
PHYSICAL REVIEW D 71, 044005 (2005)
Tracing the geometry around a massive, axisymmetric body to measure, through gravitational
waves, its mass moments and electromagnetic moments

Thomas P. Sotiriou* and Theocharis A. Apostolatos†

Section of Astrophysics, Astronomy, and Mechanics, Department of Physics, National and Kapodistrian University of Athens,
Panepistimiopolis, Zografos GR-15783, Athens, Greece

(Received 25 October 2004; published 7 February 2005)
*Email add
†Email add

1550-7998=20
The geometry around a rotating massive body, which carries charge and electrical currents, could be
described by its multipole moments (mass moments, mass-current moments, electric moments, and
magnetic moments). When a small body is orbiting around such a massive body, it will move on
geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to
gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the
geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper
is a generalization of previous similar results by Ryan. Ryan explored the mass and mass-current moments
of a stationary, axially symmetric, and reflection symmetric, with respect to its equatorial plane, metric, by
analyzing the gravitational waves emitted from a test body which is orbiting around the central body in
nearly circular equatorial orbits. In our study we suppose that the gravitating source is endowed with
intense electromagnetic field as well. Because of its axisymmetry the source is characterized now by four
families of scalar multipole moments: its mass moments Ml, its mass-current moments Sl, its electrical
moments El, and its magnetic moments Hl, where l � 0; 1; 2; . . . . Four measurable quantities, the energy
emitted by gravitational waves per logarithmic interval of frequency, the precession of the periastron, the
precession of the orbital plane, and the number of cycles emitted per logarithmic interval of frequency, are
presented as power series of the Newtonian orbital velocity of the test body. The power series coefficients
are simple polynomials of the various moments. If any of these quantities are measured with sufficiently
high accuracy, the lowest moments, including the electromagnetic ones, could be inferred and thus we
could get valuable information about the internal structure of the compact massive body. The fact that the
electromagnetic moments of spacetime can be measured demonstrates that one can obtain information
about the electromagnetic field purely from gravitational-wave analysis. Additionally, these measure-
ments could be used as a test of the no-hair theorem for black holes.
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I. INTRODUCTION

While, it has been well known for quite some time that
the geometry of the vacuum around a massive object is
related directly to the multipole moments [1–4] of the
central object, as in Newtonian gravity, Ryan [5] was the
first who attempted to map the spacetime geometry of a
central axisymmetric body, through its mass and mass-
current moments, on a few measurable physical quantities
that are related to the kinematics of a hypothetical test body
that is orbiting around the central object while emitting
gravitational waves. Later, Ryan [6] used the outcome of
his work to perform the analysis on the output of
gravitational-wave detectors, in order to extract the mo-
ments of the central body around which a much lower-mass
body is orbiting and emitting waves.

Fortunately, we live in an era where technology may
give us the opportunity to observe astrophysical phe-
nomena that are related to the highly distorted geometry
of a compact massive central object. In particular, the
detection of gravitational waves from binaries will provide
us with data that are strongly dependent on the geometry
ress: tsotiri@phys.uoa.gr
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itself. Apart from the Earth-based detectors which are
restricted to detect moderate mass binaries (e.g., 1 to
300 M� for the Laser Interferometer Gravitational Wave
Observatory, LIGO) [7], the Laser Interferometer Space
Antenna, LISA, when it flies in space and starts operating,
is expected to explore the geometry of very massive objects
with exceptional high precision [8]. Besides, telescopes
with higher and higher resolution, operating at various
regions of the electromagnetic spectrum, are able to probe
the close neighborhood of compact massive objects, as in
accretion disks and jets of active galactic nuclei. All this
information which is related, by one way or another, to the
motion of small objects in the curved geometry of massive
astrophysical objects could somehow shed light on the
internal structure of the central object. Of course, it is not
expected to fully determine its structure from the knowl-
edge of its moments (this is not possible even in Newtonian
gravity). However, knowing the moments of the central
body could set restrictions on the various models that are
assumed to describe the interior of the central body.
Moreover, the no-hair theorem in the case of a large black
hole at the role of the central object could be fully tested, if
from our moment-extraction formulas we get the values of
electric and magnetic moments.
-1  2005 The American Physical Society
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The binaries we have considered in our paper are ideal-
ized with regard to the following quite realistic
assumptions.

(i) The central object is assumed to be stationary and
axisymmetric, and characterized by reflection symmetry
with respect to its equatorial plane. This is expected to be
true for a quiescent massive object with internal fluid
motions that are strictly toroidal. The axisymmetry gives
us the freedom to describe the spacetime geometry with
scalar, instead of tensorial, multipole moments (see
Ref. [2]). The same is true in Newtonian gravity as well,
although in that case all other moments except the mass
moments do not show up in the expansion of the gravita-
tional potential. Since we are taking into account the
electromagnetic content of the central object as well, we
are considering four families of multipole moments to
characterize the geometry around the central body: its
mass moments M0;M2;M4; . . . , its mass-current moments
S1; S3; . . . , its electric charge moments E0; E1; E2; . . . , and
its magnetic moments H0; H1; H2; . . . . In particular, the
M0 � M moment is the mass of the object, S1 is its angular
momentum, E0 � E is its charge, and H1 is its magnetic
dipole moment. In every family of moments, each moment
appears in steps of 2, and this holds true for the electro-
magnetic moments as well [9]. This property is due to the
reflection symmetry of the metric itself (cf., [2]). The
geometry of such objects can be described by the
Papapetrou metric which consists of only two dynamical
functions. The third one (see Sec. II) could be easily
inferred from the first two.

