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By detecting gravitational wave signals from extreme mass ratio inspiraling sources (EMRIs) we will

be given the opportunity to check our theoretical expectations regarding the nature of supermassive bodies

that inhabit the central regions of galaxies. We have explored some qualitatively new features that a

perturbed Kerr metric induces in its geodesic orbits. Since a generic perturbed Kerr metric does not

possess all the special symmetries of a Kerr metric, the geodesic equations in the former case are

described by a slightly nonintegrable Hamiltonian system. According to the Poincaré-Birkhoff theorem,

this causes the appearance of the so-called Birkhoff chains of islands on the corresponding surfaces of

section in between the anticipated KAM curves of the integrable Kerr case, whenever the intrinsic

frequencies of the system are at resonance. The chains of islands are characterized by finite width, i.e.

there is a finite range of initial conditions that correspond to a particular resonance and consequently to a

constant rational ratio of intrinsic frequencies. Thus while the EMRI changes adiabatically by radiating

energy and angular momentum, by monitoring the frequencies of a signal we can look for a transient

pattern, in the form of a plateau, in the evolution of their ratio. We have shown that such a plateau is

anticipated to be apparent in a quite large fraction of possible orbital characteristics if the central

gravitating source is not a Kerr black hole. Moreover, the plateau in the ratio of frequencies is expected to

be more prominent at specific rational values that correspond to the strongest resonances. This gives a

possible observational detection of such non-Kerr exotic objects.
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I. INTRODUCTION

The enterprise of searching for gravitational waves with
the interferometric devices that are already operating in
various places around the globe is under way.
Unfortunately, no positive outcome has come up yet [1].
Gravitational waves visiting us from powerful cosmic
sources are very weak upon reaching our planet. The
sensitivity of the present day detectors is not adequate to
distinguish undoubtedly the signal from noise; it is improv-
ing continuously though. On the other hand, null detection
of gravitational waves puts firm constraints on various
physical parameters related with known sources of gravi-
tational waves (e.g. rotating neutron stars [2]).

LISA, the future interferometric detector that is planned
to be launched by NASA and ESA during the forthcoming
decade, will be much more sensitive in detecting gravita-
tional waves from much more massive and much more
distant sources [3]. Among such sources are EMRIs
(extreme-mass-ratio inspirals), that is low mass compact
objects (neutron stars or solar-mass black holes) trapped in
the gravitational field of supermassive compact objects
which are probably located at the centers of galaxies [4–
6]. According to conventional astrophysical wisdom, such
supermassive objects are Kerr black holes. The gravita-
tional waves emitted in a Kerr background have been

extensively studied by a large number of people, and useful
techniques have been invented to gain physical information
about the characteristics of these sources from the analysis
of the corresponding waveforms [7–9]. Of course the ex-
traction of valuable astrophysical information from the
gravitational waves will be hindered by instrumental noise
[3] and confusion noise [10] (background unresolved sig-
nals). Furthermore, practical difficulties concerning the
search in the multiparametric space of templates for
EMRIs that will be used to detect such signals render the
accomplishment of such a goal even harder [11].
EMRIs are ideal sources of gravitational waves through

which one could explore the background metric that the
lighter object is tracing. In 1995, Ryan [12,13] showed that
almost circular and almost equatorial orbits in a generic
stationary and axisymmetric background could reveal the
lower order mass moments and mass-current moments by
monitoring the corresponding evolution of gravitational
waves that are emitted in the weak field region. Since all
multiple moments of a Kerr black hole are determined only
by its mass and its spin, one needs to know at least the
quadrupole moment (besides the mass and the spin) of the
central object to decide if the object is a Kerr metric or not.
However, while the measurement of the quadrupole mo-
ment is in principle feasible with LISA, the accuracy of
such measurement is limited due to a number of reasons:
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(i) The orbits of EMRIs are expected to be much more
general than simply circular and equatorial. (ii) The analy-
sis is limited to work in the weak field region, where the
gravitational wave emission is not as intense as in the
strong field region. (iii) The source should not be a very
distant one, so that the signal-to-noise ratio in the analysis
of gravitational waves is sufficiently high to be able to
obtain the parameters of the source with good accuracy.

An alternative approach for checking whether the back-
ground metric is that of a Kerr black hole is to focus on a
characteristic signature of EMRIs in a generic non-Kerr
background. This could be a yes/no measurement from
which one could decide if the field into which the small
object orbits is that of a massive Kerr black hole or not.
Various studies have been performed towards this line of
thought. Collins and Hughes [14] built a perturbed Kerr
metric and explored the effect of these perturbations on
physically observable quantities related with geodesics in
such a background. Later, Glampedakis and Babak [8]
showed that a perturbed Kerr metric leads to a significant
mismatch between the corresponding waveforms, although
there is an issue of confusion between waveforms of the
specific non-Kerr metric and a Kerr metric with different
orbital parameters. A similar approach assuming a more
astrophysically oriented non-Kerr metric was followed by
Barausse et al. [15]. Recently, Gair et al. [16] used a
specific exact solution of vacuum Einstein equations,
namely, the Manko-Novikov solution [17], which could
be turned into a pure Kerr metric by dialing a single
parameter, and studied the geodesics in such a metric.
Their analysis showed that for a range of metric parameters
there are two ringlike regions of bounded orbits in this
spacetime. In the outer one the orbits look regular, as if
there exists an isolating integral of motion, while in the
inner region the orbits seem to be ergodic. The two regions,
though, merge for a range of orbital parameters. It was
suggested by Gair et al. [16] that the transition of the orbits
from the regular to the ergodic region when the two afore-
mentioned regions merge, could have a clear observable
effect on the frequency spectrum of the corresponding
gravitational waves, especially if this transition is repeti-
tive from the former to the latter region and vice versa.
Another effect that was thoroughly explored by Gair et al.
is the instability that may arise just before the orbiting body
arrives at its innermost circular orbit (ISCO). This effect
might have a strong influence on the gravitational wave-
form at the final stage of the corresponding EMRI.
However, these new orbital features vary significantly
with the orbital and metric parameters.

Thus it would be important to seek for a generic feature
that clearly distinguishes a non-Kerr metric from a Kerr
one. Then it would be much easier to perform a specialized
observation to measure it. The fact that Kerr black holes
are so perfect and symmetric objects which are created
naturally renders all other gravitational fields of isolated

massive objects quite different. In contrast to the Kerr
metric, any other generic solution of Einstein field equa-
tions that describes the neighborhood of an isolated mas-
sive object is expected to be less symmetric. Even
axisymmetric and stationary metrics, but otherwise generic
ones, are not expected to have something analogous to the
Carter Killing tensor field, as it happens with the Kerr
metric [18]. Therefore, the existence of a Carter-like con-
stant that makes the geodesic orbits in a Kerr metric to be
characterized by a completely integrable system of equa-
tions [19], most probably is lost in a non-Kerr axially
symmetric and stationary, asymptotically flat metric.
Geodesic orbits in such a generic metric are described by
a nonintegrable Hamiltonian that deviates from the corre-
sponding integrable Kerr-type Hamiltonian. Furthermore,
if such a non-Kerr metric is not drastically different from a
Kerr one, a generic axially symmetric, and stationary
metric, that could in principle be realized by natural pro-
cesses, could be considered as a perturbed Kerr metric.
Another aspect of a nonintegrable system is the presence of
chaoticity in some of the orbits. Although the main idea we
explore in our paper is an observable signature of a non-
integrable metric that is not directly related with the cha-
oticity of orbits, our investigation offers examples of
chaotic orbits in relativistic situations continuing the re-
search of other people on this subject. In fact chaos has
been found in several problems of general relativity, for
example, in the case of fixed black holes, see e.g. [20–24],
in perturbed black hole spacetimes, see e.g. [25–30], in
systems with spinning test particles, see e.g. [31–35], and
in various cosmological models (see references in [36]).
The KAM theorem of Kolmogorov, Arnold, and Moser

[37], applies to Hamiltonian systems that are slightly per-
turbed from integrable systems. According to this general
theorem most tori of the corresponding integrable system,
that is the toroidal hyper-surfaces of phase-space on which
the phase orbits of the system are lying, get slightly de-
formed in the perturbed system, but they are not destroyed.
This is exactly the case presented by Gair et al. [16], who
studied geodesic orbits in the so-called Manko-Novikov
metric.
On the other hand, according to the Poincaré-Birkhoff

theorem, the resonant tori (the tori characterized by a
rational ratio of winding frequencies) of the integrable
system disintegrate when the system gets perturbed, and
consequently a chain of islands is formed on a surface of
section, instead of an infinite number of sets of periodic
points which is a characteristic feature of an integrable
system (for a thorough study of the equatorial periodic
orbits in the Kerr background see [38]). These islands are
characterized, as in the resonant tori of the integrable
system, by a ratio of winding frequencies of the system
that equals a rational number. The appearance of such
islands is a very distinct new signature of a slightly non-
integrable system and it is qualitatively different from the
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behavior of geodesics in a Kerr spacetime. They are always
present independently of the way the system deviates from
the corresponding integrable one. This new feature, if
observable, could clearly distinguish any kind of perturbed
Kerr metric from a pure Kerr metric [39].

We start by showing that these Birkhoff islands are
actually present in the Manko-Novikov metric studied in
[16]. However, such islands were not found in [16], be-
cause a very thorough exploration of the phase-space is
needed in order to reveal their existence. The rotation
number, a tool widely used in the study of systems where
chaos and order coexist, is employed in the search of
suitable initial orbital conditions that lead to the formation
of Birkhoff islands on a surface of section. The rotation
number is an index that is directly related to observable
quantities (see below).

Next we argue that, since these islands can be identified
by monitoring specific quantities, namely, the frequencies
of the emitted gravitational waves, we can tell if the metric
in which the orbiting object is moving is a Kerr or a non-
Kerr one by not observing or observing, respectively, a
fixed ratio of the two polar frequencies for a period of time
while the frequencies themselves are evolving. An ob-
served plateau in the evolution of the ratio of the corre-
sponding frequencies would be an unambiguous signature
of a non-Kerr metric. Moreover, since the most pronounced
resonances (thicker Birkhoff islands) correspond to
simple-integer-number ratios, like 2:3, or 1:2, the value
of the ratio of frequencies that is related to the most
extended plateaus should be a simple-integer-number ratio
as well. Thus we can focus our signal analysis on the time
interval when the ratio of polar frequencies assumes that
value and investigate the existence or not of a plateau in the
evolution of the ratio of frequencies. Even a null result in
such an analysis can be used to put firm constraints in the
likelihood that we have observed an EMRI in a pure Kerr
metric through gravitational waves.

