73
[Fig. 14(b)]. As E decreases further the stable peri-
odic orbit u′

0 moves further inwards, very close to
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(a) (b)

Fig. 14. (a) An orbit escaping upwards (z > 0) and plunging through the horizon for E = 0.1899 (Lz = 3, q = 0.95). (b) The
corresponding surface of section. There is a large island surrounding u′

0 (near ρ = 0.7308, ρ̇ = 0), some islands of higher order
on the right part of the figure, and an almost blank region of the fast escaping orbits, surrounded by chaotic orbits that escape
after a larger time.

the inner boundary. For E < 0.1858 u′
0 becomes

unstable and for a little smaller E the island around
it disappears. On the other hand, the island gen-
erated around u′′

0 persists for E = 0.18 but for
E = 0.17 it has disappeared.

It is remarkable that the inner permissible
region of the nonplunging orbits assumes its small-
est size for E ≈ 0.265, below which it starts expand-
ing again before it gets swallowed by the lobes of the
plunging regions.

3. Characteristics

The position of a periodic orbit as a function of a
parameter of the system is called a characteristic.
In Fig. 15 we give the characteristics of the main
families of periodic orbits in the MN metric (for
q = 0.95, χ = 0.9), namely the central periodic
orbit of the outer region (the “main island center”
u0), the periodic orbit 2/3 (the point lying on the
line ρ̇ = 0 of the surface of section at z = 0),
and the unstable saddle orbit, as functions of Lz

for E = 0.95 [Fig. 15(a)] and as functions of E
for Lz = 3 [Fig. 15(b)]. In the same figures we have
drawn also the boundaries of the permissible regions
for z = 0, i.e. the intersections of the CZVs with
the axis z = 0. These are the outer and the inner
boundaries of the nonplunging orbits region, when
the nonplunging regions are joined. When there are

two distinct regions containing nonplunging orbits
we mark the middle outer boundary (MOB), that
is the inner boundary of the outer region, and the
middle inner boundary (MIB), that is outer bound-
ary of the inner region.

In Fig. 15(a), we see that the central orbit (u0)
has an almost constant position, while the orbit 2/3
bifurcates from the central family for Lz ≈ 0.75
and moves inwards (towards ρ = 0) as Lz increases.
This orbit reaches the MOB for Lz ≈ 3.15 while for
larger Lz u0 does not exist at all. The saddle point
is generated when the two nonplunging CZVs merge
for Lz = 2.99762 and then it moves inwards as Lz

decreases. On the other hand, the outer boundary
of the outer CZV moves to large distances when Lz

decreases, while the corresponding inner boundary
remains at a constant distance from the horizon.
The MOB and the MIB show up for Lz ≥ 2.99762.
For larger Lz, the MIB and the MOB get further
apart, i.e. the MIB moves inwards while the MOB
moves outwards. For Lz ≈ 3.40935 the outer bound-
ary and the MOB join, and then the outer region
completely disappears. On the other hand the MIB
moves inwards as Lz increases and appears to level
off for Lz > 3.4.

In Fig. 15(b) we give the characteristics and
boundaries as functions of E. As E increases, the
outer boundary increases enormously, approaching
infinity as E → 1, while the inner boundary remains
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Fig. 15. The characteristics of the main families of periodic orbits (for q = 0.95, χ = 0.9) in the MN metric along the line
ρ on the surface of section at z = 0 and the corresponding boundaries of the permissible regions (a) as functions of Lz for
E = 0.95, and (b) as functions of E for Lz = 3.

at an almost constant position. The central peri-
odic orbit (u0) moves also outwards for increasing
E, while the orbit 2/3 moves inwards. The orbit
2/3 bifurcates from the central orbit for E ≈ 0.935.
For large E we have a unique large CZV contain-
ing the nonplunging orbits, but for E ≤ 0.95038
the permissible region splits into two. The inner
region is between the MIB and the inner bound-
ary. This region shrinks slightly as E decreases.
The outer region is between the MOB and the
outer boundary. This region shrinks quickly as E
decreases and finally at E ≈ 0.93210 it disappears.
For E ≤ 0.93210 there is no outer region and thus
no central periodic orbit u0. As long as the CZV
is unique (E ≥ 0.95038) there is also an unsta-
ble saddle point which moves slightly inwards as
E increases.