(ii) Although we plan to extend our exploration in a
generic geodesic motion around such a central object, in
the present paper we only take into consideration nearly
equatorial and nearly circular geodesic orbits of test bodies
in the fixed geometry of a central massive object. We know
that gravitational radiation from a test body that is far from
its innermost stable circular orbit tends to circularize the
orbit [10,11], and therefore the orbit could safely be con-
sidered circular if it has a sufficiently long time to evolve
without being perturbed by other objects. Also, we know
that at least for not extremely fast rotating Kerr black holes
the evolution of nonequatorial orbits due to radiation re-
action is such that their inclination remains almost constant
while their radius decreases [12].

(iii) The energy emitted in the form of gravitational
radiation will be assumed to be given by the quadrupole
formula, since there is no known way to fully analyze the
wave emission in a generic geometrical background.
Furthermore, we assume that this energy is carried away
by waves at infinity, and there is no energy loss through any
horizon, or due to thermal heating of the surface of the
central object from the impact of gravitational waves.

The rest of the paper is organized as follows: First, in
Sec. II we define the observable quantities that will be used
to measure the moments of the metric. These quantities are
044005
the periastron precession ��, the precession of the orbital
plane �z, the energy emitted at infinity per logarithmic
frequency change �E=
, and the number of cycles of the
primary gravitational waves per logarithmic frequency
change �N. In particular, the latter one, which can be
measured with high accuracy by the broadband wave de-
tectors that are operating now, or will be built in the near
future, is computed assuming that the phase of the waves is
coming simply from the dominant frequency, f � �=.
We also show how one defines the mass and electromag-
netic multipole moments of an axially symmetric body
with reflectional symmetry, and how these moments
uniquely determine the metric of the space around the
object. For the equatorial plane, and slightly out of this
plane, we write the metric as a power series of the Weyl
radial coordinate �. The coefficients of the power series are
polynomials of the various moments of spacetime. We end
this section by explaining the implications of reflection
symmetry of the metric on the electromagnetic fields.
Having in hand all these expressions that connect the
observable quantities to the metric and hence to the mo-
ments, we proceed in Sec. III to write down expressions for
the four astrophysical quantities, as power series of v �

�M��1=3, where M is the mass of the central object and �
is the orbital frequency of the test body, observed at
infinity. This quantity is the Newtonian orbital velocity of
the orbiting body, and is a measure of the gravitational field
strength. Following the analysis of Ryan [5], we present the
power expansion of �N with coefficients that include only
the leading order contribution of each central-body multi-
pole moment. It is argued that these are the only terms we
could get without getting into the complicated analysis of
wave emission. Finally, in Sec. IV we comment on how the
gravitational-wave analysis could inform us about the mo-
ments of the central object, the accuracy with which these
moments could be computed, and the implications they
could have on the observational verification (or not) of the
full no-hair theorem (when charges are included).
Throughout the paper units are chosen so that G � c � 1.
II. OBSERVABLE QUANTITIES AND MOMENTS

In this section we briefly present and discuss the mea-
surable quantities that Ryan has used as tracers to measure
moments. A thorough presentation and analysis of them
can be found in Ref. [5]. Then, we present all formulas that
determine the various moments and relate them with the
metric describing the geometry around a central object.
Finally, we discuss what kind of electromagnetic fields are
consistent with the symmetries assumed for the metric.

A. Quantities that can be measured through
gravitational-wave analysis

As is explained in [5] there are four physical quantities
in a binary with high-mass ratio, that can, in principle, be
-2
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measured through the gravitational radiation emitted by the
binary, and are straightforwardly related to the spacetime
metric of the massive body. It is exactly these quantities
that we will use here as basic information in order to
extract the various multipole moments of the central ob-
ject. These are: (i)��, the periastron precession of the low-
mass body, (ii)�z, the orbital-plane precession of the low-
mass body, (iii) �E, the energy emitted as gravitational
waves per logarithmic interval of frequency, and most
important (iv) �N, the number of gravitational-wave
cycles per logarithmic interval of frequency. The first two
quantities are computed by analyzing the geodesic motion
of nearly circular, nearly equatorial orbits of a test body on
a fixed background metric, and can be measured through
the modulation they induce on the gravitational waves
emitted by the binary. The third one, although it is directly
related to gravitational radiation emitted by the binary, can
be easily inferred by the functional relation of the energy of
the test body, which changes adiabatically, to its orbital
frequency, which is simply half the primary wave fre-
quency. Finally, the fourth one is the best measurable
quantity, since the phase matching used in data analysis
leads to a highly accurate estimation of the frequency
dependence of the phase, assuming detection has been
established. The computation of this quantity involves a
number of approximations, since it is directly related to the
mechanism of gravitational-wave emission on a compli-
cated metric background.

Here, for the sake of completeness, we rewrite the ex-
pressions of Ryan [5] that relate all these observable quan-
tities with the metric without further comments on how
these are computed. Both precession frequencies are given
by
�� � ��

�
�

g��

2

�
�gtt � gt���2

�g��

�2

�
;��

� 2�gtt � gt����gt� � g����

�gt�
�2

�
;��

� �gt� � g����2
�
gtt
�2

�
;��

��
1=2

; (1)
where � stands for �, or z. Actually, the frequencies
written above correspond to the difference between the
orbital frequency and the frequency of perturbations in �,
or z, since these differences are expected to show up in
gravitational waves as a modulating frequency. Of course
these frequencies are accurate only for orbits that are
slightly noncircular and slightly nonequatorial; otherwise
the frequencies would depend not only on the metric but on
specific characteristics of the orbit, its eccentricity and
inclination.