Now from a practical point of view, we argue that a large
fraction of EMRIs that get trapped in the gravitational field
of a supermassive compact object in a generic eccentric
and nonequatorial orbit will evolve in such a way that the
corresponding orbit will eventually cross a resonant torus
(if the central massive object is a Kerr black hole) or the
corresponding Birkhoff chain of islands (if the central
object is described by a perturbed Kerr metric).
Respectively, the ratio of the frequencies will vary strictly
monotonically, or it will form a plateau. In the latter case
the duration of the plateau will depend (i) on the particular
metric which is related to the characteristics of the central
massive object, (ii) on the orbital parameters of the low-
mass object, and (iii) on the ratio of the masses involved in
the binary as well. This plateau can in principle be identi-
fied for a source with a sufficiently high signal-to-noise
ratio.

The present paper is organized as follows. In Sec. II we
repeat the basic characteristics of the Manko-Novikov

solution which was used and thoroughly analyzed in [16]
as an example of a non-Kerr metric which could be trans-
formed into a Kerr one by suitably adjusting a single
parameter. We are using the same metric to exhibit the
new feature that we propose to use as a yes/no test of a Kerr
metric. In Sec. III we start with a short description of the
Poincaré-Birkhoff theorem as a theoretical basis applied in
the perturbed Kerr case, and then we present a thorough
study of the surfaces of section of the specific non-Kerr
metric; the Manko-Novikov one. We show how we have
determined the initial conditions so as to form a few
Birkhoff chains of islands, by implementing a numerical
measurement of the rotation number for each geodesic.
Both regions of bound orbits that are present in this metric
are thoroughly explored through surfaces of section and the
final picture is discussed in every case; either when the two
regions are separated or connected. Apart from the
Birkhoff chains of islands, a new characteristic found in
our analysis is the existence of regular nonchaotic orbits in
the inner region. In Sec. IV we adiabatically change the
parameters of the geodesic orbits (imitating the dissipative
behavior of gravitational waves) so that the phase orbit
crosses a chain of Birkhoff islands. Here we present a
quantitative result that relates the duration of the plateau
with the various characteristics of the central and of the
orbiting bodies. We study the possible ways that this cross-
ing could take place and we get a crude estimate of the
range of orbital parameters of EMRIs that will eventually
lead the system to pass through a Birkhoff chain of islands
of a strong resonance. In Sec. V we analyze the evolution
of the ratio of frequencies before, during, and after the
crossing of a resonance by the nongeodesic orbit and we
obtain a plateau in the ratio of the monitored frequencies
during the crossing. We close our paper with Sec. VI by
summarizing the physical conclusions drawn from our
analysis. Finally in Appendix A we give the relations
between the Boyer-Lindquist coordinates and the
Keplerian elements, and in Appendix B we introduce a
new set of variables, which are more appropriate for our
Fourier analysis.

II. THE MANKO-NOVIKOV METRIC

A. Description of the MN spacetime

In order to demonstrate how the aforementioned new
features appear and what are their consequences, we are
going to use the same type of non-Kerr metric which was
used by Gair et al. [16]. It is a subclass of the multipara-
metric family of spacetimes that Manko and Novikov
constructed in 1992 [17] as a generalization of the Kerr
(and the Kerr-Newman) metric in an attempt to describe
the gravitational field of an arbitrary rotating and axially
symmetric isolated object. The corresponding construc-
tion, which is an exact solution of the vacuum Einstein
equations, was achieved by a nonlinear superposition of the
Kerr spacetime with an arbitrary static vacuum Weyl field
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in a concise analytical form (see [40]). While the general
solution of Manko and Novikov does depend on an infinite
number of parameters that are related to the multipole
moments of the gravitational field, the particular subclass
that we are going to study (the one studied in [16] as well)
depends on three parameters. Two of them determine the
mass M and the spin S of the source of the field, while the
third one, q, is a dimensionless index that measures the
deviation of its quadrupole mass moment from the quad-
rupole moment of the corresponding Kerr black hole (a
Kerr metric that has the mass and the spin of the new
metric). Thus the first four nonzero mass and current-
mass moments Ml, Sl (with l � 3) are fully characterized
by these three parameters:

M0 ¼ M; S1 ¼ S; M2 ¼ �M

��
S

M

�
2 þ qM2

�
;

S3 ¼ �M

��
S

M

�
3 þ 2qM2

�
S

M

��
; (1)

while the higher order moments are in general higher order
polynomials with respect to q. We have chosen to present
the moments in this way so that the first part of each
moment is merely the moment of the corresponding Kerr
metric. We remind that all multiple moments of a Kerr
metric are characterized by two parameters M and S=M
and are given by the following concise formula:

Ml þ {Sl ¼ M

�
{
S

M

�
l
: (2)

Having these in mind, we proceed to write the analytical
expressions for the metric functions of the particular sub-
class of Manko-Novikov metric (hereafter called MN met-
ric). As for all stationary, axially symmetric, and mirror
symmetric vacuum spacetimes the Weyl-Papapetrou line
element for this metric is

ds2 ¼ �fðdt�!d�Þ2 þ f�1½e2�ðd�2 þ dz2Þ þ �2d�2�
(3)

where all metric functions f, !, � should be considered as
functions of the prolate spheroidal coordinates x, y (the
coordinates �, z are the corresponding cylindrical coordi-
nates which could be expressed as functions of x, y as
well). Thus

� ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � 1Þð1� y2Þ

q
; z ¼ kxy (4)

and

f ¼ e2c
A

B
; (5a)

! ¼ 2ke�2c C

A
� 4k

�

1� �2
; (5b)

e2� ¼ e2�
0 A

ðx2 � 1Þð1� �2Þ2 ; (5c)

A ¼ ðx2 � 1Þð1þ abÞ2 � ð1� y2Þðb� aÞ2; (5d)

B ¼ ½ðxþ 1Þ þ ðx� 1Þab�2 þ ½ð1þ yÞaþ ð1� yÞb�2;
(5e)

C ¼ ðx2 � 1Þð1þ abÞ½ðb� aÞ � yðaþ bÞ�
þ ð1� y2Þðb� aÞ½ð1þ abÞ þ xð1� abÞ�; (5f)

c ¼ �
P2

R3
; (5g)

�0 ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

x2 � y2

s
þ 3�2

2R6
ðP2

3 � P2
2Þ

þ �

�
�2þ X2

‘¼0

x� yþ ð�1Þ2�‘ðxþ yÞ
R‘þ1

P‘

�
; (5h)

a ¼ �� exp

�
�2�

�
�1þ X2

‘¼0

ðx� yÞP‘

R‘þ1

��
; (5i)

b ¼ � exp

�
2�

�
1þ X2

‘¼0

ð�1Þ3�‘ðxþ yÞP‘

R‘þ1

��
; (5j)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 1

q
; (5k)

P‘ ¼ P‘

�
xy

R

�
; (5l)

where P‘ðzÞ denotes the Legendre polynomial of order l
given by

P‘ðzÞ ¼ 1

2‘‘!

�
d

dz

�
‘ðz2 � 1Þ‘: (6)

The three parameters k, �, � that appear in the formulas
above are the three parameters that characterize the metric
and are related to the mass M, the spin S, and the quadru-
pole deviation q through the following expressions:

� ¼ �Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � ðS=MÞ2p
ðS=MÞ ; k ¼ M

1� �2

1þ �2
;

� ¼ q

�
1þ �2

1� �2

�
3
:

(7)

The formula for � has been written as a function ofM and
ðS=MÞ (both of them have dimensions of mass), which are
the physical parameters of the central object that are com-
mon in the MN metric and the corresponding Kerr metric.
In [16], the formula for � is written as a function of the
dimensionless spin parameter � ¼ S=M2. We use the pa-
rameter � later in our numerical examples for simplicity.
The Kerr metric is a limiting case of the MN metric for

q ¼ 0. A nonzero q parameter distinguishes the two types
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of metrics. At this point we should note that the MNmetric
is the general solution described in [17] with all ai parame-
ters set to zero except of a2 which is the parameter � that
shows up in the metric functions. Also, the �2 term in
Eq. (5h) has been moved outside the sum (c.f., Eq. (3h) of
[16]) so as to avoid any confusion.

According to the thorough analysis of [16] the MN
metric is not a black hole solution, in agreement with the
no-hair theorem. The central singularity is surrounded by a
horizon which is broken along the equator by a circular line
singularity. As is the case with the Kerr metric, the MN
spacetime possesses an ergoregion (the region between the
static limit gtt ¼ 0 and the event horizon ðgxxÞ�1 ¼ 0) in
the form of lobes that surround the horizon. Moreover a
region of closed timelike curves (where g�� < 0) is

present (when q � 0) in the form of lobes that overlap
with the ergoregion. In all cases we have investigated the
region of permitted motion is not overlapping with the
region of the closed timelike curves, even though their
borders may touch each other.

Closing this general description of the MN metric we
should emphasize once more that this metric is an exact
vacuum solution that can be continuously turned into a
Kerr metric by setting q ¼ 0. The MN metric with q � 0
deviates from Kerr, being more prolate when q < 0 and
more oblate when q > 0. Thus the MN metric is a good
candidate to describe the field of a stationary axisymmetric
and isolated spinning object (the multipole moments of
which differentiate the corresponding metric from a Kerr
one) outside some central region where singular behavior
of the metric functions shows up.

