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ABSTRACT
We study small-amplitude, non-linear pulsations of uniformly and differentially rotating neu-
tron stars employing a two-dimensional evolution code for general-relativistic hydrodynamics.
Using Fourier transforms at several points inside the star, both the eigenfrequencies and two-
dimensional eigenfunctions of pulsations are extracted. The centrifugal forces and the degree
of differential rotation have significant effects on the mode eigenfunction. We find that near
the mass-shedding limit, the pulsations are damped due to shocks forming at the surface of
the star. This new damping mechanism may set a small saturation amplitude for modes that
are unstable to the emission of gravitational waves. After correcting for the assumption of the
Cowling approximation (used in our numerical code), we construct empirical relations that
predict the range of gravitational-wave frequencies from quasi-periodic post-bounce oscilla-
tions in the core collapse of massive stars. We also find that the fundamental quasi-radial mode
is split, at least in the Cowling approximation and mainly in differentially rotating stars, into
two different sequences.

Key words: hydrodynamics – relativity – methods: numerical – stars: neutron – stars: oscilla-
tions – stars: rotation.

1 I N T RO D U C T I O N

When neutron stars are formed as a result of a violent event (a core
collapse, an accretion-induced collapse, or a binary neutron star
merger), they are expected to pulsate non-linearly before various
dissipative effects, such as viscosity, magnetic braking and shock
formation, settle them down to a near-equilibrium configuration. All
these violent events could lead to high rotational rates for the final
objects, due to angular momentum conservation. Moreover, the final
object is expected to rotate differentially, because the initial distri-
bution of angular momentum has to be redistributed after collapse
or merger. Several axisymmetric and non-axisymmetric pulsation
modes are expected to be excited during neutron star formation
and could be important sources of gravitational waves. In addition,
some modes could become unstable to the emission of gravitational
radiation. The successful detection and identification of pulsation
modes requires a detailed understanding of the eigenfrequency and
eigenfunction of each mode sequence, especially because pulsation
modes are high-frequency gravitational-wave sources. In addition,
it is necessary to have a good understanding of the various damping
mechanisms that will operate.

There are several fundamental questions that have to be resolved
before we can realistically hope for detection of gravitational waves
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from neutron star pulsations. Can neutron stars attain high angular
momentum at birth? How strongly differential is the initial rota-
tional profile? What types of modes are excited? What is the initial
amplitude for each mode? What is the frequency for each mode?
Which mechanisms dampen the pulsations and on what time-scale?
To date, none of the above questions has a definitive answer, but
some partial understanding is emerging.

(i) Initial rotation rate. Naively, the collapse of a rotating stellar
core should lead to an extremely rapidly rotating neutron star, just
by the argument of angular momentum conservation. This picture is,
however, made more complicated due to the presence of magnetic
fields, wind-mass loss, centrifugal hangup during collapse, fall-back
accretion and pre- or post-collapse binary interactions. In recent
work by Heger et al. (2003), who consider evolutionary sequences
of realistic rotating pre-collapse cores, it is suggested that the ini-
tial rotational period of a neutron star can indeed be of the order of
1 ms or less, if the magnetic field is neglected. However, if the star
passes through a red-supergiant phase, then the dynamo model for
magnetic braking of the angular velocity (Spruit 2002) increases
the initial period of protoneutron stars to several milliseconds.
Wind-mass loss during a Wolf–Rayet/helium-star phase (Heger &
Woosley 2003) is another mechanism for slowing down the core of
an evolved star. Nevertheless, more rapidly rotating protoneutron
stars could be obtained through other formation scenarios, such as
fall-back accretion (see Watts & Andersson 2002, and references
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therein), pre-supernova binary interactions (Pfahl et al. 2002;
Ivanova & Podsiadlowski 2003; Podsiadlowski et al. 2003) and post-
supernova accretion from a binary companion (Langer et al. 2003).
A new scenario for millisecond-pulsar birth in globular clusters is
the merger of binary white dwarfs (Middleditch 2004).