The energy per unit test-body mass for an equatorial
circular orbit in an axially symmetric spacetime is
044005
E



�
�gtt � gt�����������������������������������������������������

�gtt � 2gt��� g���
2

q ; (2)

and thus, the specific energy released as gravitational
radiation per logarithmic interval of frequency is

�E



� ��
d�E=
�

d�
: (3)

The expression above assumes that all the energy lost from
the test body has been emitted at infinity as radiation, and is
neither wasted as thermal energy on the fluid of the central
object, nor is it ‘‘lost’’ through any horizon.

The number of gravitational-wave cycles spent in a
logarithmic interval of frequency is

�N �
f�E�f�
dEwave=dt

; (4)

where dEwave=dt is the gravitational-wave luminosity,
which is assumed to be exactly the rate of energy loss of
the orbiting test body. As Ryan has analytically shown the
main contribution of dEwave=dt comes from the mass
quadrupole radiative moment of the binary. More specifi-
cally, up to fourth order of v � �M��1=3 after the leading
order, the gravitational-wave luminosity is accurately com-
puted from the quadrupole formula

dEwave
dt

��������Iij

�
32

5

2�4�6; (5)

plus a contribution of the current quadrupole radiative
moment, due to the motion of the central object around
the center of mass,

dEwave
dt

��������Jij

�
32

5

�


M

�
2
v10

�

�
v2

36
�

S1v3

12M2 �
S21v

4

16M4 �O�v5�
�
; (6)

see Ref. [5]. The expression above should be comple-
mented by additional contributions of dEwave=dt, due to
post-Newtonian corrections. The corresponding contribu-
tions, up to v4, are simply numerical if one computes them
from perturbation analysis in a Schwarzschild background.
A comparison though, between the final formula (55) of [5]
for dE=dt, and formula (3.13) of [13], which is based on
perturbations on a Kerr background, shows that at least up
to v4 order, the terms of [5] that include S1 and M2, which
come from the corresponding contributions that are given
by Eqs. (5) and (6), in the case of a Kerr metric, are equal to
the ones of Ref. [13]. This agreement indicates that up to
v4 order we can simply add the following numerical post-
Newtonian terms (the corresponding terms of [13] if we set
q � 0) to the rest of the contributions of dEwave=dt,
-3
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dEwave
dt

��������PN
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�
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�
�
1247

336
v2 � 4v3

�
44711

9072
v4 �O�v5�

�
: (7)

Finally, in order to compute the number of cycles �N, one
has to add up all contributions of dEwave=dt and combine
them with the expression for �E=
, which is given above
[see Eq. (3)].

To get expressions for all these quantities that are
straightforwardly connected to the moments of the central
object and can be observationally measured, first one has to
reexpress the metric functions in terms of all moments.
Also, the relation between the radius � and the orbital
frequency of the test body �, through moments, is neces-
sary so as to finally express the four measurable quantities
as power series of v.

B. Moments describing spacetime

In our paper, we consider only stationary axisymmetric
objects that are symmetric with respect to their equatorial
plane. These symmetries are more or less realistic assump-
tions for a quiescent massive rotating astrophysical body
around which much smaller bodies orbit. The metric of
such a central object alone could be written in �t; �; z; ��
coordinates, in the form of the Papapetrou metric [14],

ds2 � �F�dt�!d��2 �
1

F
	e2!�d�2 � dz2� � �2d�2
;

(8)

where F, !, and ! are the three functions that fully
determine a specific metric. These are functions of � and
jzj only, due to axisymmetry and reflection symmetry.
Einstein’s equations in vacuum guarantee that once F
and ! are given, ! can be easily computed (see [15]).
Once we incorporate an electromagnetic field in the vac-
uum around the compact object, the source of which is the
compact object itself, which allows spacetime to have the
same symmetries, the metric above still describes the
electrovacuum spacetime, but now the metric and the
electromagnetic field should satisfy the Einstein-Maxwell
equations. In order to fully compute the metric functions,
one more complex function, �, which is related to the
electromagnetic field, is necessary. F, !, and� themselves
can be determined by solving the so-called Ernst equations
[16,17], which are nothing more than the Einstein-
Maxwell equations in a different form. It is a system of
nonlinear complex differential equations of second order:

	Re�E� � j�j2
r2E � �rE � 2�r�� � rE; (9)

	Re�E� � j�j2
r2� � �rE � 2�r�� � r�; (10)

where r denotes the gradient in a Cartesian 3D space
��; z;��, and Re�. . .�, Im�. . .�, here and henceforth, denote
the real and imaginary part, respectively, of the complex
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function in parentheses. An asterisk  denotes complex
conjugate. The third metric function, !, is then easily
computed by integrating the partial derivatives @!=@�,
@!=@z, which are given as functions of derivatives of all
other functions,
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@!
@z

�
1

2

�

g2tt

@gtt
@�

@gtt
@z

�
1

2

g2tt
�

@�gt�=gtt�

@�

@�gt�=gtt�

@z

� 2
�
gtt

@Re���
@�

@Re���
@z

� 2
�
gtt

@Im���
@�

@Im���
@z

:

(12)

The relation of the two complex functions, E and �,
with the metric functions is the following,

E � �F� j�j2� � i’; (13)

where ’ is related with gt� through

gt� � F! � F
Z 1

�
d�0 �

0

F2

�
@’
@z

� 2Re���
@Im���

@z

� 2Im���
@Re���

@z

���������z�const
: (14)

Note that there is a sign difference in Eq. (22) of [5], which
has been corrected in a later paper of Ryan [18], and comes
from an odd convention of ! used by Ernst (see relevant
comment of [19]).