B. Geodesics in the MN spacetime

Working in Lagrangian formulation, the geodesic orbits
in the MN metric are described as equations of motion of
the following Lagrangian

L ¼ 1
2�g�� _x

� _x� (8)

where � is the rest mass of the orbiting body and _� d
d	 (	

denotes the proper time along the orbit: ðd	Þ2 ¼ �ðdsÞ2).
Such a Lagrangian of purely kinetic form is invariant along
the orbit. Its invariance is related to the fact that the rest
mass of the orbiting test body is a conserved quantity
(p�p� ¼ ��2), and thus the value of L is ��=2.
Because of stationarity and axisymmetry of the MN metric
there are two more integrals of motion, respectively; the
specific energy

E ¼ �pt

�
¼ fð _t�! _�Þ (9)

and the specific z-component of angular momentum of the
orbiting test body

Lz ¼
p�

�
¼ f!ð _t�! _�Þ þ �2 _�=f (10)

(‘‘specific’’ means per unit rest mass). By suitable linear
combinations of these integrals of motion one yields the

following expressions for _� and _t:

_� ¼ f

�2
ðLz �!EÞ; (11)

_t ¼ !f

�2

�
Lz þ!E

�
�2

!2f2
� 1

��
: (12)

The two remaining equations of motion that determine
�ð	Þ and zð	Þ are thus sufficient to fully describe a geodesic
orbit in such a spacetime; the � and t coordinates are
subsequently obtained by direct integration of Eqs. (11)
and (12).
Substituting the above expressions in the Lagrangian of

Eq. (8) and taking into account the constant value of the
Lagrangian itself, we obtain the following constraint be-
tween the remaining four coordinates ð�; z; _�; _zÞ of phase
space

1
2 ð _�2 þ _z2Þ þ Veffð�; zÞ ¼ 0; (13)

where

Veffð�; zÞ ¼ 1

2
e�2�

�
f� E2 þ

�
f

�
ðLz �!EÞ

�
2
�

(14)

plays the role of an effective 2-dimensional potential. Note
that this expression is somewhat different from the expres-
sion for the effective potential in Eq. (13) of [16]; the
present expression is written so as to resemble better the
Newtonian analogue of energy conservation in potential
wells. The curve along which Veff ¼ 0 determines the
region of allowed orbits in the polar plane (the ð�; zÞ plane
that rotates along with the orbiting body). The orbits can
only move in the interior of such a curve, since the effective
potential is negative inside it (if we take into account the
third spatial coordinate � as well it is actually a toroidal
spacelike surface centered at the central singularity).
Whenever an orbit reaches the Veff ¼ 0 curve both veloc-
ities _�, _z become equal to zero. So we will denote this
curve as the curve of zero-velocity (CZV).
In general the effective potential of the MN metric

forms various distinct wells in the ð�; zÞ polar plane [see
Fig. 1(b)]. ForE< 1 there are only bound orbits, since then
the potential wells form CZVs that are closed and are not
extending to infinity. As explained in [16] for a prolate
perturbation of Kerr metric (q < 0) for a range of E, Lz

values there is a distinct outer well and a lobelike well
which is connected to the horizon within which we get
plunging orbits. These two wells can be connected for a
suitable set of orbital parameters. On the other hand for
oblate perturbations of the Kerr metric (q > 0) a new well
shows up near the central region, in which a new set of
bound nonplunging orbits live. Therefore, in the latter case
there is a pair of closed CZVs, an inner one and an outer
one (Fig. 1), which again can merge for a suitable range of
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orbital parameters. It should be noted that the outer well is
a shallow one that resembles a lot the potential well of the
Kerr metric. However the new inner well is a much deeper
one with intricate shape (part of this well is shallow but
there is also a very deep basin in it). Except from the
regions of the nonplunging orbits, in Fig. 1(b) the reader
can discern 5 more lobelike regions of permitted motion
which extend from the event horizon (� ¼ 0) to � & 0:7M.
These regions contain plunging orbits, a fact that excludes
them from the purpose of our paper, which is to study the
implications of nonintegrability in bound nonplunging
orbits.

The lower the energy, the higher is the effective potential
and the two distinct CZVs (if they are distinct) move
further apart. The effect of Lz is the opposite of E: the
higher the Lz, the CZVs move further apart. Finally the
effect of the source’s spin is to bring the two CZVs further
apart for lower values of S=M. The last conclusion comes
mainly from the fact that lower S=M values render the
function ! in the metric less important; hence the effect of
the Lz term in Eq. (14) effectively grows. The inner well
moves closer to the central region and eventually disap-
pears, when the ‘‘anomalous quadrupole’’ q goes to zero
from positive values. On the other hand the outer well does
not move or change its shape substantially for a wide range
of q values.

Furthermore, the distinct inner well (the one that arises
for positive q values) is very close to the central region
where anomalous regions are located. E.g. the ergoregion
can extend into the interior region of the inner well. This
case will be examined carefully later on when we analyze
the orbits in this region. Fortunately the region of closed
timelike curves remains outside the inner well or it merely
touches its boundary, at least for the range of parameters
which we have analyzed. We want to ensure that the orbits
studied do not enter the region of closed timelike curves; if
that happened it would lead us to odd behavior that would
have no clear physical meaning.

III. THE GEODESIC ORBITS IN MN COMPARED
TO KERR

A. The theoretical basis

In order to present the new observable features that arise
in the MN spacetime (as well as in any other similar non-
Kerr spacetime) in contrast with the Kerr spacetime, we
will describe in brief some basic theorems of dynamical
systems that apply in the case of geodesic orbits in the MN
spacetime.
Dynamical systems that are described by a Lagrangian

function like (8), can be described through a Hamiltonian
function as well by simply applying a Legendre transfor-
mation on the corresponding Lagrangian. The Hamiltonian
function that describes geodesic orbits in a MN metric (as
well as in the corresponding Kerr one, if one sets q ¼ 0) is

H ¼ p� _x� � L ¼ 1

2�
g��p�p�; (15)

where instead of the velocities _x� (with respect to proper
time) we use the corresponding momenta p� ¼ @L

@ _x� ¼
�g�� _x

� to obtain the final Hamiltonian form.

The specific Hamiltonian that describes geodesic orbits
in a MN spacetime, which includes the Kerr spacetime as a
special case, has no dependence on the coordinates t and�,
due to stationarity and axisymmetry of the spacetime,
respectively. Thus the corresponding momenta pt and p�

are conserved, that is pt and p� are integrals of motion.

These conserved momenta are nothing but the quantities
��E and �Lz, respectively, that we used earlier.
Furthermore, since dH=d	 ¼ 0 (autonomous Hamil-
tonian), H itself is a third integral of motion, namely H ¼
��. The first two integrals of motion can be used to reduce
the number of degrees of freedom from 4 to 2;, for ex-
ample, one could use only the coordinates �, z to fully
describe this 2-dimensional system. The value of the rest
two coordinates ð�ð	Þ; tð	ÞÞ along the geodesic orbit could
be inferred afterwards by simply integrating Eqs. (11) and
(12), as discussed in the previous section. Thus the phase
orbits lie on a 3-dimensional hypersurface of the corre-
sponding 4-dimensional phase space, because of the con-
servation of H.
Now, if such a Hamiltonian system of 4 degrees of

freedom is an integrable one, that is there is one more
integral of motion I4 which is independent from the pre-
vious ones and is in involution with them (fI4; Iig ¼ 0,
where Ii represents the first 3 integrals of motion and
f�; �g represents a Poisson bracket), then the phase orbits
lie on 2-dimensional surfaces. The Kerr spacetime is an
example of such an integrable case with the Carter constant
being this new extra integral of motion. This is exactly
what makes the Kerr spacetime a very distinct member of
the broad family of stationary, axisymmetric and asymp-
totically flat spacetimes. Moreover the natural formation of
Kerr black holes through gravitational collapse of astro-
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FIG. 1. (a) The shape of the 2-dimensional well Veffð�; zÞ near
Veffð�; zÞ ¼ 0 along the line z ¼ 0 for the MN metric with
parameters � ¼ 0:9, q ¼ 0:95 and orbital parameters E ¼
0:95, Lz ¼ 3M. (b) The CZVs (Veffð�; zÞ ¼ 0) on the ð�; zÞ
plane for the same set of parameters with (a).
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physical compact bodies according to the no-hair theorem,
renders the Kerr spacetime a unique highly symmetric case
of extreme astrophysical interest that has been extensively
studied for a long time [19,41].

On the other hand any kind of generic perturbation of a
Kerr metric that maintains the stationarity and axisymme-
try, most probably does not possess a 4th integral of
motion, as in Kerr. This new spacetime could arise from
a nonconventional astrophysical process that leads to other
types of ultracompact objects, or it could simply be pro-
duced by an axisymmetric distribution of matter around a
Kerr black hole (i.e. an accretion disc).

In an integrable autonomous system of 2 degrees of
freedom, like the one describing the geodesic orbits in a
Kerr metric, the bound orbits lie on 2-dimensional tori in
the 4-dimensional phase space. The values of the integrals
of motion (the Hamiltonian and the Carter constant) fully
characterize these tori; the tori that correspond to different
Carter-constant values are nested within each other, while
the Hamiltonian value defines the overall scale of the phase
space. If one considers a 2-dimensional surface that cuts
through a foliage of such tori (called Poincaré surface of
section), each torus defines a closed curve on this surface
(see e.g. [42]). This curve is called an invariant curve. Each
torus corresponds to a characteristic pair of frequencies
(one for each angle variable). Not only the two frequencies,
but also the ratio between them varies continuously from
one torus to the next. If the ratio of the frequencies is an
irrational number, a phase-orbit continuously winds around
its corresponding torus covering densely the surface of the
torus. This kind of orbit is called quasiperiodic. A quasi-
periodic orbit goes repeatedly through a surface of section
defining a succession of points which eventually cover
densely the corresponding invariant curve on the surface
of section (called quasiperiodic invariant curve). In the
special case where the ratio of frequencies is a rational
number n=m (n, m 2 N) the phase-orbit repeats itself
after m windings; then the orbit is periodic and the
corresponding torus is called resonant. In this case the
resonant invariant curve consists of an infinite number of
m-multiplets of periodic points. Each m-multiplet repre-
sents an m-multiple periodic orbit.

According to the Kolmogorov-Arnold-Moser (KAM)
theorem [37], if any integrable system gets perturbed
(without altering its dimensionality) most of its tori are
deformed but they are not destroyed. These tori are called
KAM tori. Thus the corresponding surface of section looks
very much like the surface of section of the corresponding
integrable system. The quasiperiodic invariant curves in
nonintegrable systems are called KAM curves. This is
exactly the behavior exhibited by most of the geodesics
in the MN spacetime, at least for bound orbits in the outer
allowed region (see [16]). However, there are qualitatively
new characteristics that are related with the resonant tori of
a perturbed integrable system. According to the Poincaré-