The characteristics of the stable periodic orbit
u′

0 of the inner region as functions of Lz and E
are shown in Fig. 16. The periodic orbit u′

0 is very
close to the inner boundary shown in Fig. 15. For
E = 0.95 and Lz > 2.6125, u′

0 is stable, but for Lz <
2.6125 it becomes unstable. On the other hand as we
decrease E for constant Lz = 3, the periodic orbit
u′

0 moves initially (as long as E � 0.92) outwards
[see Fig. 16(b)], but for E � 0.92, u′

0 moves inwards,
until it reaches a minimum value for E ≈ 0.265. For
the interval 0.265 � E � 0.196 the point u′

0 moves
slightly outwards for decreasing E, and then for
E � 0.196, u′

0 moves inwards again (Fig. 17). The

size of the region of permissible motion decreases
as E decreases [Figs. 12(a) and 12(b)], but for
E � 0.265 this region starts expanding again.

The details of the characteristics of the peri-
odic orbits for E ≤ 0.2 are shown in Fig. 17. We
see the characteristic of the main periodic orbit u′

0

of the inner island and the boundary of the permis-
sible region along the line z = 0. Furthermore, we
have drawn the characteristics of the periodic orbits
u′′

0 and u′′′
0 of Fig. 13, and of the main bifurcating

families from u′′
0 along the axis ρ̇ = 0. The rota-

tion number along every family bifurcating from u′′
0

is constant and it is marked in Fig. 17. The rota-
tion number of the orbit u′′

0 (the limit of the rota-
tion number of the invariant curves around u′′

0 as
they shrink to u′′

0) increases as E decreases. When
the rotation number νθ of u′′

0 becomes νθ = 1/2
the orbit u′′

0 becomes unstable and a stable family
1/2 bifurcates. For a small interval of values ∆E
of decreasing E, u′′

0 remains unstable, and for even
smaller E it becomes stable again. When νθ = 1,
the orbit u′′

0 generates by bifurcation a stable fam-
ily 1/1 and becomes again unstable. For smaller E
the family u′′

0 has an infinity of transitions to sta-
bility and instability. The phenomenon of infinite
transitions to instability and stability that leads to
the termination of a family of periodic orbits at
the escape energy was described in detail in a dif-
ferent dynamical system [Contopoulos & Zikides,
1980; Contopoulos et al., 1987]. In the present case
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Fig. 16. The characteristic of the periodic orbit u′
0 lying in the center of the main island of the inner region (for q = 0.95,

χ = 0.9) (a) as function of Lz for E = 0.95 and (b) as function of E for Lz = 3. The dotted lower part of the curve of
Fig. 16(a) indicates that the periodic orbit has become unstable.

when E tends to 0.1901 the period of the orbit u′′
0

should tend to infinity and for E ≤ 0.1901, when
the CZVs have opened, the periodic orbit u′′

0 should
not exist anymore. The orbits close to u′′

0 escape and
plunge through the horizon as shown in Fig. 14(a).
The region of escaping orbits is shown in Fig. 17
with gray color. We notice that this region increases
abruptly as E decreases below the escape energy
E = 0.1901.

In Fig. 17 we have marked the characteristic of
the unstable family u′′′

0 (dotted line) and the locus
of the first homoclinic intersection of the asymp-
totic curves of the orbit u′′′

0 (dashed line). The
characteristic of u′′′

0 approaches the outer boundary
as E decreases. Close to these lines the orbits are
chaotic. However chaos is quite limited for E only
slightly smaller than its value at the tangent bifur-
cation of the orbits u′′

0 and u′′′
0 [e.g. for E = 0.192,

Fig. 13(b)]. The asymptotic curves from the unsta-
ble orbit u′′′

0 separate the invariant curves that
close around u′′

0 from those that close around u′
0

[Fig. 13(b)]. As E decreases chaos becomes more
important [Figs. 13(c) and 13(d)], and when E is
smaller than the escaping energy (the energy at
which the closed CZV of [Fig. 13(c)] join the upper
and lower CZVs of the plunging orbits) most chaotic
orbits escape.