Instead of E and �, one could use two new complex
functions ~$ and ~q, that play the role of gravitational
potential and Coulomb potential, respectively, and are
more directly connected to the mass and electromagnetic
moments of the central body. These potentials are related
to the Ernst functions by

E �

����������������
�2 � z2

p
� ~$����������������

�2 � z2
p

� ~$
; (15)

� �
~q����������������

�2 � z2
p

� ~$
; (16)
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and can be written as power series expansions at infinity,

~$ �
X1
i;j�0

aij ��
i �zj; ~q �

X1
i;j�0

bij ��
i �zj; (17)

where

�� �
�

�2 � z2
; �z �

z

�2 � z2
; (18)

and aij, bij are coefficients that vanish when i is odd. This
reflects the analyticity of the potentials on the z-axis. The
tilded quantities, here and henceforth, are the conformally
transformed ones, which are essential for calculating the
moments (see [1]).

Because of Ernst equations (9) and (10) the above power
expansion coefficients aij and bij are interrelated through
the following complicated recursive relations:

�r� 2�2ar�2;s � ��s� 2��s� 1�ar;s�2

�
X

k;l;m;;n;p;g

�aklamn � bklbmn�	apg�p2

� g2 � 4p� 5g� 2pk� 2gl� 2�

� ap�2;g�2�p� 2��p� 2� 2k�

� ap�2;g�2�g� 2��g� 1� 2l�
; (19)

and
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�r� 2�2br�2;s � ��s� 2��s� 1�br;s�2

�
X

k;l;m;n;p;g

�akla

mn � bklb


mn�	bpg�p

2

� g2 � 4p� 5g� 2pk� 2gl� 2�

� bp�2;g�2�p� 2��p� 2� 2k�

� bp�2;g�2�g� 2��g� 1� 2l�
; (20)

where m � r� k� p, 0 � k � r, 0 � p � r� k, with k
and p even, and n � s� l� g, 0 � l � s� 1, and �1 �
g � s� l. Essentially, these relations are simply an alge-
braic version of Einstein-Maxwell equations for the coef-
ficients of the power expansion of the metric and the
electromagnetic field tensor. The recursive relations (19)
and (20) could be used to build the whole power series of ~$
and ~q from a full knowledge of the metric on the axis of
symmetry

~$� �� � 0� �
X1
i�0

mi �z
i; ~q� �� � 0� �

X1
i�0

qi �z
i: (21)

In [20] a method of calculating the complex multipole
moments of the central object in terms of the mi’s and qi’s
is presented. In brief, the gravitational moments are given
by

Pn �
1

�2n� 1�!!
S�n�0 ; (22)

where S�n�a are computed recursively by
S�0�0 � ~$; S�1�0 �
@
@ �z
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@
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S�0�0 ;
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n

�
a

@
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@
@�z
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�
�a� 1� 2n�!1 �
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�
S�n�1�a�1 � �a� n��a� n� 1�!2S

�n�1�
a

� a�a� 1�!2S
�n�1�
a�2 � �n� a��n� a� 1�

�
!1 �

1

��

�
S�n�1�a�1 �

�
n�

3

2

�
	a�a� 1� ~R11S

�n�2�
a�2 � 2a�n� a� ~R12S

�n�2�
a�1

� �n� a��n� a� 1� ~R22S
�n�2�
a 


�
: (23)
The electromagnetic moments Qn are computed from ex-
actly the same formulas, by simply replacing the initial
term S�0�0 with ~q instead of ~$. ~R11, ~R12, and ~R22 are given by
~Rij � � �r2 ~$ ~$� �r2~q~q� 1��2�Di
~$Dj
~$ �Di

~$Dj
~$

�Di~qDj~q
 �Di~q

Dj~q� ~si~s

k � ~s


i ~sk�; (24)
where
�r2 � ��2 � �z2; D1 � �z
@
@ ��

� ��
@
@�z

;

D2 � ��
@
@ ��

� �z
@
@ �z

� 1; ~si � �r ~$Di~q� �r ~qDi
~$;

(25)

and !1 � !;� and !2 � !;z can be expressed in term of ~Rij
as

!1 �
1

2
��� ~R11 � ~R22�; !2 � �� ~R12: (26)

The mass moments Mn and the mass-current moments Sn
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are related to Pn by

Pn � Mn � iSn; (27)

whereas the electric moments En and the magnetic mo-
ments Hn are related to Qn by

Qn � En � iHn: (28)

Since this algorithm can be used to evaluate the mo-
ments in terms of the mi’s and qi’s, one can invert these
relations and express the mi’s and qi’s in terms of the
moments:

mn � a0n � Mn � iSn � LOM;

qn � b0n � En � iHn � LOM;
(29)

where ‘‘LOM’’ stands for lower order multipole moments
of any type. Thus, we can use the recursive relations (19)
and (20) to evaluate the aij and bij coefficients in terms of
the moments. Finally, following the procedure presented in
the beginning of this subsection [Eqs. (11)–(17)] we can
express the metric functions and their first and second
derivatives as power series of � and z with coefficients
that are simple algebraic functions of the moments of the
massive body. Since in our study we have confined the
motion of the test particle on the equatorial plane, we
actually need to compute everything at z � 0 which makes
calculations far simpler than what they seem.