Birkhoff theorem [43], when a system deviates slightly
from an integrable one, the resonant invariant curve dis-
integrates and only a finite even number (2km, where k 2
N�) of the periodic points of period m survive. This means
that from the resonant torus only 2k periodic orbits survive.
Half of the surviving periodic points are stable while the
rest are unstable. If we imagine a closed curve which
passes from all the surviving points of the disintegrated
resonant curve, then the stable and the unstable periodic
points interchange along that closed curve forming the
Birkhoff chain. Around each stable periodic point there is
a set of nested KAM curves forming an island of stability
(see Fig. 2). A phase-orbit of such a resonant case visits all
the m islands of the n=m-resonance, moving successively
to the next n-th island along the imaginary aforementioned
closed curve at every winding, forming eventually the
KAM curves inside every island. The interesting feature
of these islands, that we exploit in our paper, is that every
regular (nonchaotic) orbit that belongs to a chain of islands
is characterized by the same rational ratio of frequencies
(characteristic of the particular chain of islands), no matter
on which KAM curve inside the chain of islands it belongs.
This property is not shared by the nonresonant KAM
curves, since the ratio of frequencies on them is irrational
and it varies smoothly from one KAM curve to another.
Finally, there is a region around the Birkhoff chain of

islands that consists of chaotic orbits. These chaotic orbits
appear mainly in the neighborhood of the unstable points

u0

FIG. 2. A schematic representation of a surface of section of a
nonintegrable system of 2 degrees of freedom. On the surface
there are depicted two KAM curves; one outside and one inside
the chain of islands. The particular chain of islands in between
consists of three islands (m ¼ 3, n ¼ 1), each one arising around
each of the three stable points (shown as filled circles). Each
island consists of a whole set of KAM curves nested within each
other. Between the successive islands there are three unstable
points (shown as open circles) from which the asymptotic curves
(gray curves) emanate surrounding the islands by a thin chaotic
layer (here magnified). The arrows indicate the flow around the
left-most island. The u0 indicates the central fixed point around
which the KAM curves and the Birkhoff islands are formed.
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of the Birkhoff chain (see Fig. 2). The chaotic orbits arise
from the asymptotic curves of the unstable periodic orbits,
which are forced to follow a very complicated pattern of
multiple intersections when they approach each other. The
intersections of the asymptotic curves are called homo-
clinic points and the corresponding orbits are called ho-
moclinic orbits. The chaos produced by the homoclinic
orbits is called homoclinic chaos. As long as the deviation
from the integrable case is small the chaotic areas on a
surface of section are restrained on a very thin ring, sur-
rounding the Birkhoff islands of stability, which is thicker
near the unstable points. For higher deviations from an
integrable case the KAM curves intervening between two
different resonances are destroyed. Then two Birkhoff
chains which were initially isolated by intermediate KAM
curves can communicate (resonance overlap) [36,44,45],
i.e. the asymptotic curves that emanate from unstable
points of different chains intersect each other at the so-
called heteroclinic points, forming heteroclinic orbits.
These orbits produce the so-called heteroclinic chaos.
The chaotic behavior in a resonance overlap is stronger
than in the homoclinic one.

It should be emphasized that the q-parameter that char-
acterizes the deviation of the MN metric from the corre-
sponding Kerr metric is not an absolute measure of the
deviation of the corresponding geodesics, since different
regions of the MN spacetime have more or less deformed
metric components (with respect to their Kerr values). For
example the greater the distance from the central point of
the field, the smaller is the effect of the perturbed moments
of the spacetime, since there the spacetime is mainly
characterized by its lowest few moments; there the higher
multiple moments are almost unimportant for the shape of
the geodesic orbits. Therefore, one anticipates that the
system of MN geodesic orbits should be more organized
in its outer region, in contrast with its more chaotic inner
region.

B. Rotation number

When the perturbation parameter of a 2-dimensional
nonintegrable system is sufficiently small, the Birkhoff
islands of stability are very thin and their detection on a
surface of section is quite cumbersome; fine tuning is
needed to find suitable initial conditions of orbits that
develop into a chain of islands on a surface of section.
However, these islands can be detected by a more sophis-
ticated technique. The islands of stability lie around a
resonant periodic orbit which is characterized by a com-
mensurate ratio of frequencies � ¼ !1=!2 ¼ n=m, where
!1, !2 are the fundamental frequencies corresponding to
the two angle variables while n, m are integers. This ratio
characterizes not only the resonant periodic orbit of the
island (represented by a set of m stable points on a surface
of section), but all the KAM orbits around them belonging
to the particular chain of islands. Although each distinct

KAM orbit in an island is characterized by a different pair
of frequencies !1, !2, all such KAM orbits are marked by
the same commensurate ratio � with the central periodic
orbit.
An index that has been used for detecting chaos in

classical nonintegrable systems of 2 degrees of freedom
is the rotation number. This index computes the ratio of the
fundamental frequencies !1, !2 and therefore could be
used to detect the islands of stability as well [36,46,47]. In
order to evaluate the rotation number we first identify the
fixed point u0, around which the KAM curves (not the ones
a Birkhoff island consists of) are formed (Fig. 2) creating a
formation known as the main island of stability. In our case
u0 is the point that corresponds to the periodic orbit
which crosses the equatorial plane at only one point with
_� ¼ 0 moving towards the positive part of the z-axis [see
Fig. 3(a)]. It should be noted though that this orbit is
periodic with respect to its projection on the ð�; zÞ plane,
but if one considers the � coordinate of the orbit as well,
the orbit is not necessarily periodic then. Now we define
the position vector of the i-th crossing point ui of a phase
orbit on a surface of section to be

r i ¼ ui � u0; (16)

that is its position with respect to u0. Next we compute the
angles 
i � angle ðriþ1; riÞ between two successive posi-
tion vectors, the so-called rotation angles, and finally we
calculate their mean value for a large number (theoretically
an infinite number) of crossings, divided by 2�. This
number provides the so-called rotation number �
, i.e.

�
 ¼ lim
N!1

1

2�N

XN
i¼1


i (17)

and it measures the average fraction of a circle by which
successive crossings advance.
The rotation number usually appears to grow monotoni-

cally as long as we cross KAM curves that surround the
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FIG. 3. (a) The surface of section of the outer region on the
ð�; _�Þ plane for the parameter set E ¼ 0:95, Lz ¼ 3M, � ¼ 0:9,
q ¼ 0:95. u0 indicates the fixed point at the center of the main
island. (b) The rotation number vs � along the line _� ¼ 0 of the
surface of section presented in (a). Embedded in (b) is a detail of
the rotation curve around the 2=3-resonance.
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central fixed point u0. The strict monotonicity is inter-
rupted by KAM curves belonging to resonant islands of
Birkhoff chains surrounding the fixed point u0. Within a
resonant island the rotation number remains fixed at a
constant rational value. This rational number, as already
stated, is characteristic of that island of stability, since it is
the outcome of the resonance between !1,!2. It should be
also noted that in a chaotic region of a nonintegrable
system the rotation number fluctuates irregularly from
point to point, so its behavior appears to be smooth only
in the region of regular orbits. For a slightly perturbed
integrable system the chaotic layers around the Birkhoff
chains of islands are so thin that the fluctuating behavior of
the rotation number is hardly observable.

The rotation number is not just a ‘‘mathematical’’ tool, it
is actually an ‘‘observable’’ quantity. The frequencies !1,
!2 can be derived from the signal of the gravitational
waves, through a Fourier analysis. By monitoring the
evolution of the frequencies encoded in a gravitational
wave signal coming from an EMRI, we monitor the rota-
tion number and when we observe stationarity of its value
as time progresses we can infer that the corresponding
EMRI is evolving in a non-Kerr spacetime.

C. The outer region

As it was demonstrated in Fig. 1, which was character-
ized by a particular set of parameters of the MN spacetime
and of the test particle, there may be two separate regions
where bound geodesic orbits are allowed to develop,
namely, the inner region (closer to the central singularity)
and the outer region (farther from the central singularity).
In this section we explore the dynamical properties of the
outer region by studying the surface of section z ¼ 0 ( _z >
0) on the �, _� plane shown in Fig. 3(a). By inspection this
surface of section seems to be filled densely with KAM
curves, and only two thin chains of islands of stability are
discerned; no visible sign of stochasticity is present.
However, the existence of these two Birkhoff chains, the
one of multiplicity 2 (labeled as 1=2) and the other of
multiplicity 3 (labeled as 2=3), implies that the system is
actually nonintegrable and therefore chaos should be
present [36,45]. In fact the surface of section should be
densely filled with other Birkhoff chains of islands as well,
but their detection demands a very detailed scan of the
surface of section. Even the revealing of the two chains of
islands which we found would be a very hard task, if we
hadn’t employed the rotation number in order to explore
the fine details of the phase space that did not show up in
the coarse sweep of initial conditions performed by Gair
et al. [16].

As we have already explained the rotation number is an
appropriate tool to detect the islands of stability, since all
the regular orbits belonging to an island share a common
characteristic rational value of the rotation number. The
implementation of the rotation number in our case is

presented in Fig. 3(b). The scan begins from the central
point u0 and goes inwards, towards � ¼ 0, along the line
_� ¼ 0 on the surface of section seen in Fig. 3(a). The
produced rotation curve is a decreasing function of the
distance from the center u0 of the main island of the outer
region. The curve appears to be strictly monotonic except
from a narrow plateau, a constant value of the rotation
number within a �-interval, lying near � ¼ 4 [see the
magnified plot of the embedded figure in Fig. 3(b)]. This
plateau is labeled by the value of the corresponding rota-
tion number �
 ¼ 2=3, and is related to the period-3 chain
of islands of Fig. 3(a).
However no plateau appears in Fig. 3(b) for the period-2

island of stability (1=2-resonance), even though the rota-
tion curve passes through the value �
 ¼ 1=2. This can
only mean that the island is very thin along the line _� ¼ 0
and our step along the scanning line is not sufficiently
small to discern a corresponding plateau. Instead by mov-
ing along the line _� ¼ 0:05, where the particular period-2
island is thicker, we find a discernible plateau (Fig. 4).
In the integrable Kerr case no such plateaus are expected

to exist. According to the analysis done in [48] for the
bounded geodesic orbits in the Kerr spacetime, the
Hamilton function expressed in action angle variables
does not depend explicity on the angle variables and there-
fore the integrable Kerr spacetime has no resonant islands.
Thus the rotation curve in a Kerr case is a strictly mono-
tonic function of the distance from the center; the corre-
sponding resonances being presented simply by a set of
periodic points that lie along a single curve on a surface of
section instead of a chain of islands with finite thickness.
This difference, along with the analysis of inspiraling
orbits presented in section IV, is an effect that can be
quantitatively checked by the gravitational wave detectors.
Once again we note that other resonances corresponding

to any rational value of �
, that are not depicted in Fig. 3,
are so narrow that they are really very difficult to be
pinpointed on a surface of section.
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FIG. 4. The rotation curve along the line _� ¼ 0:05 which is
crossing the 1=2-resonance on the surface of section of Fig. 3(a).
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As mentioned before, the finite width of the resonant
islands in a non-Kerr metric, in contrast to the zero-width
of the corresponding resonances of the Kerr metric is the
new feature that we propose to exploit. Thus the size and
the position of the islands are of great importance in our
analysis. The size and the position of the resonant islands
depend on both the physical parameters of the MN metric
(q and �) and the parameters of the orbit itself (E and Lz).
For example if we keep the three parameters E, �, q fixed
and plot the width w of the period-3 island along the _� ¼ 0
line on the surface of section z ¼ 0 as a function of the
angular momentum Lz, we get Fig. 5(a). On the other hand
in Fig. 6(a) we plot along the same line, for the same set of
parameters, the positions �c of the central point u0 of the
main island (diamonds), the center of the multiplicity-3
left-most island (black squares), the outer and inner bound-
ary of the outer region (open triangles and open circles,
respectively), the inner and outer boundary of the inner
region (black triangles and black circles, respectively). The
width w of the island increases as we increase Lz, till it
reaches its maximum width when Lz � 2M [Fig. 5(a)].
Then it starts becoming thinner again. This behavior is due
to the fact that as we increase Lz the potential well be-
comes more compressed along the equator. Therefore, as
the particular island moves away from the central point u0