Recently, Villain et al. (2003) have studied in detail the quasi-
stationary evolution from core collapse to the formation of a neu-
tron star and have found that in most cases an initially hot pro-
toneutron star contracts and spins up on a time-scale of seconds,
until reaching high rotation rates with T /|W | > 0.1–0.2 (where T is
the kinetic energy and W is the gravitational binding energy of the
star). If the initial core is rapidly rotating, centrifugal hangup can
occur during collapse. The rotational evolution of a protoneutron
star can also be affected by the details of the high-density equation
of state (EOS), e.g the appearance of hyperons in the core can yield
a very rapidly rotating, but metastable, compact star (Yuan & Heyl
2003). Axisymmetric core collapse simulations in general relativity
(Dimmelmeier, Font & Müller 2001, 2002a,b; Shibata 2003) and
in Newtonian gravity but with realistic initial conditions (Kotake,
Yamada & Sato 2003; Ott et al. 2004; see also Fryer et al. (2002)
and references therein) have also shown the formation of rapidly
rotating neutron stars.

(ii) Differential rotation. The core collapse studies by
Dimmelmeier et al. (2001, 2002a,b), and a quasi-equilibrium treat-
ment by Liu & Lindblom (2000) in the case of accretion-induced
collapse of white dwarfs, have shown that rapidly rotating protoneu-
tron stars are born with a modest degree of differential rotation.
A recent detailed analysis by Villain et al. (2003) shows that the
length-scale on which the angular velocity changes within the star
is of the order of 7–10 km. Hypermassive neutron stars created in a
binary merger also have moderate differential rotation, with a some-
what shorter length-scale than in core collapse (see, for example,
Shibata & Uryū 2000). A fundamental question about the rotational
profile is how quickly it will become uniform. Shapiro (2000) and
Cook, Shapiro & Stephens (2003) have suggested that magnetic
braking could drive the star to uniform rotation on a time-scale of
only seconds. A more recent study by Liu & Shapiro (2004) shows
that a magnetic field will cause turbulent motions in a differentially
rotating star, driving it to uniform rotation. It has also been sug-
gested that a differentially rotating, viscous protoneutron star will
be brought to uniform rotation due to turbulent mixing on a much
shorter time-scale (Hegyi 1977). However, more detailed compu-
tations, including realistic composition gradients, are required in
order to obtain better estimates.

(iii) Mode excitation. In the rotational core collapse simulations
by Dimmelmeier et al. (2001, 2002a,b) the protoneutron star quickly
settles into quasi-equilibrium after core bounce. Still, pulsations are
excited and survive for several oscillation periods. The dominant
pulsation modes that are expected to be excited in rotational core
collapse are the quasi-radial (l = m = 0) mode and the quadrupole
(l = 2, m = 0) mode. Due to rotational couplings of non-radial
terms in its eigenfunction, the quasi-radial mode becomes a strong
emitter of gravitational waves in rapidly rotating stars (it could, in
fact, become the dominant mode in which gravitational waves are
emitted). The amplitude of the oscillations in the density is estimated
as several per cent at the centre of the star. Newtonian simulations
(e.g. Mönchmeyer et al. 1991; Zwerger & Müller 1997) also reached
similar conclusions (for a recent review of core collapse simulations,
see New 2003). In the simulations of binary neutron star mergers
by Shibata & Uryū (2000, 2002), quasi-periodic oscillations are
excited, through which strong gravitational waves are emitted. The
frequency of these oscillations suggests that they could correspond

to specific non-axisymmetric normal modes of the star. In addition to
the non-axisymmetric modes, the axisymmetric quasi-radial mode
could also be excited.