C. Reflection symmetry and electromagnetic moments

Following Ernst [16,17] and using Papapetrou’s metric
(8) we end up with the following Einstein-Maxwell equa-
tions:

r � 	��2F�rA3 �!rA4�
 � 0; (30)

r � 	F�1rA4 � ��2F!�rA3 �!rA4�
 � 0; (31)

r � 	��2F2r!� 4��2FA4�rA3 �!rA4�
 � 0; (32)

Fr2F � rF � rF� ��2f4r! � r!� 2FrA4 � rA4

� 2�2F3�rA3 �!rA4� � �rA3 �!rA4�; (33)

where A3 and A4 denote the A� and At components of the
electromagnetic 4-potential, respectively, and r is the
three-dimensional divergence operator in Weyl coordi-
nates. As we have already mentioned, the three metric
functions F, !, and ! are functions of � and jzj only,
due to the assumed symmetries. From the equations above
one cannot easily tell which symmetries, if any, are inher-
ited in A3 and A4. It is obvious though that A3 and A4 being
either both odd or both even functions of z is consistent
with the reflection symmetry of the metric functions. We
will argue that these are the only reasonable types of the
electromagnetic field.
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The Ernst potential � is defined by Ernst through the
following relations:

��1f�rA3 �!rA4� � n̂� rA0
3; (34)

� � A4 � iA0
3; (35)

where n̂ is the unit vector in the azimuthal direction. From
Eq. (14), we obtain the metric function gt�. Since we want
to end up with metric functions that are even functions of z,
then the whole intergrand should be even as well. This
could be accomplished if ’ is an odd function of z and the
real and imaginary parts of � are either even and odd or
odd and even functions of z, respectively. If none of the
above holds then, in order to get an even function for gt�,
one must impose a restraining functional relation between
’ and �. But ’ and � should be independent in order to
describe a generic spacetime with the symmetries men-
tioned above. Therefore, by virtue of Eqs. (34) and (35),
either A4 and A3 are both even or both odd functions of z.
Consequently, for both cases the Re�E� is an even function
and the Im�E� is an odd function of z.

Now, we can use this information to conclude that, by
virtue of Eq. (15), the action of reflection symmetry leaves
Re�~$� invariant and changes the sign of Im�~$�. Thus only
even-order mass moments and odd-order current mass
moments will occur [21]. For the electromagnetic mo-
ments, things are not univocal since we have two discern-
ible electromagnetic cases that are consistent with the
symmetries of the metric. If both A3 and A4 are odd
functions of z then the action of the reflection symmetry
leaves Re�~q� invariant and reverses the sign of Im�~q�,
which means that only even-order electric field moments
and odd-order magnetic field moments will occur. On the
other hand, if both A3 and A4 are even functions of z then
the action of the reflection symmetry leaves Im�~q� invari-
ant, but reverses the sign of Re�~q�, which means that in this
case only odd-order electric field moments and even-order
magnetic field moments will occur.
III. THE POWER EXPANSION FORMULAS

Combining all formulas that are given in Sec. II, even-
tually we can express all four measurable quantities as
power series of v � �M��1=3 with coefficients that have
explicit dependence on all four types of moments. The
choice of v as a dimensionless parameter to expand all
physical quantities is warranted from the fact that the
inspiral phase of a binary, the best exploitable part in
gravitational-wave analysis [22], involves comparatively
low magnitudes of v. All measurable quantities have been
transformed to a dimensionless form as well, for example,
by dividing the two frequencies �� and �z by the orbital
frequency �.

Since the metric functions and their derivatives are ex-
pressed as functions only of � at the equatorial plane, in
order to express all measurable quantities as power series
-6
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of v, we need also a power series expansion of � with
respect to v, or equivalently �. Thus we have to invert the
function ����, at least as a power expansion. From an
elementary analysis of circular geodesics on the equatorial
plane (see [5]) we know that

� �
�gt�;� �

�������������������������������������������������
�gt�;��

2 � �gtt;���g��;��
q

g��;�
: (36)

In the following part of this section we explain the
algorithm that one should follow, in order to obtain the
power series for��=�,�z=�,�E=
, and�N. One starts
with a power series of ~$ and ~q of the form given by
Eq. (17). Since no higher than second derivatives of the
metric functions with respect to z are necessary, one should
keep aij’s and bij’s with 0 � j � 2, and as many values of
i as one needs to carry the power series expansion of the
measurable quantities at a desirable order. In our paper
where all quantities are written up to no higher than v11

order, we only need i’s in the interval 0 � i � 4. All
quantities that are expressed as power series of �� and �z
are evaluated at �z � z � 0 at the end, and thus, all ex-
pressions are finally power series of �� � 1=�, due to
Eq. (18). Although the aij’s and bij’s are polynomials of
various moments, from the practical point of view it is
preferable to keep them as they are, and replace them by
their moment’s dependences only at the final expressions.
Then from ~$ and ~q we construct E, �, and F, ’ [cf.,
Eqs. (13) and (15)]. These are sufficient to build all metric
functions through Eqs. (11), (12), and (14). Next, following
the procedure described above, we expand � as a power
series of 1=�, by virtue of Eq. (36). This series is inverted
and in this way we obtain 1=� as a power series of �,
which then can easily be turned into a power series of the
dimensionless parameter v.