it is compressed by the boundary of the well (high Lz

values), while if the island moves close to the center, it is
finally compressed in the region around the central point
u0 (low Lz values) [cf. Figs. 5(a) and 6(a)].
If instead of varying the angular momentum we vary the

energy E and measure the widthw and the positions �c, we
obtain Figs. 5(b) and 6(b) respectively. Again as we in-
crease the energy the allowed region is expanded and thus
the thickness of the island increases as well. On the other
hand there is a lower energy threshold below which the
island of the 2=3-resonance is compressed to zero thick-
ness due to shrinkage of the whole CZV.
If we keep the energy and the angular momentum at

their initial value E ¼ 0:95, Lz ¼ 3M and vary the quad-
rupole deviation q, the width w of the island and the
positions �c change as shown in Figs. 5(c) and 6(c) re-
spectively. The q parameter is actually the parameter that
controls the nonintegrability of the system since for q ¼ 0
it describes a Kerr metric which is integrable. Thus it is
anticipated that as q increases the width increases as well.
Moreover, the displacement of the 2=3-resonance with
respect to the boundaries of the CZV works in favor of
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FIG. 5. The width w of the period-3 left-most island of stabil-
ity along the line _� ¼ 0 (the thickest region) for different sets of
the E, Lz, q, and � parameters. (a) The w vs the angular
momentum Lz when E ¼ 0:95, q ¼ 0:95, � ¼ 0:9. (b) The w
vs the energy E when Lz ¼ 3M, q ¼ 0:95, � ¼ 0:9. (c) The w vs
the quadrupole deviation q when Lz ¼ 3M, E ¼ 0:95, � ¼ 0:9.
(d) The w vs the spin parameter � when Lz ¼ 3M, E ¼ 0:95,
q ¼ 0:95. Apparent nonsmooth behavior of the plots is an
artifact of the accuracy used to measure the width.
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FIG. 6. The radial positions �c of 6 different locations of
interest along the line _� ¼ 0 on the surface of section z ¼ 0
for the same sets of parameters E, Lz, q, � as in Fig. 5. The
diamonds represent the central point u0 of the main island, the
black squares represent the center of the multiplicity-3 left-most
island, the open triangles and open circles represent the outer and
inner boundary of the outer region, respectively, while the black
triangles and black circles represent the inner and outer bound-
ary of the inner region, respectively. When the open and the
black circles merge the outer and the inner regions get connected
through a neck.
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the island’s expansion as long as the island is away from
the main center u0. For example, as is shown in Fig. 5(c)
for q below ’ 0:4 the thickness has been shrunk to almost
zero, since the island has moved close to the boundaries of
the CZV [Fig. 6(c)]. It should be noted that this limiting
value of q has no universal character, but corresponds to
the specific values of the other parameters.

Finally, the role of the spin parameter � of the metric is
qualitatively similar to that of the angular momentum of
the orbit. The island moves away from the central point u0

as � increases [Fig. 6(d)], while the thickness of the island
increases as well [Fig. 5(d)]. At least in the case we have
studied (corresponding to the specific values for the other
parameters) when � ’ 1 the island has not yet come very
close to the boundaries of allowed orbits [Fig. 6(d)]; thus
the island has not been forced to shrink [Fig. 5(d)].

For all the above range of parameters the period-3 island
exists along with other islands of stability from different
Birkhoff chains. In general when the Kerr spacetime is
even slightly perturbed and the Carter constant is destroyed
(ceases to be a constant), the Birkhoff chains with their
islands of stability show up. The general behavior of the
most prominent islands of resonance in a slightly perturbed
Kerr metric are expected to exhibit similar behavior with
the 2=3-island for different ranges of the parameters E, Lz,
q, � of the MN metric, since the parameters E, Lz of the
orbit, and � of the metric play a similar role for any kind of
orbit in a generically perturbed Kerr metric. The q parame-
ter of the MN may be replaced by another set of one or
more parameters in a generic perturbed Kerr metric that
will control the deviation of the metric from the Kerr
metric.

In order to numerically integrate the orbits and produce
Figs. 3–6 we have applied a sixth order Runge Kutta
integration schemewith a constant step of integration �s ¼
10�1, except for the cases in which an orbit reaches the
surface of section; then the integration step was gradually
reduced to �s ¼ 10�8 in order to get a fine approximation
of the surface of section at z ¼ 0. To ensure that the
numerical errors do not affect the evolution of the orbits
and our conclusions with regard to their characteristics, at
every step we evaluate the Lagrangian per unit test mass
Ln=� and compare it to its expected value L=� ¼ �1=2.
The relative error of the integration�L=L ¼ jðLn � LÞ=Lj
after 103 crossings through the z ¼ 0 surface of section did
not exceeded the order of �L=L ¼ 10�10. In order to get a
smaller relative error we tried to use an even smaller step of
integration for these orbits. This was time consuming
though, without improving substantially any quantitative
information we gained with a coarser integration step;
therefore, we decided to keep the initial �s ¼ 10�1 step.

D. The inner region

In contrast to the outer region, which contains mainly
regular orbits, the inner region displayed in Fig. 7 has a

more complicated structure. On the left side of Fig. 7(a)
there is a period-1 island of stability. Around the center of
the same figure there are also three islands of stability
belonging to a period-3 chain [these islands are depicted
in detail in Fig. 7(b)]. The rest of the inner region seems to
be occupied by chaotic orbits, in accordance with the
findings of Gair et al. [16]. A domain of the surface of
section that is mainly occupied by chaotic orbits surround-
ing a main island of stability, like the region of Fig. 7(a)
which is filled with scattered dots, is often described as a
chaotic sea in nonlinear dynamics literature (see e.g. [36]).
To produce Fig. 7 we applied again a sixth order Runge

Kutta integration scheme but now we used an adaptive step
of integration which varied from �s ¼ 10�4 to �s ¼ 10�8

in a way that the relative error did not exceeded �L=L ¼
10�8. In order to avoid problems with the static limit,
which is extended inside the inner region, we analytically
eliminated the zeroes of function A [Eq. (5d)] from all the
metric components g�� for which A appears in the de-

nominator, like g��.

Oddly enough Fig. 7(a) seems not to be in total agree-
ment with Fig. 7 of [16]. The region which in our Fig. 7(a)
is occupied by a main island of stability, in Fig. 7 of [16]
seems to be visited by a chaotic orbit coming from the
chaotic sea. In fact, in a system of 2 degrees of freedom
chaotic orbits surrounding an island of stability cannot
enter the island itself, because the KAM curves of the
island in such systems block such entrances.
The qualitative separation of the inner region in one

domain dominated by organized orbits and another one
dominated by chaotic orbits could be easily justified by the
shape of the corresponding potential well. As shown in the
left part of Fig. 1(a), the potential well of the inner region
in which the orbits develop consists of a shallow part (right
side of the left well) and a much deeper part located at the
innermost part of the inner region (left side of the left well).
The chaotic orbits [Fig. 8(a)] are the ones that start from
the shallow part of the well [see the embedded diagram in
Fig. 8(b)] and eventually enter the deep hole [Fig. 8(b)]
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FIG. 7. (a) The surface of section of the inner region on the �,
_� plane for the parameter set E ¼ 0:95, Lz ¼ 3M, � ¼ 0:9, q ¼
0:95. (b) A detail of (a) showing islands of stability surrounding
a period-3 orbit.
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which works as a stochastic scatterer of the orbit. In
Fig. 8(b) we see only the upper part of the hole which in
full scale reaches the value of �105 for the chaotic orbit
seen in Fig. 8(a). Chaos is generated by the abrupt changes
of the values of the Veff along an orbit. On the other hand,
the organized orbits, which belong to the main island of the
inner region, [Fig. 8(c)] move on the periphery of the deep
well [Fig. 8(d)]. Finally, the orbits which belong to the
chain of islands of the resonance 2=3 [Fig. 8(e)] are orbits
with well tuned initial conditions in the phase space that
start from the shallow region, eventually enter slightly in
the deep region but again move mostly on the periphery of
the hole itself [Fig. 8(f)], thus maintaining their organized
character.

E. The neck

Previously we studied a case in which the outer and the
inner regions are separated. Let us see now what happens
when the two regions communicate with each other. In
order to attain this we have slightly reduced the angular
momentum to the value Lz ¼ 2:995M without altering the
other parameters. Then, as shown in Fig. 9 a short neck that
connects the two regions appears at � � 2:25M. Through
this neck, orbits are allowed to move from the outer to the
inner region and vice versa.
Although the main characteristics of the two regions

have not changed, the ‘‘neck’’ has allowed the formation
of heteroclinic sections of the asymptotic curves emerging
from unstable periodic orbits lying in the two initially
separate regions. Such sections lead to stronger chaos. In
our case chaotic orbits that were initially confined between
the boundaries of the outer region and the last KAM of the
corresponding main island are able to explore the phase
space of both regions by escaping through the neck to the
more chaotic inner region and returning again through the
neck to the thin chaotic layer near the periphery of the
outer region. The chaotic layer becomes more prominent
when the inner and the outer regions come closer to each
other. There is also a well-known phenomenon in nonlinear
dynamics called ‘‘stickiness’’ first reported in [49] (for a
review see [36]), which could explain the ‘‘strange’’ be-
havior reported in [16]. The stickiness concerns chaotic
orbits which for various reasons stick for a long time
interval in a region, close to an invariant curve, so that
their behavior on a surface of section may resemble that of
regular orbits, before extending further away.
The situation described in the previous paragraph is

depicted in Fig. 10(a) which is a z ¼ 0 surface of section
of the region of � near the neck. The main island of the
outer region is surrounded by a chaotic layer which com-
municates with the chaotic sea of the inner region. In this
‘‘outer’’ chaotic layer many high-multiplicity islands of
stability are present. The borders of this chaotic layer with
the region of regular orbits is quite densely populated by

FIG. 8. In the left column various bound orbits of the inner
region (Fig. 7) are shown as projections on the ð�; zÞ plane. The
projected orbits are: (a) a chaotic orbit, (c) a regular orbit of the
main island, (e) a regular orbit of the 2=3-resonance. The right
column shows the corresponding evolution of the value of Veff

along the orbit as a function of the instantaneous � coordinate.
The embedded figure in (b) shows a detail near the upper edge of
Veff (Veff ’ 0).