(iv) Unstable modes. In both protoneutron stars and hypermas-
sive neutron stars created in binary mergers, gravitational radia-
tion can drive several modes unstable, through the Chandrasekhar–
Friedman–Schutz (CFS) mechanism (for a review see, for example,
Friedman & Lockitch 2001), provided the star is rotating sufficiently
rapidly. In relativistic stars, the l = m = 2 f-mode becomes unstable
when T /|W | > 0.07 for uniform rotation (Stergioulas & Friedman
1998; Morsink, Stergioulas & Blattnig 1999) and at somewhat larger
T/|W| for differentially rotating stars (Yoshida et al. 2002). The l =
m = 2 r-mode can become unstable at considerably lower rotation
rates (for a review, see Kokkotas & Andersson 2001). The sup-
pression of the r-mode instability by the presence of hyperons in
the core (Jones 2001; Lindblom & Owen 2002) is not expected to
operate efficiently in rapidly rotating stars, because the central den-
sity is probably too low to allow for hyperon formation. Moreover,
van Dalen & Dieperink (2004) find the contribution of hyperons
to the bulk viscosity to be two orders of magnitude smaller than
previously estimated. If accreting neutron stars in low-mass X-ray
binaries (LMXBs; considered to be the progenitors of millisecond
pulsars) are shown to reach high masses of ∼1.8 M�, then the EOS
could be too stiff to allow for hyperons in the core (for recent ob-
servations that support a high mass for some millisecond pulsars,
see Nice, Splaver & Stairs 2003). Both the f-mode and the r-mode,
when unstable, will grow on a time-scale of several seconds.

(v) Frequency of excited modes. Even though in a typical non-
rotating neutron star the fundamental radial and quadrupole modes
have frequencies larger than about 1.5 kHz, in the rapidly rotating
models created in core collapse simulations, the frequency of these
modes is significantly reduced to well below 1 kHz (Dimmelmeier
et al. 2002b), which is within the sensitivity window of current
gravitational-wave detectors, such as VIRGO, GEO600, TAMA and
LIGO. The large reduction in frequency is due to the fact that dif-
ferential rotation allows much lower central densities than uniform
rotation. In the case of a binary merger, the simulations by Shibata
& Uryū (2002) have shown quasi-periodic oscillations of a few kHz.
The r-mode, if unstable, would emit gravitational waves at a high
frequency of 4/3, the rotational frequency. These sources of gravi-
tational waves are very interesting for the proposed wide-band dual
sphere detector (Cerdonio et al. 2001). When the f-mode becomes
unstable, it can have an initial frequency of several hundred Hz,
which then reduces to zero as the star spins down and approaches
the rotation rate at which the mode becomes stable again. Therefore,
the f-mode would ideally sweep through the sensitivity window of
current laser-interferometric detectors, provided it can grow to a
sufficiently large non-linear amplitude (Lai & Shapiro 1995).

(vi) Damping of pulsations. The stable pulsations excited in the
relativistic and Newtonian rotational core collapse simulations are
seen to be strongly damped. In an isolated star, quasi-radial modes
are thought to be damped mainly by shear viscosity and gravita-
tional radiation (on a time-scale of at least thousands of oscillation
periods). In principle, any pulsation of a magnetized star will also be
damped by the magnetic field (see, for example, McDermott et al.
1984; Carroll et al. 1986). In the case of quasi-radial pulsations
of protoneutron stars, however, we do not have specific estimates
for the corresponding damping time. Once excited, the quasi-radial
mode would be an ideal long-term monochromatic source of gravita-
tional waves. However, the strong damping seen in the above simu-
lations reveals that a different mechanism operates in a protoneutron
star, immediately after core bounce (Pons, private communication).
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The strong damping is due to the presence of a high-entropy enve-
lope, which surrounds the newly-created neutron star immediately
after its birth. The quasi-radial oscillations penetrate into the enve-
lope and are not properly reflected by a sharp surface (as happens
in the case of an isolated star). The envelope thus absorbs much
of the initial pulsation energy on a dynamical time-scale (a similar
damping has been observed in non-linear evolutions of unstable rel-
ativistic stars, forced to migrate to the stable branch of equilibrium
models; see Font et al. 2002). By the time the protoneutron star cools
down (on a time-scale of several seconds) the initial pulsation am-
plitude has diminished. Therefore, the expected gravitational-wave
signal from pulsations in core collapse will be strongly damped.

