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We present a generic criterion which can be used in gravitational-wave data analysis to distinguish an

extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr spacetime. We

exploit the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr

spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so

as to form Birkhoff chains on a surface of section. The KAM curves of the islands in such a chain share the

same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another

inside an island. However the KAM curves, which do not lie in a Birkhoff chain, do not share this

characteristic property. Such a temporal constancy of the ratio of frequencies during the evolution of the

gravitational-wave signal will signal a non-Kerr spacetime.
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Introduction.—While ground-based gravitational-wave
detectors are already in operation, and are trying to detect
gravitational waves from stellar mass compact objects,
LISA—the space-borne detector [1] which is planned to
be launched during the forthcoming decade—is expected
to observe much more massive sources of gravitational
waves with high signal-to-noise ratio. Such signals will
offer us an opportunity to map the strong field around
massive astrophysical objects [2,3], and to test the conven-
tional wisdom, partly supported by astrophysical observa-
tions [4,5], according to which the massive compact
objects harbored at galactic centers should be highly spin-
ning Kerr black holes. Such an astrophysical fact is further
enforced by the no-hair theorem, which states that when a
black hole is formed, its multipole moments, and, conse-
quently, its gravitational field, are determined by only two
parameters; its mass and spin (assuming its charge is
negligible). In this Letter we suggest a clear and generic
observable signal that distinguishes an extreme-mass-ratio
inspiral (EMRI) [6] related to a non-Kerr black hole space-
time from a corresponding Kerr one.

Our suggestion comes from the fact that a Kerr space-
time leads to an integrable system that describes geodesic
orbits, while any other generic, stationary, and axisymmet-
ric non-Kerr spacetime is not expected to be integrable.
Thus assuming that a slightly perturbed Kerr metric, that
supposedly describes the neighborhood of an axisymmetric
rotating compact object, is governed by a nonintegrable
system of geodesic equations of motion, any qualitative
new characteristics of the orbit of the test body, which
could in principle be observed through gravitational waves,
can be used to identify such a source.

According to the KAM theorem [7] almost all KAM tori
in the phase space of a perturbed integrable system are
not destroyed; they simply become slightly deformed.

However, among the KAM tori of the initial integrable
system, there are the so called resonant tori that are char-
acterized by commensurate ratios of frequencies [8,9]. In
the perturbed system these tori disintegrate, and according
to the Poincaré-Birkhoff theorem [10] they form a chain of
islands, on a surface of section, inside which the ratio of the
corresponding frequencies remains equal to the rational
number of the corresponding initial resonant torus. The
width of this chain of islands is a monotonically growing
function of the perturbative parameter that measures the
system’s deviation from the corresponding integrable one,
at least for small perturbations.
In our case, an EMRI in a perturbed Kerr spacetime will

be described by an adiabatically changing geodesic orbit,
which will sweep a finite range of KAM tori in the course
of time, while the frequencies of the orbital oscillations on
the polar plane �-z in the Weyl-Papapetrou cylindrical
coordinate system [11] will change continuously. When
the system enters a Birkhoff chain of islands the ratio of
frequencies will remain strictly constant, while the fre-
quencies will continue to change. This ratio is not just
approximately constant, due to a slow passage through a
resonance, as implied in [12] for the Kerr spacetime.
Therefore the appearance of a plateau in the ratio of
frequencies during the evolution of an EMRI will definitely
signal the presence of a non-Kerr spacetime. These fre-
quencies will be encoded in the gravitational wave that is
radiated from the corresponding source. Thus they can in
principle be monitored. The question is how probable is for
an orbit to cross such a chain of islands during its evolution
that is monitored by the LISA detector. We argue [13] that
this happens quite often, since the orbits of EMRI’s that
develop in the neighborhood of the supermassive compact
object at galactic centers are initially quite eccentric and
inclined [14]. Depending on the value of its physical
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parameters, the system will eventually enter the region of
such an island and then the plateau in the ratio of frequen-
cies will show up. Furthermore, since the rational ratios of
frequencies are dense in any finite interval, during the
whole inspiral phase there is a non-negligible probability
for observing more than one plateaus in frequency ratios.
Only the low-order resonances though are probable to be
observed since the width of the corresponding islands is
usually much lower for the higher resonances.

In order to exhibit our criterion for observing a non-Kerr
spacetime, we have used a Manko-Novikov (MN) metric
[11,15] as an example of a non-Kerr metric. The specific
MN metric is characterized by one parameter Q (in [11]
this parameter is noted as q), besides the mass and the
spin parameters, which measures the deviation of its
quadrupole moment from the corresponding Kerr metric.
This particular metric was analyzed in [11] and was found
to behave like an integrable system with respect to regu-
larity of its curves in the outer allowed region of phase
space. Based on the general applications of the KAM
theorem, we performed a more thorough analysis of the
orbits in the same metric and found that the expected
Birkhoff chains of islands are present on a surface of
section, although they are very thin to be observed in a
coarse study of orbits.