FIG. 9. The CZV for parameter values E ¼ 0:95, Lz ¼
2:995M, � ¼ 0:9, q ¼ 0:95, where the outer and the inner region
are connected through a short neck.
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chaotic orbits [Fig. 10(a)]. In fact the chaotic orbits near
these borders remain close to the regular orbits for a long
time before escaping to the main chaotic domain. The
sticky zones are near these borders. In order to further
explore the area of the outer region near the neck we
computed the rotation number along the _� ¼ 0 line
[Fig. 10(b)]. On the left side of Fig. 10(b) the irregular
variations of the rotation number confirm the chaoticity of
the orbits that surround the main island of the outer region.
On the right of these irregular variations the rotation curve
seems to be strictly monotonic, until we reach the resonant
island 2=7 [the plateau in the middle of Fig. 10(b)]. Around
the resonant island 2=7 a thin chaotic layer can be dis-
cerned on the surface of section, mainly around two un-
stable points near � ’ 2:275M, _� ’ �0:0035 in Fig. 10(a).
The chaotic nature of the orbits in that layer produces again
an irregular variation of the rotation number [embedded
diagram in Fig. 10(b)]. On the right of the 2=7 resonant
island the rotation number seems to grow like a strictly
monotonic function again.

The fact that chaotic orbits belonging to thin chaotic
layers, like the ones described above, tend to stick near
regular orbits has a side-effect on their frequency spectrum.
As long as the orbits stick near a regular orbit they tend to
get two main frequencies like the frequencies correspond-
ing to the regular orbits. When they move away from this
regular orbit they lose these two main frequencies and the
chaotic noise in their frequency spectrum prevails.
However, the orbits can approach again a regular orbit,
even the one they departed from, stick around it again for a
certain interval of time and exhibit again two main fre-
quencies. If these regular orbits belong to resonances the
ratio of the two fundamental frequencies will be for some
time a rational number, otherwise it will be irrational. The
appearance and disappearance of the two main frequencies
characterizes the existence of sticky chaotic orbits, thus it
signals the existence of non-Kerr spacetime, although this

would be a difficult observational task due to instrumental
noise in gravitational wave signals. Therefore, we mainly
focus our observational method on the regular orbits which
correspond to resonances.

IV. INSPIRALING ORBITS

According to general relativity an object of mass �
orbiting in the spacetime background of a very massive
object loses energy and angular momentum by emitting
gravitational waves. In Sec. III we investigated the char-
acteristics of a geodesic motion in a stationary MN space-
time background. The energy E and the angular
momentum Lz were regarded as constants of motion in-
stead of adiabatically varying quantities. The accurate
solution of the two body problem in the framework of
general relativity is still intractable. It can only be solved
numerically, although for a wide range of parameters the
problem has not been adequately analyzed yet. Various
approximate schemes have been proposed to compute the
energy and angular momentum loss for a small mass in a
Kerr metric while no other systematic way to compute such
losses for other kinds of background spacetimes is avail-
able. Following the hybrid approximative method of [50]
[Eqs. (44, 45)], that Gair et al. [16] also applied in the MN
spacetime, we have computed the energy and z-angular
momentum losses from the instantaneous geometric orbital
parameters as if the spacetimewere a Kerr metric. The only
modification introduced by Gair et al. [16] from the origi-
nal hybrid model [50] was that the deviation of the quad-
rupole moment of the MN was added to the terms that are
proportional to the square of the spin of the Kerr metric.
We applied exactly the same modification. Then we as-
sumed linear variations for the parameters E, Lz, that is

EðtÞ ¼ Eð0Þ þ dE

dt

��������0
t (18)

and

LzðtÞ ¼ Lzð0Þ þ dLz

dt

��������0
t (19)

and we inserted them in the equations of motion, thus
producing a new set of nongeodesic equations of motion
that approximately describe the adiabatic inspiral. To be
more specific, the energy and angular momentum losses
ðdE=dtÞj0, ðdLz=dtÞj0 were computed from the semi-latus
rectum and eccentricity of the geodesic motion that
correspond to the initial values Eð0Þ and Lzð0Þ (see
Appendix A). Then the nongeodesic orbit, that was created
from the adiabatically varying equations of motion, was
evolved for an interval of time that was long compared to
all orbital periods (azimuthal and polar, e.g. T� and Tz), but

short compared to the characteristic time of the adiabatic

variations Eð0Þ=ðdEdt Þj0 and Lzð0Þ=ðdLz

dt Þ0 (the latter compari-

son justifies the use of linear dependence for EðtÞ and
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FIG. 10. (a) A detail of the surface of section in the neighbor-
hood of the neck which joins the inner and the outer regions.
(b) The rotation curve along the _� ¼ 0 line of the surface of
section presented in (a). Embedded in (b) is the irregular varia-
tion of the rotation number just outside the left side of the
2=7-plateau. This irregular behavior is due to the chaotic layer
surrounding the corresponding island.
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LzðtÞ). In fact the evolution of the orbit was calculated for a
time interval sufficient for the orbit to hit a resonance, cross
it, and depart from it. Since the resonances we have found
in exploring the geodesics in a MN metric are very thin
structures, the corresponding times just to cross them were
indeed very short in comparison to the characteristic time
of E-variation and Lz-variation. In order not to waste
numerical time and remain in the range of validity of the
linear approximation for the adiabatic changes, we chose
initial conditions for the nongeodesic orbits along the line
( _� ¼ 0, z ¼ 0) that were within a short distance away from
the boundary of a resonant island itself.

The initial conditions along the aforementioned line give
an adequately representative set of nongeodesic orbits to
study the time it takes for the inspiraling orbits to cross
through the resonant islands. Actually the nongeodesic
orbits corresponding to the initial conditions that lie on
the convex side of the islands [Fig. 3(a)] do not cross the
particular resonant island; these orbits continuously recede
from the islands. Thus from now on we constrain our study
to nongeodesic orbits that start near the concave side of the
resonant islands. On the concave side of the left-most
island there is a window of initial conditions of �ð0Þ along
the ( _� ¼ 0, z ¼ 0) line for which the corresponding non-
geodesic orbits eventually enter first this particular island
of resonance. Upon its entrance a nongeodesic orbit visits
all the other islands of that resonance as well. An analo-
gous window of �ð0Þs, right next to the former one, con-
tains orbits that enter first the next island of the same
resonance and so on until we reach the window that enters
first the last island of the chain. After that window, it
follows another window of initial conditions for which
the nongeodesic orbits enter the left-most island first.
The nongeodesic orbits that start from the latter window
perform an extra full rotation on the surface of section with
respect to the nongeodesic orbits of the first window,
before they enter the particular resonant island. During
this rotation the islands move towards the center of the
main island, so that they eventually encounter the evolving
orbits from this new window. The succession of such
windows continues, until the point that the nongeodesic
orbits reach the resonance is so close to the center of the
main island (due the energy and z-angular momentum
loss), that the islands have shrunk to negligible thickness
and thus no resonance can be observed. However the linear
approximation we use to produce the nongeodesic orbits
ceases to be valid well before this happens. Therefore we
have not extended our numerical computation that far.

In order to study the observability of the resonances we
have chosen a few distinct initial conditions along the
above sequence and measured the time interval that the
corresponding nongeodesic orbit needs to cross the
2=3-resonant islands. The time �tr spent by each non-
geodesic orbits in the 2=3-resonance is shown in Fig. 11
as a function of their initial conditions along the line ( _� ¼

0, z ¼ 0). Moreover each window in the sequence of
windows in Fig. 11 is demarcated by two distinct abrupt
peaks of �tr lying on either side of the window. Of course
there are a number of parameters that affect this �tr time
interval, like the initial energy Eð0Þ, the initial angular
momentum Lzð0Þ and the exact initial conditions of an
orbit (in our case �ð0Þ), as well as the physical character-
istics of the EMRI, namely, the parameters of the metric �
and q, and the masses of the two bodies. Especially the
ratio of masses �=M plays an important role in �tr; the
lower the value of�=M is, the longer time it takes to reach
a particular island, and consequently the width of the
windows is larger. Our aim is not to explore the depen-
dence of crossing time �tr on all these parameters, instead
we explore the qualitative characteristics that relate the
time of crossing with the physical characteristics of an
EMRI. We observed that the exact point of entrance in
the island is crucial for the time the orbit spends in that
island before it exits the particular chain of islands.
In order to study how the time spent in the chain of

islands depends on the entrance point we use a strobo-
scopic depiction, i.e. for a chain of islands of multiplicity 3
we depict only every third crossing of an orbit through a
surface of section. Consequently the successive crossing
points are close to each other and we can join them by a
single line [thick line in Fig. 12(a) and 12(b)]. In this figure
only one island is depicted; the left-most one of the
2=3-resonance [Fig. 3(a)]. The stroboscopic projection of
a nongeodesic orbit forms a clockwise spiral on a surface
of section until it reaches the resonant island. By plotting a
couple of such orbits, namely, one entering the island very
close to its lowest point [Fig. 12(a)] and a second one at a
point a little higher from its lowest point and along its
concave side [Fig. 12(b)], we noticed that if the entrance
point is near the lowest point of the island it will spend
substantially more time in the resonance than when the
entrance point is further upwards. In the former case
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FIG. 11. The time �tr needed by nongeodesic orbits to cross
the chain of islands belonging to the 2=3-resonance as a function
of their initial conditions �ð0Þ (the initial value of the
�-coordinate) along the line _� ¼ 0, z ¼ 0. The parameters
used are �=M ¼ 8	 10�5, q ¼ 0:95, � ¼ 0:9, Eð0Þ ¼ 0:95,
Lzð0Þ ¼ 3M.
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[Fig. 12(a)] the adiabatic drift of the orbit and of the island
itself forces the orbit to revolve counterclockwise 3 times
around the island while at resonance. After these revolu-
tions the relative drift of the orbit with respect to the
island moves the orbit out of the island and the exit point
is then on the right of the entrance point. In the latter case
[Fig. 12(b)] while the orbit starts revolving counterclock-
wise around the island upon its entrance, it finds itself near
the opposite side (the convex side) of the island when the
relative drift forces the orbit to exit the island. In this case
the exit point is on the left of the entrance point but very
close to it.

As mentioned before, the ratio of masses that are in-
volved plays a radical role in the crossing time. If this ratio
is * 10�4 the evolution of the orbit is so quick that within
one z-period the orbit has crossed the resonance and almost
no point on a surface of section is found inside the island.
On the other hand if �=M & 10�7 the adiabatic evolution
of the orbit is so slow that the determination of the initial
conditions that eventually enter an island of resonance is
quite difficult due to long integration times. Interestingly
enough, the range of mass ratios that lead to observable
crossing times correspond to the range of masses of EMRIs
for which LISA is expected to be sensitive.

