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Abstract
Following the method of Hoenselaers and Perjés, we present a new corrected
and dimensionally consistent set of multipole gravitational and electromagnetic
moments for stationary axisymmetric spacetimes. Furthermore, we use
our results to compute the multipole moments, both gravitational and
electromagnetic, of a Kerr–Newman black hole.

PACS numbers: 04.20.−q, 04.40.Nr

1. Introduction

After Ernst’s first paper on reformulating Einstein’s equations for stationary and axisymmetric
spacetimes (i) without [1] and (ii) with electromagnetic field [2], Geroch and Hansen [3, 4]
defined the multipole moments of static and stationary spacetimes respectively, by measuring
the deviation of the geometry from flatness in the neighbourhood of a point at infinity. Their
definition of the moments is equivalent to the one introduced by Thorne in [5]. Later, Simon
and Beig [6] reconstructed the moments from the series expansion of field variables, and Simon
[7] generalized them so as to include electrovacuum spacetimes. Especially the axisymmetric
spacetimes that Ernst studied are interesting physically, and can be fully described by a number
of scalar moments, in the same way that Newtonian gravitational potentials are characterized
by their mass multipole moments.

In 1990 Hoenselaers and Perjés [8] generalized the work of Fodor et al [9] on vacuum
gravitational moments to cases where spacetime is endowed with an electromagnetic field that
retains the axisymmetry of the metric. Although the generalization method they used was
right, an incorrect intermediate formula led to the contamination of the final expressions for
the moments with errors. In our paper we have tried to (i) determine the root of these errors,
(ii) give a few extra intermediate relations that are used in the procedure of computing the
moments and (iii) correct the final expressions that relate the gravitational and electromagnetic
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multipole moments of spacetime with the power series coefficients of the gravitational and
electromagnetic potentials. The final expressions for the gravitational and electromagnetic
moments may be important for people looking for approximate expressions for the metric of
stationary and axisymmetric sources that depend on a few physical parameters of the source.
We actually needed these expressions when we tried to extend [10] Ryan’s study [11] on
ways to determine the moments of a compact object from gravitational wave data analysis to
axisymmetric spacetimes with electromagnetic fields. The dimensional inconsistency of the
moments in [8], which we were to use, drew our attention and we set out to thoroughly check
the whole procedure that Hoenselaers and Perjés followed in their paper.

The rest of the paper is organized as follows. In section 2 we briefly repeat the basic steps
of the method used, giving a few extra intermediate expressions that may be useful to the reader.
Although most intermediate steps can be found in a number of previous papers, the plethora of
different conventions and notations used by different authors urged us to systematically present
those we used to calculate the moments. In section 3 we present the first five gravitational
and electromagnetic moments as functions of the power series coefficients of the gravitational
and electromagnetic potentials. A number of comments on the terms that show up at each
moment have been added at the end. In section 4 we once again compute the first five power
series coefficients of the mass and electromagnetic potentials of a pole–dipole source as
in [8]. Finally, in section 5 we use the whole technique to compute the moments of
the Kerr–Newman metric, from knowledge of the metric along its axis of symmetry. The
gravitational moments are exactly as in the Kerr metric, while the electromagnetic moments
are simply e/m times the corresponding gravitational moments.

2. Ernst functions and moments

The metric of a stationary axisymmetric spacetime could be described by Papapetrou’s line
element [12]

ds2 = −F(dt − ω dφ)2 + F−1[e2γ (dρ2 + dz2) + ρ2 dφ2], (1)

where F,ω and γ are functions of ρ and z. Assuming that spacetime is asymptotically flat,
γ → 0, F → 1 and ω → 0 at infinity. As Ernst has shown, any axially symmetric solution of
the coupled Einstein–Maxwell equations can be described by two complex functions E and �,
which are related to the metric functions F and ω and the components of the electromagnetic
potential At,Aφ (cf equations (8), (9), (11) and (14) of [2]). The third metric function γ can
be deduced by using the two remaining Einstein equations.