The family u′
0 remains stable as E decreases to

the left of the border of Fig. 17, until E ≈ 0.186. For
a little smaller E this family becomes unstable and
for even smaller E the surrounding invariant curves

disappear. On the other hand, the island formed by
the invariant curves around u′′

0 continues to exist,
even when this orbit and the nearby orbits escape,
but for E � 0.17 almost all orbits escape.
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Fig. 17. Characteristics of the periodic orbits and bound-
aries of the inner region for 0.189 < E < 0.2. Stable orbits
are denoted with continuous lines, and unstable orbits with
dotted lines. The unstable intervals of u′′

0 on the left of the
bifurcating families 1/2 and 1/1 are very small and they are
not marked. The gray area for E ≤ 0.1901 represents chaotic
orbits plunging through the horizon. The asymptotic curves
of the unstable orbit u′′′

0 intersect at the first homoclinic
points along the dashed curve. Close to this curve and to
the curve u′′′

0 the orbits are chaotic.
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4. Nongeodesic Orbits

In real EMRI systems the energy and the angu-
lar momentum are not conserved; they change adi-
abatically due to gravitational radiation. Thus the
real orbits are nongeodesic, although their deviation
from geodesics is very small. An estimate of the loss
of energy and angular momentum per unit time for
a test body in Kerr metric, dE/dt and dLz/dt, has
been provided by [Gair & Glampedakis, 2006] [see
Eqs. (44) and (45)]. We use these formulae, appro-
priately modified, to compute approximately the
corresponding losses in our MN system [Gair et al.,
2008; Lukes-Gerakopoulos et al., 2010].

For a relatively small time interval we may
consider dE/dt and dLz/dt almost constant; thus

E = E0 +
dE0

dt
t, Lz = Lz0 +

dLz0

dt
t (4)

where E0, Lz0 are the corresponding initial values
and dE0/dt, dLz0/dt are negative, and represent the
constant rates of loss. The rates of loss depend on
the mass ratio of the EMRI system; in fact as this
ratio tends to 0 the motion tends to become more
and more geodesic.

We have applied these approximate formulae in
our numerical calculation of the orbits for several

orbital periods. During this time, the structure of
the phase space changes gradually, e.g. the location
and the size of the resonant islands change. If an
orbit starts away from the main resonant islands it
moves adiabatically along different invariant curves
and, as a consequence, its rotation number grad-
ually changes in an apparently strictly monotonic
way. But if the orbit passes through an island of
stability its rotation number remains constant and
equal to a fixed rational number, like 2/3.

In the corresponding integrable case (the Kerr
metric), there are no islands of stability, thus the
variation of the rotation number νθ is always strictly
monotonic in time. However, in a nonintegrable
non-Kerr metric (like the MN metric) there are sev-
eral islands of stability and an orbit passing through
them assumes a constant value of νθ for some inter-
val of time. In this interval the rotation curve
exhibits a corresponding plateau. The existence
of such plateaus can be used as an observational
criterion to distinguish a Kerr from a non-Kerr
background, since the rotation number can be
inferred from the spectrum of the gravitational
waves.