The next important question one has to answer is how
probable is for a non-Kerr EMRI to evolve so as to pass
through a resonance during its evolution, and thus enable
us to detect such a passage through a frequency analysis of
the corresponding gravitational waves. Using again the
MN metric as a characteristic example of a perturbed
Kerr metric, we have explored how the initial conditions
evolve if the orbit starts far away from a specific resonance.
We have not explored all possible orbital parameters to
check if they finally pass through such a resonance, since
the problem depends on too many parameters: the ratio of
masses �=M, the quadrupole deviation parameter q, the
spin �, the initial orbital characteristics (the semi-latus
rectum p, the eccentricity e and the inclination of the orbit

) and the particular resonance we examine each time.
Instead of calculating the evolution of the nongeodesic
orbits for all these parameters we run an orbit with a
specific initial condition to obtain a crude estimate of
what are the chances to hit a resonance. More specifically
we focused our attention to the resonance 2=3 which
according to our previous analysis has the strongest effect
(the corresponding islands are the thickest ones). We
started with initial values Eð0Þ ¼ 0:95, Lzð0Þ ¼ 3M, q ¼
0:95, � ¼ 0:9. For these values there are two allowed

4. 4.2 4.4 4.6 4.8 5.
M

0.1

0.05

0.

0.05

0.1

a

4. 4.2 4.4 4.6 4.8
M

0.1

0.05

0.

0.05

0.1

b

FIG. 12 (color online). The black thick lines mark the succession of every third point on the z ¼ 0 surface of section of a
nongeodesic orbit for two different types of entrapment in the 2=3-resonance. (a) Entrapment of a nongeodesic orbit that makes 3 loops
while inside the resonant island and (b) entrapment of a nongeodesic orbit that makes almost one loop. The arrows show the flow of the
orbits on the �, _� plane. In (a) and (b) the blue (light gray) big dot indicates the point at which the corresponding nongeodesic orbit
crosses the border (blue or light gray thin line) and enters the left-most island of the 2=3-resonance, while the red (dark gray) big dot
indicates the point at which the nongeodesic orbit crosses the border (red or dark gray thin line) and exits the 2=3-island of stability.
Note the drift of the island during the evolution of the orbit. For both cases �=M ¼ 8	 10�5, q ¼ 0:95, � ¼ 0:9, Eð0Þ ¼ 0:95,
Lzð0Þ ¼ 3M. The nongeodesic orbits of (a) and (b) correspond to the first and the third point from the left on the diagram of Fig. 11
respectively.

OBSERVABLE SIGNATURE OF A BACKGROUND . . . PHYSICAL REVIEW D 81, 124005 (2010)

124005-15



regions of orbits, while the outer region is characterized by
an effective potential that is qualitatively similar to the
one for a Kerr metric with the same mass and angular
momentum. The left-most island of the 2=3-resonance
[see Fig. 3(a)] of such a MN spacetime then spans the
interval 4:006M � �2=3 � 4:109M.

We chose an initial orbit with the above parameters and
evolved it by varying adiabatically the parameters E, Lz.
The rates of their variation was computed based on the
initial orbital parameters and the corresponding Kerr-like
losses (see the discussion above). The surface of section of
the nongeodesic orbit was drawn and the speed of the drift
of the corresponding KAM curves was graphically calcu-
lated; i.e., we measured the velocity by which the left-most
part of the orbit on a surface of section corresponding to a
nongeodesic orbit was moving. Because of energy and
z-angular momentum loss the corresponding geodesic
KAM curves are shrinking (circularization of the orbits).
Simultaneously they are moving towards lower �-values.
The net drift of the left-most part of these geodesic curves
is towards � ¼ 0 with a speed of the order of ��orb=�t ’
�1:6	 10�6 (the minus sign means that it moves towards
� ¼ 0). This number corresponds to a ratio of masses
�=M ¼ 8	 10�5 and initial values for the orbit �ð0Þ ¼
4:15M, _�ð0Þ ¼ 0, zð0Þ ¼ 0. Of course this drift is expected
to be slower for lower �=M values and to be slightly
altered for other values of �ð0Þ due to changes in the
corresponding orbital parameters p, e, 
 that consequently
induce changes in the values of E and Lz losses. On the
other hand we followed the successive positions of the
chain of islands for the resonance 2=3 due to the values
of dE=dt, dLz=dt used in the previous calculation. The
whole chain is shrinking and approaches the center of the
main island. But the center of the main island itself is
moving, together with the set of islands around it, towards
� ¼ 0. The net drift of the left-most island is away from
� ¼ 0 with velocity of order ��isl=�t ’ þ1:1	 10�6.
Therefore the orbit will hit the 2=3-resonance in a time
interval of order 4	 105��0, where ��0 is the initial
distance between the value of � for the orbit when it
crosses the z ¼ 0, _� ¼ 0 surface, and the right boundary
along the axis _� ¼ 0 of the left-most 2=3-resonant island.

This crude estimate for the time to hit the 2=3 resonance
has its own range of validity. While the orbit and the chain
of islands shrink towards the center of the main island, the
resonance is eventually led to disappearance. As the chain
of islands approaches the central point of the main island,
the islands of the 2=3-resonance shrink and disappear at the
center of the main island. Therefore we should not extend
the estimate for the time to hit the resonance beyond the
time when there are no 2=3-resonance islands at all. This
upper value for the time to hit the resonance is directly
related to the lowest eccentricity of orbits that will even-
tually hit the resonance (the closer the orbits are to the
central point of the main island, the smaller is their oscil-

lation along the � axis). If the orbit starts with eccentricity
lower than a cutoff value, the orbit will become very
circular before it reaches a ratio of frequencies correspond-
ing to the resonance of 2=3. All higher initial eccentricities,
up to the eccentricity that corresponds to the initial position
of the chain of islands itself will eventually cross this chain
of islands, leaving a characteristic imprint on the ratio of
gravitational wave frequencies. For the aforementioned
initial values the least eccentric orbit that has sufficient
time to hit the 2=3-resonance has initial conditions �ð0Þ ’
6:8M, _�ð0Þ ¼ 0, zð0Þ ¼ 0 (the rotation number of the
corresponding geodesic orbit is �
ð0Þ ¼ 0:26). This initial
condition corresponds to orbital parameters pð0Þ ¼ 9:1M,
eð0Þ ¼ 0:16, 
ð0Þ ¼ 27
. The time needed by such an orbit
to hit the 2=3-resonance is of order 5	 105M, that is ’
2:5ðM=M�Þs. On the other hand the most eccentric orbit
that hits the 2=3-resonance in a very short time interval
(since it starts right next to the concave side of the island)
has orbital parameters pð0Þ ¼ 7:4, eð0Þ ¼ 0:46, 
ð0Þ ¼
19
 (�
ð0Þ ¼ 0:33).
Although this single numerical example represents an

arbitrary initial orbital configuration, it still gives a crude
estimate of the orbital characteristics that have the chance
to reveal a possible non-Kerr character of the background.
We expect that the value of�=M will not alter significantly
the range of orbital parameters since it will simply make
the evolution faster (large �=M) or slower (low �=M); it
will only affect the total time to hit the resonance. The
initial parameters Eð0Þ, Lzð0Þ will be more crucial for
determining the range of parameters since they are directly
related to the initial position of the islands of resonance.

V. OBSERVATIONAL IMPRINTS

In this section we focus our attention on the quantity
that, according to our analysis, its measurement will pro-
vide us with useful information about possible deviations
of an EMRI’s central object from a Kerr black hole. This
quantity is the ratio of the polar fundamental frequencies,
that is the frequencies that characterize the oscillations of
an orbit on the polar plane which rotates along with the
low-mass object.
For a generic EMRI signal each fundamental frequency

related to the evolution of the system, as well as any linear
combination of their harmonics, will show up in its Fourier
analysis. The most prominent frequency peaks �k in the
spectrum will be some integer multiples of the correspond-

ing fundamental frequencies !i; that is �k ¼
P

im
ðkÞ
i !i,

wheremðkÞ
i are integers. Therefore, the ratio of the frequen-

cies �k of the most intense peaks that are observed in the
Fourier spectrum of the signal and are related to polar
oscillations, but which are not harmonically related to
each other, will be of the form

��

�z

¼ m1�
 þm2

n1�
 þ n2
; (20)
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with m1, m2, n1, n2 some integers. In our case the highest
peaks in the Fourier spectrum of the two polar coordinates
yield a ratio of Fourier frequencies equal to ð�
 � 1Þ=�


(m1 ¼ 1, m2 ¼ �1, n1 ¼ 1, n2 ¼ 0).
The Fourier spectrum of the coordinates used to describe

the polar oscillations consists of both fundamental frequen-
cies and combinations of their harmonics, as mentioned
before. This may render the determination of Fourier fre-
quencies problematic since we practically analyze a finite
length of an orbit that leads to Fourier peaks of finite width;
thus two frequency peaks that are close to each other may
not be easily discerned. In order to overcome this problem,
we used the coordinates R [see Eq. (5k)] and

� ¼ tan�1

�
z

�

�
(21)

instead of the �, z coordinates. As shown in Appendix B
the new coordinates are much better in order to reveal their
frequency content with good accuracy. Thus the frequen-
cies used in the following paragraphs have been computed
by Fourier analyzing the time series of the orbits described
by these ’’cleaner’’ coordinates R and �.

As explained in Sec. III A, if an EMRI source evolves in
the gravitational field of a massive object that is similar
to, but not exactly a Kerr black hole, it has good chances
to pass through a discernible resonance -like the
2=3-resonance, for which some quantitative estimates
have been given in the previous section. If this happens
within the range of distances that a gravitational-wave
detector like LISA is sensitive to detect a corresponding
signal [3], we should be able to observe the non-Kerr
character of the central object by tracking a transient sta-
tionary value of the ratio of frequencies �
.

We have evolved a few orbits that initially lie near a
resonance. We have avoided to investigate orbits that start
far away from a resonance since this would be quite
expensive numerically. Also the time until the inspiraling
orbit hits a resonance is of no special interest since the
evolution of the orbits outside a resonance is expected to be
quite similar both in a Kerr and in a perturbed Kerr metric;
in both cases the ratio of frequencies will vary monotoni-
cally with time.