Now, the power series representing 1=� will replace all
1=� terms appearing at the expansions of the metric, its
derivatives, and all other physical quantities depending on
them [Eqs. (1)–(5)]. Finally, one has to rewrite the aij and
bij terms appearing at the coefficients of all these power
series as polynomials of the various moments. The recur-
sive relations (19) and (20) relate all aij and bij with mk �

a0k and qk � b0k, which are directly related to the scalar
moments of spacetime through Eqs. (24, 25) of Ref. [20].

The algorithm described in the previous two paragraphs
has been carried out with MATHEMATICA, and has been
checked for the following two subcases: (i) When all
electromagnetic fields are turned off, by erasing all elec-
tromagnetic moments (El � Hl � 0), our expressions for
��,�z, �E=
, �N are identical to the ones computed by
Ryan [5]. (ii) For the Kerr-Newman metric it is quite easy
to compute �, ��, �z, and �E=
 for a quasiequatorial,
quasicircular orbit. Actually, there is no need to use Weyl
coordinates to describe the metric; one could simply work
with the metric in the usual Boyer-Lindquist coordinates
044005
(see Eq. (33.2) of [23]), and compute everything according
to the formulas given above, by replacing the derivatives
with respect to z, with the corresponding derivatives with
respect to 0 around 0 � =2. The expressions for �,
though, should be replaced with �g2t� � gttg���

1=2. Thus,
if in the power series for ��, �z, and �E=
 that are
written below [cf., Eqs. (38)–(40)], one makes the follow-
ing substitutions for the moments,

M2l � ��1�lMa2l; S2l�1 � ��1�lMa2l�1;

E2l � �Q=M�M2l; H2l�1 � �Q=M�S2l�1;
(37)

according to [20], the expressions we obtain are identical
to the ones obtained directly from the Kerr-Newman
metric.

There is one more thing that should be pointed out
before we write down the power series for all four observ-
able quantities. As is explained in Sec. II C there are two
possible cases for the electromagnetic field that lead to
reflection-symmetric spacetimes. The first case (with odd
A3 and A4 as functions of z) is the one that describes an
electric field that is reflection-symmetric (like in a mono-
pole electric field), and a magnetic field that is reflection
antisymmetric (like in a magnetic dipole field). Henceforth
we shall call this case the electric-symmetric case, (es). In
that case only the even electric moments and the odd
magnetic moments show up in the moment analysis of
spacetime. Thus b0l is real for even l’s and purely imagi-
nary for odd l’s. The other case (with even A3 and A4 as
functions of z) is the one that describes an electric field that
is reflection antisymmetric (like in a dipole electric field),
and a magnetic field that is reflection-symmetric (like in a
magnetic quadrupole field). Henceforth we shall call this
case the magnetic-symmetric case, (ms). In that case only
the odd electric moments and the even magnetic moments
show up in the moment analysis of spacetime. Thus b0l is
real for odd l’s and purely imaginary for even l’s. Although
classically we do not expect the central object to carry any
magnetic monopole, the zeroth-order magnetic moment
shows up formally in the terms of a generic magnetic-
symmetric case, and thus we have not omitted it.

The power series expansion for ��, �z, and �E=

takes the following form:

��

�
�
X1
n�2

Rnv
n; (38)

�z

�
�
X1
n�3

Znvn; (39)

�E



�
X1
n�2

Anv
n; (40)

while the corresponding coefficients, up to ninth order for
the two frequencies and up to 11th order for the radiated
energy, in the two distinct electromagnetic cases (es) and
(ms) are
-7
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We note that the higher order terms we have computed are
by one order lower than the corresponding higher order
terms of Ryan. This is due to computing power restrictions,
since as one goes to higher order terms our coefficients
become far richer in moments than Ryan’s. The fact that
we have two new sets of moments (the electromagnetic
ones) allows many more combinations of moments in high
order terms. Actually, from a practical point of view these
expansions are far more advanced than what will be used in
gravitational-wave data analysis in the near future. On the
other hand, the expressions above present an important
feature: in every new order term a new moment shows
up. This suggests that a very accurate observational esti-
mation of the series could in principle reveal any moment.

A glance at the corresponding terms of the two electro-
magnetic cases shows that each combination of moments
for the (es) case is numerically equal to the corresponding
combination for the (ms) case, if the electric and magnetic
moments are interchanged. The sign though is the same for
combinations of pure electric or pure magnetic moments,
but opposite for combinations of electric and magnetic
moments.

The difference by two in the order of the highest com-
puted order term between the power series for the �’s and
�E is due to the second derivatives that appear in Eq. (1).

Finally, in order to express �N also as a power series of
v, we need to expand dEwave=dt as a power series of v. As
was explained in Sec. II A we cannot work out the pertur-
044005
bative analysis of gravitational-wave emission at a generic
spacetime background; we can only obtain accurate ex-
pressions for dEwave=dt up to v4 after the leading order.
However, we know the numerical factor of the higher order
moment appearing at any higher than v4 order. These
higher order moments come from the power series expan-
sion of � itself through Eq. (5) which describes the main
contribution to energy radiation. All other contributions
depend on lower moments at the same order of v.
Therefore, in the following formulas for � and
dEwave=dt, we write the power series coefficients explicitly
up to the fourth order, while instead of giving the explicit
form of all higher order coefficients, we give only the
higher moment term that occurs at each order of the power
expansion. More specifically, in order to compute the
power expansion of dEwave=dt we add up all three power
series contributions of Eqs. (5)–(7). Thus, we yield

� � Mv�2

 
1�

X1
n�2

�nv
n

!
; (41)

and

dEwave
dt

�
32

5

�


M

�
2
v10

 
1�

X1
n�2

Wnv
n

!
; (42)

where the �n and Wn coefficients for the two electromag-
netic cases are, respectively,
��es�
2 � �1�

E2

M2 ; ��es�
3 � �

2

3

S1
M2 ; ��es�

4 � �
1

2
�
1

2

M2
M3 �

1

2

E2

M2 �
2

9

E4

M4 ;

��es�
4k�1 � ���1�k

2

3

�2k� 1�!!
�2k� 2�!!