Now, instead of E and � we use the complex Ernst potentials ξ, q, which are the analogues
of Newtonian gravitational potential and Coulomb potential respectively,

E = 1 − ξ

1 + ξ
, � = q

1 + ξ
. (2)

Note that the former relation is the opposite of that of Ernst (cf [1, 2]), and thus our ξ is the
inverse of Ernst’s ξE . It is easy to show that the Einstein equation for E and � [8] takes the
following form for ξ and q

(ξξ ∗ − qq∗ − 1)∇2ξ = 2(ξ ∗∇ξ − q∗∇q) · ∇ξ, (3)

(ξξ ∗ − qq∗ − 1)∇2q = 2(ξ ∗∇ξ − q∗∇q) · ∇q. (4)

By ∗ we denote the complex conjugate. The Ricci tensor of the 3-metric is given by [8]

(ξξ ∗ − qq∗ − 1)2Rij = 2 Re (∇iξ∇j ξ
∗ − ∇iq∇j q

∗ + sis
∗
j ), (5)
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where

si = ξ∇iq − q∇iξ. (6)

∇i denotes the components of the gradient, and Re () denotes the real part.
In order to measure the moments of an asymptotically flat spacetime, according to the

Geroch–Hansen procedure [3, 4], we map the initial 3-metric to a conformal one

hij → h̃ij = �2hij . (7)

The conformal factor � should satisfy the following conditions: �|� = D̃i�|� = 0 and
D̃iD̃j�|� = 2hij |�, where � is the point added to the initial manifold that represents infinity.
� transforms ξ and q potentials to

ξ̃ = �−1/2ξ, q̃ = �−1/2q. (8)

By a coordinate transformation

ρ̄ = ρ

ρ2 + z2
, z̄ = z

ρ2 + z2
, φ̄ = φ, (9)

we bring infinity at the origin of the axes (ρ̄, z̄) = (0, 0). Then, by choosing the conformal
factor to be

� = r̄2 = ρ̄2 + z̄2, (10)

the conformal metric in the new coordinates takes the following form:

h̃ij =



e2γ 0 0
0 e2γ 0
0 0 ρ̄2


 , (11)

which is flat at r̄ = 0, since γ |r̄=0 = 0. The Ricci tensor of this conformally transformed
3-geometry in barred coordinates is

(r̄2ξ̃ ∗ξ̃ − r̄2q̃∗q̃ − 1)2R̃ij = 2 Re (D̃i ξ̃ D̃j ξ̃
∗ − D̃i q̃D̃j q̃

∗ + s̃i s̃
∗
j ), (12)

as one could verify by a tedious but straightforward calculation, with

D̃1 = z̄
∂

∂ρ̄
− ρ̄

∂

∂z̄
D̃2 = ρ̄

∂

∂ρ̄
+ z̄

∂

∂z̄
+ 1 s̃i = r̄(ξ̃ D̃i q̃ − q̃D̃i ξ̃ ). (13)

The D̃i are the ∇̃i of [8] with their indices interchanged. Note that this has exactly the
same form as equation (5) if we replace the free (not differentiated) ξ and q with r̄ ξ̃ and r̄ q̃,
respectively, while the differentiated ξ and q simply with ξ̃ and q̃, respectively. In equation (6)
of [8] which was used to evaluate the si , the free ξ and q were replaced by ξ̃ and q̃, instead of
r̄ ξ̃ and r̄ q̃, to get the s̃i . This is exactly what caused the dimensional inconsistency in the final
expressions for the moments in [8]. The field equations (3) and (4) keep their form exactly in
the conformal metric if expressed in the barred coordinates, by using the same replacements.

The tensorial multipole moments of the electrovacuum spacetime are computed by the
recursive relation (see [9])

P (0) = ξ̃ , P
(1)
i = ξ̃,i ,

P
(n+1)
i1i2...in+1

= C
[∇̃in+1P

(n)
i1...in

− 1
2n(2n − 1)Ri1i2P

(n−1)
i3...in+1

]
,

(14)

for the geometry, and

Q(0) = q̃, Q
(1)
i = q̃,i ,

Q
(n+1)
i1i2...in+1

= C
[∇̃in+1Q

(n)
i1...in

− 1
2n(2n − 1)Ri1i2Q

(n−1)
i3...in+1

]
.

(15)
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for the electromagnetic field. The symbol ∇̃ is used to denote the covariant derivative in the
conformal space and it should not be confused with the same symbol used in [8]. The operator
C denotes the operation ‘symmetrize over all free indices and take the trace-free part’. Note
that all tensors should be evaluated at � (at infinity). Due to axisymmetry, the components
of these tensorial moments are multiples of the corresponding scalar moments which are the
projection of the tensorial moments on the axis of symmetry. Following Fodor et al [9], the
scalar moments are defined as

Pn = 1

n!
P̃

(n)
2...2

∣∣∣
�

Qn = 1

n!
Q̃

(n)
2...2

∣∣∣
�

. (16)

Note that these moments have opposite sign to those defined by Hansen [4]. The gravitational
scalar moments are then simply given by

Pn = 1

(2n − 1)!!
S

(n)
0 , (17)

where S
(n)
0 are computed by the recursive relations (23) of [9]. The electromagnetic scalar

moments Qn are computed from exactly the same recursive formulae, if we replace the initial
term S