As explained in Sec. IV the passage through a resonance
depends crucially on the location of the entrance point in
an island of resonance. Therefore, we will present two
graphs that depict the evolution of the ratio of frequencies
as a function of time. The first one corresponds to an
entrance point, such that the orbit gets trapped for a few
circles in the islands of the 2=3-resonance. The second one
corresponds to an entrance point, such that the orbit per-
forms almost one loop and then departs from the chain of
islands. The two cases are exactly the ones that were
presented in Sec. IV when we discussed the duration of
crossing a resonance as a function of the initial conditions
[cf. Fig. 12(a) and 12(b)]. In both cases the orbits have been

evolved for sufficiently long time before and after their
entrance, so that the different type of evolution of the ratio
of frequencies then is clear.
In Fig. 13 we have plotted the ratio of frequencies (i) for

an orbit that its surface of section evolves through an island
of 2=3-resonance according to Fig. 12(a) and (ii) for an
orbit that corresponds to Fig. 12(b). The orbits have been
divided in time segments of length�t ’ 5000M. Each such
segment of the orbit is Fourier analyzed and the frequen-
cies �R, �� are recorded (see discussion above). Finally
the ratio of these frequencies is plotted as a function of t.
For the case in Fig. 12(a) we have plotted also the evolution
of the two frequencies (Fig. 14). In this figure we have
highlighted the crossing of the 2=3-resonance by the non-
geodesic orbit by scaling accordingly the frequency�R so
that the two frequencies coincide when they are super-
imposed. As shown in Figs. 13 the ratio of frequencies
evolves quite differently while the nongeodesic orbit
passes through a resonance compared to its behavior
when this orbit moves adiabatically from one KAM curve
to another (outside the resonance). However, the ratio of
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FIG. 13. The evolution of the ratio �R=�� as function of
the coordinate time t for (a) the nongeodesic orbit shown in
Fig. 12(a) and 12(b) the nongeodesic orbit shown in Fig. 12(b).
The vertical dashed lines demarcate the time intervals that the
nongeodesic orbit spends in the interior of the 2=3-resonance.
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FIG. 14. The evolution of the two polar frequencies �R and
�� as functions of the coordinate time t for the nongeodesic
orbit shown in Fig. 12(a) before, during and after the crossing of
the 2=3-resonance.
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frequencies does not have the form of a pure plateau when
at resonance. Instead the ratio of frequencies forms a
number of oscillations (the number of cycles matches the
number of loops that the orbit performs while it crosses a
particular island) superimposed on a plateau. These oscil-
lations are mainly due to the finiteness of the orbit that is
Fourier analyzed. In most of the cases the orbit performs
only part of a loop inside an island though [Fig. 12(b)].
Then there is only a fraction of an oscillation apparent on
the evolution of�R=�� and the variation of the curve may
not show very clearly the underlying plateau [Fig. 13(b)].
A possible way to discern the plateau in these cases is by
extrapolating the lines that describe the variation of
�R=�� before and after the plateau and look for some
finite distance between these lines. This distance will be a
measure of the time spent within a resonance and should be
related to the characteristics of the source.

VI. CONCLUSIONS

In this paper we have investigated what are the mani-
festations of EMRIs consisting of a small mass compact
object that is orbiting around a much more massive com-
pact object that is not an exact Kerr black hole. Our study
has been based on a generic qualitatively new feature that
discerns an integrable Hamiltonian system from a system
that slightly deviates from an integrable one; namely, the
appearance of Birkhoff chains of islands on a Poincaré
surface of section, instead of a set of fixed points of the
corresponding integrable system. We have chosen a spe-
cific exact solution of the vacuum Einstein equations, a
member of the family of the Manko-Novikov metrics,
which has been extensively studied in the literature. This
MN metric is characterized, besides its massM and spin S,
by one more parameter q, which measures the deviation of
its quadrupole moment from the corresponding Kerr (the
one with the same mass M and spin S). Thus if the q
parameter is set to zero the Manko-Novikov metric turns
into an exact Kerr metric. We have used this metric as a
generic example of a slightly non-Kerr metric.

By studying first the geodesic orbits in a MN back-
ground, we showed that when the orbit hits a resonance,
that is when the ratio of the frequencies !�, !z that

characterize the orbital oscillations on the polar plane
(the plane that passes through the axis of symmetry of
the central object and rotates along with the low mass
object) is a rational number, then the orbit exhibits a
qualitatively new behavior: for a finite range of initial
conditions the ratio of these frequencies is constant, in
contrast to what happens in the integrable case of a Kerr
metric. Actually we have found two such chains of
Birkhoff islands in the most interesting region of bound
orbits (the outer one), which correspond to the resonances
2:3 and 1:2, respectively. Furthermore, we explored the
thickness and the location of the 2=3 islands with respect to
the various parameters that characterize the metric and the

parameters describing the orbits. Thus, in a realistic EMRI
case with a non-Kerr central object, while the orbit of the
low-mass object evolves adiabatically, the ratio between
the corresponding frequencies is expected to remain con-
stant (the two frequencies get locked to each other) for a
finite time interval, exhibiting a characteristic plateau in
the evolution of this ratio.
Although there is a wide range of time intervals corre-

sponding to such a plateau, depending on the exact pa-
rameters of the metric, the ratio of masses, and the specific
parameters and initial value of the coordinates of the orbit,
the appearance of a plateau in the evolution of the ratio of
frequencies with time is a generic feature. Moreover, the
most prominent plateaus correspond to fractions of small
integer numbers, since these are related to strong reso-
nances, and thus they are easier to investigate through
focused data analysis of the gravitational-wave signals
from EMRI sources. We found that the duration of the
plateau through the resonance of 2:3 is roughly of the order
of �tr � 0:15ðM=M�Þs for a ratio of masses �=M ¼ 8	
10�5 and a MN metric with q ¼ 0:95 and � ¼ 0:9. This
time�tr increases for lower ratios of masses and decreases
for higher ratios of masses. For�=M * 10�4 the evolution
of the orbit through a resonance is so quick that the
corresponding plateau is rather impossible to be detected
though.
The initial orbital parameters (semi-latus recta p, eccen-

tricities e, and inclinations 
) that will eventually lead the
orbit through a strong resonance apparently span quite a
wide range; hence a high fraction of possible sources for
LISA are expected to exhibit a plateau if they involve such
a non-Kerr central object. A rough estimate yields e’s, and

’s in the range of 0.17–0.45 and 44
 � 19
, respectively,
corresponding to initial semi-latus recta of the order
7:4M� 9:1M, that will evolve so as to hit the resonance
2:3.
We believe that a focused data analysis of signals of

LISA in the temporal region where the fundamental fre-
quencies related to the orbital oscillations on the polar
plane of the EMRI’s orbit has high chances to reveal or
at least constrain the non-Kerrness of the EMRI central
object. This analysis, along with a number of other tests
that have been proposed by other people [8,14,16], and are
related with the non-Kerrness of the metric involved, could
enhance our knowledge about the astrophysical processes
that lead to creation of ultracompact supermassive objects
at the centers of galaxies.
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APPENDIX A: COMPUTATION OF THE ORBITAL
PARAMETERS

In order to compute the energy and z-angular momen-
tum losses of the EMRI due to gravitational radiation we
have used the hybrid model of Gair and Glampedakis [50]
which have actually been constructed to measure the cor-
responding fluxes at infinity of an EMRI in a Kerr back-
ground. These instantaneous fluxes, described by formulas
(44, 45) of their paper, are given as functions of the orbital
parameters p, e, 
 of the corresponding geodesic orbit of a
test particle in a Kerr metric. When the geodesic orbit is
described in Boyer-Lindquist coordinates the aforemen-
tioned orbital parameters are given by analogy with the
Keplerian quantities:

p ¼ 2rþr�
rþ þ r�

; (A1)

e ¼ rþ � r�
rþ þ r�

; (A2)


 ¼ 
þ � 
�
2

; (A3)

where rþðr�Þ are the maximum (minimum) radial values,
while 
þð
�Þ are the maximum (minimum) values of 

coordinate along the orbit.

The MN metric, and consequently the geodesic orbits
that we computed numerically, are expressed in cylindrical
coordinates. Thus in order to estimate the orbital parame-
ters, we have transformed the �, z coordinates in Boyer-
Lindquist coordinates (the coordinates in which the Kerr
metric that we obtain when we set q ¼ 0 in our MN metric
yields its usual form [51]) according to

r=M ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

2 þ �1ðz=MÞ2
qr

;


 ¼ cos�1

�
z=M

ðr=MÞ � 1

�
;

(A4)

where

�1 ¼ �2 � 1; �2 ¼ �1 � ð�=MÞ2 � ðz=MÞ2
2

:

APPENDIX B: BETTER COORDINATES FOR
FOURIER ANALYSIS

The gravitational waves from an EMRI source are ex-
pected to have the same Fourier spectrum as the orbit itself.
Thus by monitoring a gravitational wave from such a

source we can reveal all the frequencies that are related
with the orbit. By using a specific set of coordinates to
describe the orbit we may face the following problem:
Each coordinate most probably will describe a synthesis
of all oscillations. This will cause problems in the Fourier
analysis of the coordinate itself, because the sample that is
analyzed has finite length as it is the case when the adia-
batically inspiraling orbit in a MN is Fourier analyzed (see
Sec. V).
When the cylindrical coordinates are used to describe

the orbital oscillations on the polar plane there is a large
uncertainty in determining the fundamental Fourier fre-
quencies of the corresponding coordinates. This is due to
the fact that these coordinates exhibit significant amplitude
modulation. This modulation causes the appearance of
side-frequencies which may render problematic the deter-
mination of the fundamental frequencies of a finite-length
data series (see Fig. 15). We found that the analysis is much
clearer in a new set of coordinates:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
k

; � ¼ tan�1

�
z

�

�
:

Thus we transformed the �, z coordinate into R, � coor-
dinates before we Fourier analyze them, and we got a much
clearer picture of the evolution of the ratio of frequencies in
the adiabatically changing orbits.
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FIG. 15. (a) The Fourier spectrum of the �-coordinate for a
geodesic orbit. Embedded in (a) is the evolution of the
�-coordinate along the proper time that produces this Fourier
spectrum. The side frequency is apparent as a small secondary
peak on the left of the fundamental frequency peak. The data-
series are quite long here; namely �	tot ¼ 5	 104M. However
small the secondary peak may be, it causes significant problems
when one tries to determine the fundamental frequencies of the
adiabatically varying orbit by analyzing a data-series 10 times
shorter in order to monitor the adiabatic evolution of the fre-
quencies. In that case the fundamental-frequency peak is 10
times broader and the secondary peak slightly alters its shape.
(b) The Fourier spectrum of the R-coordinate for the same
geodesic orbit as in (a). Embedded in (b) is the evolution of
the R-coordinate along the proper time that produces this Fourier
spectrum. The R-coordinate has practically no modulation and
the corresponding Fourier spectrum has no secondary peaks.
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