H2k�1E
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�2k� 2�
3
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2

3

�2k� 1�!!
�2k�!!
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1

3
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�2k� 2�!!

M2k�2
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(43)
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2

3
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1

2
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1

2
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1

2
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2

3
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and
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(45)
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W�ms�
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�
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3
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4

S1
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4 � �
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�
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S21
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2

9
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8

3
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1

3

�2k� 3�!!
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M2k�2
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(46)
In the expressions above the indices k run from one to
infinity, and the term LOM is an abbreviation for lower
order moments that appear at a specific order in the ex-
pansion. We note that in all these coefficients the same
feature with respect to the corresponding terms in the
two electromagnetic cases that was mentioned before
arises.

By combining the power series for �E=
 [Eq. (40)]
with the one for dEwave=dt [Eq. (42)] we obtain the power
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series expansion of �N:

�N �
5

96

�
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�
v�5

 
1�

X1
n�2

Nnv
n

!
; (47)

where the Nn coefficients for the two electromagnetic
cases are given by the following polynomials of the mo-
ments,
N�es�
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3
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3
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S1
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4 �
3058673

1016064
�
1

16

S21
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M2
M3 �

12431

504

H2

M2 �
179

9

H4

M4 ;

N�ms�
4k�1 � ���1�k

�16k� 20�
3

�2k� 1�!!
�2k� 2�!!

E2k�1H
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3

�2k� 1�!!
�2k�!!

H2kH

M2k�2 � LOM;
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3
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3
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M2k�2
M2k�3 � LOM: (49)
As in the other three measurable quantities, the power
expansion of �N is such that at every order term a new
moment, which was not present at any lower order term,
occurs. This proves that all moments can in principle be
unambiguously extracted from accurate measurements of
�N.
IV. USING THE RESULTS IN GRAVITATIONAL-
WAVE ANALYSIS

Although we have not quantitatively explored the im-
plications of our results on the estimation of errors in
determining the various moments from a gravitational-
wave data analysis, as it has been done by Ryan in [6],
we could make some general comments. Actually, the
only difference of our results from the ones of [5] is
that more moments are showing up at each coefficient
in the power expansions of all observable quantities, and
thus Ryan’s estimates for each term apply equally well
here.

As is shown in [6], the first generation of LIGO is not
expected to be able to extract the first two moments (S1 and
M2) with high accuracy ( � 0:05 for the former and �0:5
for the latter one), by analyzing the phase of the waves. If
we allow for electromagnetic fields as well, the corre-
sponding monopole (which classically is expected to be
very close to zero) will be measured with even higher
accuracy than the other two mass moments, since the
charge of the source (or the magnetic monopole in case
of some exotic body) is present at even lower order,
namely, in the v2 term, while the electric dipole, or the
magnetic dipole, that first shows up at the v5 term will be
measured with rather disappointing accuracy. On the other
hand, analyzing the data of LISA leads to accuracies al-
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most 2 orders of magnitude higher than the corresponding
data for LIGO. Thus, it seems quite promising that LISA
will give us the opportunity to measure the first few mo-
ments, including the electromagnetic dipole moments,
quite accurately. Also, the fact that at every new order, in
the power series of �N, a new moment appears is signifi-
cant, since this means that in principle a unique set of
moments arises from an accurate estimation of all power
series terms. Actually, there are two possible sets of mo-
ments, one for each electromagnetic case, since we cannot
a priori exclude one of them. We can only exclude one of
the two sets on physical grounds, if only one of them leads
to a physically reasonable classical object (for example, a
highly magnetized compact object is physically preferable
to a compact object with a huge electric dipole). If we
manage to measure a few lower moments, we can check if
they are interrelated as in a Kerr-Newman metric [20]. A
positive outcome of such a test will be of support to the
black-hole no-hair theorem in the case that the central
object is a black hole. The case of observational violation
of the black-hole no-hair theorem could either mean that
the central object is not a black hole, or that the theorem
does not hold. Of course to assume the latter an extra
verification that the central object is indeed a black hole
is necessary. Indications that the central massive compact
object is not a black hole would imply the existence of an
exotic object (e.g., soliton star, naked singularity, etc.). If
the central body’s mass is measured to be within the stellar
limits (e.g., a massive neutron star) we could get valuable
information about its electromagnetic field, like its mag-
netic dipole field.