(0)
0 with q̃ instead of ξ̃ . In order to use these recursive formulae, one also needs the

derivatives of γ , which could be expressed as linear combinations of the components of the
Ricci tensor which is given in equation (12),

γ1 ≡ γ,ρ̄ = 1
2 ρ̄(R̃ρ̄ρ̄ − R̃z̄z̄), γ2 ≡ γ,z̄ = ρ̄R̃ρ̄z̄. (18)

We end this section by writing both ξ and q as power series of ρ̄, z̄:

ξ̃ =
∞∑

i,j=0

aij ρ̄
i z̄j , q̃ =

∞∑
i,j=0

bij ρ̄
i z̄j , (19)

where aij and bij vanish when i is odd (this reflects the analyticity of both potentials at the axis
of symmetry). From Einstein’s field equations (see equations (3) and (4) and the discussion of
their tilded version, which follows equation (13)), the coefficients in the above power series
are algebraically interrelated:

(r + 2)2 ar+2,s = −(s + 2)(s + 1)ar,s+2 +
∑

k,l,m,n,p,g

(akla
∗
mn − bklb

∗
mn)

× [apg(p
2 + g2 − 4p − 5g − 2pk − 2gl − 2)

+ ap+2,g−2(p + 2)(p + 2 − 2k) + ap−2,g+2(g + 2)(g + 1 − 2l)] (20)

and

(r + 2)2 br+2,s = −(s + 2)(s + 1)br,s+2 +
∑

k,l,m,n,p,g

(akla
∗
mn − bklb

∗
mn)

× [bpg(p
2 + g2 − 4p − 5g − 2pk − 2gl − 2)

+ bp+2,g−2(p + 2)(p + 2 − 2k) + bp−2,g+2(g + 2)(g + 1 − 2l)], (21)

where m = r − k − p, 0 � k � r, 0 � p � r − k with k and p even, and n = s − l − g,

0 � l � s + 1, and −1 � g � s − l. These recursive relations could build the whole power
series of ξ̃ and q̃ from their values on the axis of symmetry

ξ̃ (ρ̄ = 0) =
∞∑
i=0

miz̄
i, q̃(ρ̄ = 0) =

∞∑
i=0

qi z̄
i . (22)

Thus, from ξ̃ (ρ̄ = 0) and q̃(ρ̄ = 0), we can read the multipole moments of spacetime. In the
following section we will write the expressions that connect the multipole moments of both
types with the mi and qi .
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3. The multipole moments of stationary axisymmetric electrovacuum spacetimes

Following the procedure outlined in section 2, we compute the first five gravitational and
electromagnetic multipole moments in terms of aij and bij . Then the algebraic relations
between aij and bij are used in order to express the moments in terms of mi ≡ a0i and
qi ≡ b0i . If we define the following useful quantities

Mij = mimj − mi−1mj+1, Qij = qiqj − qi−1qj+1,

Sij = miqj − mi−1qj+1, Hij = qimj − qi−1mj+1,
(23)

the gravitational moments as functions of the power series coefficients of ξ̃ along the symmetry
axis are given by

P0 = m0, P1 = m1, P2 = m2, P3 = m3,

P4 = m4 − 1
7m∗

0M20 + 1
7q∗

0 S20 − 3
70q∗

1 S10,

P5 = m5 − 1
3m∗

0M30 − 1
21m∗

1M20 + 1
3q∗

0 S30 + 4
21q∗

0 S21 − 1
21q∗

1 S11 − 1
21q∗

2 S10,

(24)

while the electromagnetic moments as functions of the power series coefficients of q̃ along
the symmetry axis are given by

Q0 = q0, Q1 = q1, Q2 = q2, Q3 = q3,

Q4 = q4 + 1
7q∗

0 Q20 − 1
7m∗

0H20 + 3
70m∗

1H10,

Q5 = q5 + 1
3q∗

0 Q30 + 1
21q∗

1 Q20 − 1
3m∗

0H30 − 4
21m∗

0H21 + 1
21m∗

1H11 + 1
21m∗

2H10.

(25)

One could make the following comments on the expressions above:

(i) While the quadratic quantities Mij ,Qij are independent quantities, Sij ,Hij are not
completely independent of each other. The following obvious relations between them
hold:

Sij = −Hj+1 i−1. (26)

Thus, although the introduction of four quantities looks like a redundancy, this gives a
symmetric form in the two sets of moments.

(ii) The expressions for the moments coincide with the expressions of [9] if there is no
electromagnetic field.

(iii) The different expressions we have in P4,Q4, P5,Q5 moments are due to incorrect
replacement of q, ξ with q̃, ξ̃ in si in equation (5). As was noted in section 2, the
new expressions for the moments are now dimensionally right (see note (v) below).