In Fig. 18(a) we show a nongeodesic orbit for
an interval of time during which the orbit crosses
the resonance 2/3. Initially the nongeodesic orbit
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Fig. 18. (a) The black line joins the third intersections of a nongeodesic orbit (z = 0) and passes through an island of stability
of the 2/3 resonance. This black line performs a couple of windings on a surface of section while the nongeodesic loses energy
and angular momentum due to gravitational radiation. The blue point indicates the point of entrance of the nongeodesic orbit
to the resonance, while the red indicates the exit. The blue and the red curves represent the geodesic orbits if the blue and
the red points are used as initial conditions. (b) The evolution of the ratio of the corresponding fundamental frequencies as a
function of time for the orbit in (a). The dashed lines show the time interval during which the nongeodesic orbit is trapped.
The present evolution of the nongeodesic orbit corresponds to a binary with ratio of masses equal to 8 × 10−5.
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is outside but close to the island of stability 2/3
and its initial condition lies in the area between
the 2/3 resonance and the central orbit u0. The
angles formed between the successive intersections
of the nongeodesic orbit on the surface of section
at z = 0 as they are seen from the central peri-
odic orbit u0 are slightly larger than 4π/3. Thus
third intersection lies approximately at a particu-
lar invariant curve with νθ > 2/3. In Fig. 18(a)
we have joined every third intersection by a con-
tinuous line. Thus the nongeodesic curve crosses
successive invariant curves and revolves around u0.
When these intersections enter the 2/3 resonance,
e.g. the leftmost island of the three islands (Fig. 4),
they tend to follow the circulation of the geodesic
orbits, corresponding to the instantaneous values of
E and Lz, that form the island itself. As time pro-
gresses and E,Lz change, these resonance islands
move gradually closer to u0, e.g. the leftmost island
moves to the right. The nongeodesic orbit follows
the drift of the island while it moves around the
island for some time. If the time it remains inside
the island is sufficient, each third intersection of the
nongeodesic orbit may form a number of loops. In
Fig. 18(a) they form two loops inside the leftmost
island. Later on, these intersections exit the island
and then form a curve which approximates invari-
ant curves around the central orbit u0 with rota-
tion number νθ < 2/3. Because of the previously
described relative “motion” of the nongeodesic orbit
and the geodesic background, a nongeodesic orbit
whose initial condition lies between the 2/3 reso-
nance and the orbit u0 will eventually cross the 2/3
resonance and will finally find itself on the other
side of the resonance island.

The corresponding fundamental frequencies of
the spectrum of the gravitational radiation change
in time and their ratio follows a curve like the
one in Fig. 18(b). When the nongeodesic orbit is
outside the resonance (νθ > 2/3) the value of νθ

appears to decrease strictly monotonically. When
the nongeodesic orbit is entrapped inside the res-
onance its rotation number remains theoretically
constant. After the nongeodesic orbit exits the
resonant region the rotation number appears to
decrease again strictly monotonically. (For a more
detailed discussion of the relation between the fun-
damental frequencies of the spectrum and νθ see
[Lukes-Gerakopoulos et al., 2010].)

In Fig. 4(b) we see small oscillations of νθ dur-
ing the trapping period. This is due to the finite
time for which we evaluate the frequencies during

the evolution of the nongeodesic loops. We can-
not evaluate the frequencies for larger time inter-
vals, because the frequencies change continuously,
although this change is very slow. This imposed
finiteness in the frequency analysis has a side effect:
the loops are not averaged and therefore an extra
illusive frequency — the one connected with the
circulation of the island appears.

5. Conclusion

In this paper we have studied thoroughly the details
of the various types of orbits in a MN spacetime.
The nonintegrability of the corresponding geodesic
equations is quite clear since all the general char-
acteristics exhibited by systems that deviate from
an integrable one are present in this case as well.
Namely, more than one chain of Birkhoff islands are
present in a surface of section, while chaotic regions
are also present. The most important chaotic region
is mainly present in the inner closed CZV, where the
deviation from the Kerr metric is more pronounced.
Also when the two regions of allowed orbits are
joined, the chaotic behavior of the inner region is
partly transferred to the outer region. We have
also examined the behavior of the regions contain-
ing nonplunging orbits when the parameters of the
system (mainly E, Lz) change, and take extreme
values.

Finally we studied the case of a nongeodesic
orbit as it moves adiabatically in and out of a
resonance island. The plateau in the evolution of
the ratio of the corresponding gravitational wave
signal frequencies, that was analyzed in [Lukes-
Gerakopoulos et al., 2010], is present and can be
clearly used as a tool to distinguish a Kerr from a
non-Kerr metric.
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