While the phase of a gravitational wave is the quantity
that can be most accurately measured, since a large number
of cycles (a few thousand for LIGO and a few hundred
thousand for LISA in case of binaries with high ratio of
masses) is sweeping up the sensitive part of the detectors,
the two precession frequencies�� and�z can in principle
be measured if the detectors become more sensitive and
templates that describe modulating waves are used [24]. If
this ever becomes possible one could use any of them to
test the no-hair theorem. This would demand no more than
the four lower order terms, since according to this theorem
all moments depend on only three quantities (mass, angular
momentum, and total charge). Actually, from measure-
ments of modulating frequencies we could not at first
determine which frequency corresponds to each preces-
sion. However, the power expansions of the two frequen-
cies begin at a different order, and thus we could discern
them. Unfortunately, there are terms in these expansions
that contain more than one first-occurring moment (for
example, the first term of ��, R2, is a function of E or H
and M). However, expansions of �� and �z, if used
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simultaneously, along with the intrinsic dependence of v
on M, could finally lead to the full determination of the
moments. Notice though that some corresponding terms in
the series expansions of the two frequencies depend on the
same set of multipole moments, like R3 and Z3. Assum-
ing that the observed system is sufficiently well described
by our model for the binary, this multipole information
could serve to determine these moments with better
precision.

The exploitation of our analysis presented above is
mainly focused on measuring the various physical quanti-
ties through gravitational-wave analysis. Therefore, it is
related mainly to binaries with massive black holes as a
central object. Actually, our analysis applies to any binary
system with one of the two bodies being much more
massive than the other. For example, one could read the
multipole moments of a compact object, like a neutron
star, from the precession frequencies of a small object
orbiting around the first one, or from the way the latter
one loses its energy. However, such observations are rather
hopeless, through gravitational-wave analysis, at least for
the near future, since the strength of gravitational waves
of low-mass bodies orbiting around neutron stars is rather
prohibitive for corresponding observations. On the other
hand, if we manage to obtain information about the
precessing frequencies or the evolution of the orbits of
such systems by other observational means, we could
measure the multipole moments (mass moments, mass-
current moments, and electromagnetic moments) of the
compact central object and thus put strict restrictions on
the models that are used to describe the interior of these
objects.

Our analysis demonstrates that it will be possible to
determine all types of multipole moments of the cen-
tral object, from future gravitational-wave measure-
ments. Thus, apart from spacetime geometry, we could
also determine the central body’s electromagnetic fields.
Although the data of LISA should be suitable for extract-
ing such information with high accuracy, the assump-
tions of circular and equatorial orbit are not that realistic.
From this point of view we consider our work as a step
towards a more detailed analysis with not so restrictive
assumptions.
ACKNOWLEDGMENTS

This research was supported in part by Grant No. 70/4/
4056 of the Special Account for Research Grants of
the University of Athens, and in part by Grant No. 70/3/
7396 of the ‘‘PYTHAGORAS’’ research funding pro-
gram.
-12



TRACING THE GEOMETRY AROUND A MASSIVE . . . PHYSICAL REVIEW D 71, 044005 (2005)
[1] R. Geroch, J. Math. Phys. (N.Y.) 11, 2580 (1970).
[2] R. O. Hansen, J. Math. Phys. (N.Y.) 15, 46 (1974).
[3] W. Simon and R. Beig, J. Math. Phys. (N.Y.) 24, 1163

(1983).
[4] W. Simon, J. Math. Phys. (N.Y.) 25, 1035 (1984).
[5] F. D. Ryan, Phys. Rev. D 52, 5707 (1995).
[6] F. D. Ryan, Phys. Rev. D 56, 1845 (1997).
[7] K. S. Thorne, in Proceedings of Snowmass 94 Summer

Study on Particle and Nuclear Astrophysics and
Cosmology, edited by E. W. Kolb and R. Peccei (World
Scientific, Singapore, 1980).

[8] K. Danzmann et al., ‘‘LISA—Laser Interferometric Space
Antenna, Pre-Phase A Report,’’ Max-Planck-Institut für
Quantenoptik Report No. MPQ 233, 1998.

[9] There are two possible electromagnetic fields that lead to
reflection-symmetric metric. One of them consists of even
electric and odd magnetic moments, while the other one
consists of even magnetic and odd electric moments (see
Sec. II C).

[10] P. C. Peters, Phys. Rev. 136, B1224 (1964).
[11] T. Apostolatos, D. Kennefick, A. Ori, and E. Poisson,

Phys. Rev. D 47, 5376 (1993).
044005
[12] S. A. Hughes, Phys. Rev. D 61, 084004 (2000).
[13] M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys.

Rev. D 51, 1646 (1995).
[14] A. Papapetrou, Ann. Phys. (Berlin) 12, 309 (1953).
[15] R. M. Wald, General Relativity (University of Chicago,

Chicago, 1984).
[16] F. J. Ernst, Phys. Rev. 167, 1175 (1968).
[17] F. J. Ernst, Phys. Rev. 168, 1415 (1968).
[18] See Ref. [16] of F. D. Ryan, Phys. Rev. D 56, 7732 (1997);

and Eq. (2.10) of M. Shibata and M. Sasaki, Phys. Rev. D
58, 104011 (1998).

[19] W. Israel, Phys. Rev. D 2, 641 (1970).
[20] T. P. Sotiriou and T. A. Apostolatos, Classical Quantum

Gravity 21, 5727 (2004).
[21] See Sec. 3 of Ref. [2]. Here Re�$� � ��2 � z2���1=2�Re�~$�

plays the role of �M and Im�$� � ��2 � z2���1=2�Im�~$�
plays the role of �J.

[22] C. Cutler and É. E. Flanagan, Phys. Rev. D 49, 2658
(1994).

[23] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman Press, San Francisco, 1973).

[24] T. A. Apostolatos, Phys. Rev. D 54, 2421 (1996).
-13