(iv) From the form of the expressions, we note that there is a symmetry between
gravitational and electromagnetic moments. The electromagnetic moments arise from
the corresponding gravitational moments if we interchange qi with mi , replace Qij with
Mij and Sij with Hij , and reverse the signs of all but the single mi, qi terms.

(v) Since ξ should be dimensionless, mi and qi should have dimensions [M]i+1, and hence
all terms in each moment have the same (sum of indices) + (number of indices). This
simple observation gives us the capability of predicting what kind of terms we expect at
each moment. This dimensional analysis makes it clear that the expressions (27) and (28)
of [8] contain incorrect terms.
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4. A spinning mass with charge and magnetic dipole

For completeness, we rewrite the results of the pole–dipole example used by Hoenselaers and
Perjés, based on the correct expressions for the moments. Thus, we also assume that the
moments of the source are

P0 = m, Q0 = e, P1 = i am, Q1 = i µe,

Pn = 0 and Qn = 0 for n � 2.
(27)

Then, if we invert the expressions of equations (24) and (25), we get

m0 = m m1 = i am m2 = 0 m3 = 0

m4 = 1
7am(am2 − µe2) + 3

70mµe2(a − µ)

m5 = −i
[

1
21am(a2m2 − µ2e2)

] (28)

and

q0 = e, q1 = i µe, q2 = 0, q3 = 0,

q4 = 1
7µe(am2 − µe2) + 3

70eam2(a − µ),

q5 = −i
[

1
21µe(a2m2 − µ2e2)

]
.

(29)

Although m2 = q2 = m3 = q3 = 0, all higher order mi and qi do not vanish. Especially, if
we set µ = a,

m0 = m, m1 = iam, m2 = 0, m3 = 0,

m4 = 1
7a2m(m2 − e2), m5 = −i

[
1

21a3m(m2 − e2)
] (30)

and

q0 = e, q1 = i ae, q2 = 0, q3 = 0,

q4 = 1
7a2e(m2 − e2), q5 = −i

[
1

21a3e(m2 − e2)
]
,

(31)

which are exactly what the formulae of Hoenselaers and Perjés yield. If on the other hand we
set e2 = m2, then

m0 = m, m1 = i am, m2 = 0, m3 = 0,

m4 = m3
(

1
7a + 3

70µ
)
(a − µ), m5 = −i

[
1

21am3(a2 − µ2)
] (32)

and

q0 = e, q1 = i µe, q2 = 0, q3 = 0,

q4 = e3
(

1
7µ + 3

70a
)
(a − µ), q5 = −i

[
1

21µe3(a2 − µ2)
]
,

(33)

which do not coincide with the corresponding expressions of Hoenselaers and Perjés. Of
course, if e2 = m2 and µ = a, then all qi and mi except their first pair vanish.

5. The Kerr–Newman metric

In this section we follow the technique presented here to compute the gravitational and
electromagnetic moments of a Kerr–Newman black hole. Ernst [2] constructs this metric in
prolate spheroidal coordinates (x, y) by setting

ξE = x + i ay

m
, qE = e

m
. (34)
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The ξ we have used in our paper (and in the majority of relevant papers) is the
inverse of Ernst’s (compare equation (2) of the present paper with equation (10) of [1]), and
q = qEξ . Additionally, we will use the opposite sign for α from the one used by Ernst, since
his convention leads to a spinning black hole with its spin along the −z direction for positive
α (see footnote 24 of [13]). Thus,

ξ = m

x − i ay
, q = e

x − i ay
. (35)

At the axis of the black hole (ρ = ρ̄ = 0), the prolate spheroidal coordinates are y = 1 and
x = z. Therefore, the Ernst potentials along the axis take the following form:

ξ(ρ̄ = 0) = m

z − i a
= mz̄

1 − i az̄
, q(ρ̄ = 0) = e

m
ξ(ρ̄ = 0), (36)

and finally the conformally transformed potentials are

ξ̃ (ρ̄ = 0) = m

1 − i az̄
= m

∞∑
i=0

(+i az̄)i,

q̃(ρ̄ = 0) = e

1 − i az̄
= e

∞∑
i=0

(+i az̄)i .

(37)

Now it is straightforward to read the multipole moments of such a source. It is easy to see that
in this case, as in the case of the Kerr metric, Mij = Qij = Sij = Hij = 0, so the mi and qi

coincide with the actual moments.

Pl = m(+i a)l, Ql = e(+i a)l. (38)

This set of moments fully defines the gravitational and electromagnetic fields of a Kerr–
Newman black hole.
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