Also, we investigated the effect on the ratio of frequen-
cies of polar oscillations when an orbit is moving adiabati-
cally in and out of such an island while the corresponding
EMRI radiates energy and angular momentum away. We
have shown that the plateau in the ratios of frequencies
could last for a few hours to a few weeks, depending on the
masses involved in the EMRI, as well as the value of theQ
parameter of the background spacetime. Actually, the
aforementioned plateaus will be more distinctly observed
in lower mass-ratios (�=M & 10�5 where� andM are the
reduced and total mass of the binary, respectively) since
then the system spends more time within an island. These
effective plateaus could be somehow integrated in the
schemes used in data analysis of LISA to look for non-
Kerr EMRI’s.

We emphasize that the existence of a plateau is a generic
result for any nonintegrable perturbed Kerr metric. Thus
the MN metric does not imply any restrictions in the
general application of the proposed observational criterion.
The MN metric is merely an example of a perturbed Kerr
metric with anomalous moments.

Resonances in a non-Kerr MN spacetime.—The MN
spacetime, which was used in [11] to explore the orbits
in a non-Kerr metric, is a family of solutions of the Einstein
equations in vacuum, that has been built on the foundations
of a Kerr metric and thus it has as a special case the pure
Kerr metric [15]. For the specific metric this could actually
be done by setting the Q parameter equal to zero. The
higher mass and mass-current multipoles are also affected
by Q [11].

The Kerr metric is a very special metric for two main
reasons. (i) It is a highly symmetric metric since apart from
the three integrals of geodesic motion that all axially
symmetric, stationary, and asymptotically flat metrics
share, it is characterized by an extra integral of motion,
the so called Carter constant. (ii) It is a metric related to
realistic physical objects. According to the ‘‘no hair theo-
rem’’, all spinning objects that collapse to form a black
hole are described by such a metric. Since highly compact
objects that move very close to each other are very power-
ful sources of gravitational radiation, an EMRI of a stellar-
mass compact object around a massive Kerr black hole is a
highly promising source for the LISA detector.
In order to look for qualitative new characteristics in

non-Kerr compact sources that could exist in nature, we
have computed numerically the geodesic orbits in a MN
metric. Since this is a metric which is built on the basis of a
Kerr metric, while it does not share its special symmetry
that leads to Carter constant, it could be considered as a
perturbed Kerr; therefore it is not expected to be described
by an integrable system, in contrast to what happens in a
Kerr spacetime. The fact that this is not an integrable
system could already be deduced from the fact that orbits
in the inner allowed region of the MN spacetime exhibit
chaotic behavior [11,13]. In the outer region (where the
gravitational field is weaker) the MN spacetime looks like
a perturbation of Kerr and thus most of KAM tori just
modify their shape. However, the resonant tori disintegrate
and intersect a surface of section forming regions of finite
thickness, instead of single closed KAM curves. These
regions form sets of islands, known as Birkhoff chains of
islands; each one of them bounded externally and inter-
nally by KAM curves [16]. The existence of such chains of
islands is characteristic of a system that is nearly inte-
grable. A thorough analysis of geodesic orbits in the MN
spacetime revealed two such Birkhoff chains of islands that
correspond to the resonances 2=3 and 1=2. Discovering
such islands on a Poincaré surface of section is not an easy
task since these islands are quite thin (cf. Fig. 1); a very fine
sweep of initial conditions is needed to get such an island.
Fortunately, there is an alternative tool to approach the
corresponding orbit much faster, the ‘‘rotation number’’
[16]. This number can be easily computed for every orbit
and by changing the initial conditions and monitoring the
corresponding rotation number, we could arrive at the
desirable rational value of the rotation number.
A phase orbit in an integrable system (like the Kerr case)

is wound around a nonresonant torus filling the whole torus
densely in the course of time, while for a resonant torus the
orbit is periodic, repeating itself after a few windings [7].
Thus, on a surface of section which intersects transversally
the corresponding tori (we have used the plane z ¼ 0, on
which we mark the intersecting points when _z > 0, thus our
orbits are purely nonequatorial), the crossing points con-
stitute a set of points that densely fill a closed curve in the
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former case, and a finite number of fixed points in the latter
case. This number is the number of oscillations along the
spatial axis that intersects transversally the surface of
section (the z axis in our case) that correspond to a finite
number of oscillations along the other spatial axis (the �
axis). When the system deviates from being integrable,
these fixed points of the periodic orbit evolve to an equal
number of Birkhoff islands.

By means of the sequence of crossing points described
above it is easy to define the aforementioned rotation
number. Either for an integrable or for a non integrable
system of 2 degrees of freedom, this is defined as follows:
LetA be the fixed point on a surface of section and Bi be
the ith point of intersection of the phase orbit with the

surface of section. The vector AB
������!

i rotates through an
angle ��i as it moves from the ith intersecting point to
the next one. The rotation number is � ¼ 1

2� limN!1 1
N �

P

N
i¼1 ��i [16]. The rotation number is the fraction of the

two corresponding fundamental frequencies of the system,
each multiplied by an integer. Thus for a geodesic orbit in a

MN metric it will be � ¼ mf�
nfz

with m, n integer numbers.