In order to model the expected signal, a detailed analysis of the
damping mechanism is required (taking into account various factors,
such as the EOS, the initial rotating stellar core, etc.). The unstable
f-mode and r-mode grow on a time-scale of the order of several
seconds or longer, by which time the initial pulsations have been
dramatically damped. In the case of a binary merger, a high-entropy
envelope will also form. Its extent will depend on the mass ratio of
the two stars – an equal-mass irrotational binary could create only a
small envelope, which will not dampen the pulsations as quickly as
in a core collapse, while an unequal-mass binary merger could result
in a somewhat larger envelope being formed (see Shibata, Taniguchi
& Uryū 2003) and consequently in a stronger damping of quasi-
periodic pulsations. In any case, the quasi-periodic oscillations in a
binary merger will be much more long-lived than in a core collapse.

Pulsation modes of rapidly rotating stars, assuming uniform rota-
tion, have been computed by Yoshida & Eriguchi (1999, 2001), Font,
Stergioulas & Kokkotas (2000), Font et al. (2001) and Stergioulas
& Font (2001) in the Cowling approximation (in which space–time
perturbations are neglected). In full general relativity, Stergioulas &
Friedman (1998) and Morsink et al. (1999) computed the onset of the
l = m = 2 f-mode instability, while Font et al. (2002) computed the
frequencies of the two lowest-order quasi-radial modes. For differ-
entially rotating stars, the only existing computation is by Yoshida
et al. (2002), who obtained the l = m = 2 f-mode frequencies for
a moderate strength of differential rotation. Non-linear effects of
radial pulsations in non-rotating relativistic stars have been studied
by Sperhake, Papadopoulos & Andersson (2001) (see also Sperhake
2002).

In the present paper, we study in detail two different sequences
of uniformly and differentially rotating relativistic polytropes, and
we obtain the eigenfrequencies and eigenfunctions of several pul-
sations modes in the Cowling approximation. For a sequence of
fixed central energy density, the mode frequencies are only weakly
affected by the rotation rate. However, for a sequence of fixed rest
mass, the mode frequencies continuously decrease as the rotation
rate increases (and the central density decreases). An interesting re-
sult of our study is that the fundamental quasi-radial mode splits into
two different modes, an effect which is more prominently seen in
differentially rotating models. Based on the frequency spectrum of
non-rotating and uniformly rotating stars, this split is not expected.
If it turns out not to be really a new mode, it could be due to the
fact that in the Cowling approximation the energy and momentum
conservation are violated. For example, this violation leads to the
appearance of an unphysical ‘fundamental’ dipole mode in simu-
lations of non-rotating stars (Font et al. 2001). Another important
outcome of our investigation is that when studying the excitation of
quasi-radial pulsations in rapidly rotating models (which are near
their mass-shedding limit) we find that the pulsations are damped
because of mass-shedding in the equatorial region. This new damp-

ing mechanism could set a severe limit on the saturation amplitude
of unstable modes.

The rest of the paper is organized as follows. In Section 2 we
outline our computational method, while in Section 3 we describe
the equilibrium properties of all initial models we subsequently
evolve. In Section 4 the eigenfrequencies and eigenfunctions of
pulsating stars are presented, while in Section 5 we focus on the
splitting of the fundamental mode. In Sections 6 and 7 we discuss
the damping of pulsations due to mass-shedding and the implications
of our results on the detection of gravitational waves, respectively.
Finally, a summary and a discussion of our results are presented in
Section 8.

2 O U T L I N E O F C O M P U TAT I O NA L M E T H O D

We study the axisymmetric pulsations of rapidly rotating relativis-
tic stars by first constructing several sequences of uniformly and
differentially rotating equilibrium models, as described in detail in
Section 3. The equilibrium models assume a relativistic polytropic
EOS of the form

p = Kρ1+1/N , (1)

ε = ρ + N p, (2)

where p is pressure, ε is energy density, ρ is rest-mass density, N
is the polytropic index and K is the polytropic constant. Unless
otherwise noted, we choose dimensionless units for all physical
quantities by setting c = G = M� = 1.