Whenever the two frequencies are commensurate to each
other, the rotation number is rational. Actually the resonant
tori of the integrable system that form Birkhoff islands on a
surface of section when the system gets perturbed, are the
ones with commensurate frequencies, and consequently
with rational rotating numbers. Thus we can alter the initial
conditions until we obtain a specific rational value for �
and thus reveal the location of a Birkhoff island. In our case
of geodesic orbits in MN we have searched for Birkhoff
islands when f�=fz ¼ 2, or 1, which correspond to � ¼
2=3, or 1=2, respectively. Moreover, the thickness of the

islands grows with the perturbation parameter Q, in agree-
ment with simple perturbed integrable Hamiltonian toy
models that have already been studied in the literature
[16–18].
Evolving orbits due to radiation reaction.—Each chain

of Birkhoff islands, separate the surface of section in an
interior and an exterior region. While one moves from the
former to the latter region, the rotation number, and con-
sequently the ratio of frequencies, drops monotonically,
except if we land on the thin window of an island; then the
ratio of frequencies does not change, even though the
frequencies themselves change. Thus by analyzing the
spectrum of a gravitational-wave signal and monitoring
the ratio of the fundamental frequencies (cf. Fig. 2), when-
ever a plateau shows up, it will signal a non-Kerr type of
background. The plateau will be more prominent (i) if the
deviation from Kerr is larger, (ii) if the ratio of mass is
more extreme, since then the deviation from geodesic orbit,
due to energy and angular momentum loss, is slower and
the system needs more time to cross an island, and (iii) the
island corresponds to a resonance of low-integer ratios,
since these resonances correspond to wider islands.
We have run such adiabatic orbits in MN spacetimes

numerically, following approximate formulae for the evo-
lution of energy and angular momentum along the axis of
symmetry (for a generic spacetime there is no reliable way
to compute the losses due to radiation) [19]. Our numerical
explorations show that these plateaus are visible for ratios

τ M

f ρ
f z

FIG. 2. The evolution of the ratio of fundamental frequencies
f�=fz for a MN EMRI with Q ¼ 0:95 and ratio of masses

�=M ¼ 5� 10�5. The initial conditions were chosen to get
quite a long plateau. The fundamental frequencies were com-
puted numerically from the Fourier analysis of the orbital motion
in time intervals of length 5000M. The oscillations of the ratio—
mainly at the plateau interval—are artifacts due to Fourier
analyzing a finite part of the orbit.

FIG. 1. The surface of section of the outer region on the (�, _�)
plane for the parameter set E ¼ 0:95, Lz ¼ 3M, � ¼ 0:9, Q ¼
0:95 of MN. E, Lz are the energy and the angular momentum of
the inspiral, respectively, while � is the spin of the central body
(for details about these quantities see [11]).
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of masses below some threshold that depends on the reso-
nance we are dealing with and the value of Q assumed for
the MN metric. For example for Q ¼ 0:95 the higher ratio
of masses for which we can tell the presence of such a
plateau is �=M ffi 10�4. If the ratio of masses is above
these thresholds, the system evolves so fast that the corre-
sponding plateaus are not discernible. Below the threshold,
the actual duration of the plateau is more extended for
lower values of �=M, although it varies a lot depending
on the specific trajectory of the phase orbit through the
Birkhoff island. The aforementioned thresholds are ac-
tually within the range of masses expected for an EMRI
signal detectable by LISA [20].

Another crucial point with respect to observability
of the plateau effect is the following: Since the chains of
Birkhoff islands are numerous, and the phase orbit is
forced to move adiabatically from one KAM curve to the
next, it is forced to pass through many such islands. Thus,
while the effect is always present, an actual system will
exhibit an unambiguous plateau whenever it has sufficient
time to cross a strong resonance, like the 2=3 or the 1=2
one. This happens if the geometric characteristics of the
orbit when it enters the window of sensitivity of LISA are
such that during the evolution of the orbit, it will cross one
of these resonances. Thus, the orbit should have initial
eccentricity and inclination within a suitable range.
These ranges are quite wide; therefore it is anticipated
that a large fraction of such suitable EMRI’s will leave
their imprints on their signal through an apparent plateau of
the ratio of the observed frequencies. Moreover, even if the
evolution of the signal is such that it correlates well with a
Kerr EMRI, we could focus our search in the particular
period when the ratio of the corresponding peaks in the
spectrum that are related to the radial and precessional
oscillation are close to a resonant ratio (f�=fz ¼ 2 for

the 2=3 resonance and 1 for the 1=2 resonance). A statis-
tically important persistence of such a ratio would be a
clear ‘‘smoking gun’’ for a non-Kerr metric. An apparent
persistence of a corresponding orbit in Kerr [12] is quali-
tatively different since it is simply due to slow crossing of a
resonance.

Finally, we should note that a possible positive signal
from a non-Kerr EMRI, could be further explored for other
consequences of such a peculiar source, like the instabil-
ities that are expected to show up before the corresponding
final plunge [11], or a possible transit of the orbit to chaotic

behavior through entrance in the interior region of allowed
orbits of a MN-like metric [11,13].
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