The non-linear time evolutions of perturbed equilibrium models
are carried out using the same numerical hydrodynamics code devel-
oped by Font et al. (2001, 2002). Suitable perturbations of selected
equilibrium variables are added to the equilibrium model, in order to
excite specific modes. In the absence of the true eigenfunction of a
given mode, each perturbation is chosen so as to mimic the angular
dependence of the eigenfunction of the corresponding mode of a
slowly-rotating Newtonian star. Usually, this ensures that the cho-
sen mode will dominate the time evolution at least for the slower
rotating models. However, because the perturbation is not exact,
additional pulsation modes will be excited, especially for rapidly
rotating models. For the l = 0 modes a density perturbation is used,
of the form

δρ = aρc sin

[
π

r

rs(θ )

]
, (3)

where ρ c is the central density of the star and rs(θ ) is the coordinate
radius of the surface of the star. The constant a is the amplitude of
the perturbation, which we normally take to be of the order of 1 per
cent. The l = 2 modes are excited, by perturbing the θ -component
of the four-velocity as follows

uθ = a sin

[
π

r

rs(θ )

]
sin θ cos θ (4)

(see Font et al. 2001, for more details).
The perturbed models are evolved in time with a two-dimensional

general-relativistic hydrodynamics code, in which we have imple-
mented a Godunov-type scheme based on the Marquina flux for-
mula and the third-order PPM reconstruction (see Font et al. 2000,
2001; see also Font 2003, for a review of Godunov-type schemes in
general-relativistic hydrodynamics). Keeping the space–time fixed
to the initial equilibrium state during the evolution corresponds to
the Cowling approximation in perturbation theory. Below the mass-
shedding limit (see Friedman, Ipser & Parker 1986 for the precise
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definition of the mass-shedding limit in the case of rapidly rotating
relativistic stars), we assume that the star remains isentropic by en-
forcing the EOSs (1) and (2). Near the mass-shedding limit, when
shocks form (see Section 6), the adiabatic ideal fluid EOS is used
instead

p = (� − 1)ρε, (5)

where � = 1 + 1/N and ε is the specific internal energy. Notice
that at the initial time the isentropic equilibrium models constructed
with the polytropic EOSs (1) and (2) are consistent with the ideal
fluid EOS (5).

The time series of the evolved perturbations are Fourier analysed,
and the peaks in the corresponding spectra are identified with spe-
cific pulsation modes, starting from the non-rotating member of the
sequence, where the pulsation frequencies are known from perturba-
tion theory. As the rotation rate increases, it becomes increasingly
more difficult to identify specific modes in the Fourier spectrum.
For this reason, we also extract the eigenfunction for each peak in
the Fourier spectrum and use it as an additional criterion to identify
specific modes (see Section 4).

3 E QU I L I B R I U M M O D E L S

Equilibrium models of rotating relativistic stars are constructed us-
ing the numerical code RNS (Stergioulas & Friedman 1995) which
was extended to include differential rotation. Extensive tests of the
accuracy of the code in the case of uniform rotation can be found in
Nozawa et al. (1998) and in Stergioulas (2003). The metric describ-
ing an axisymmetric relativistic star is assumed to have the usual
form

ds2 = −eγ+ρ dt2

+eγ−ρr 2 sin2 θ (dφ − ω dt)2 + e2α(dr 2 + r 2dθ 2), (6)

where the metric functions γ , ρ, ω and α depend on the coordinates r
and θ only.1 Axisymmetry enforces the specific angular momentum
measured by the proper time of matter j ≡ utuφ to be a function of
the angular velocity � only. A different specific angular momentum

j̃ = uφ

(
ε + p

ρ

)
(7)

is locally conserved during the phase of homologous collapse of a
rotating star. The Rayleigh criterion for local dynamical stability to
axisymmetric perturbations is

d j̃

d�
< 0. (8)

The simplest common choice of the differential rotation law j =
j(�) that satisfies the Rayleigh stability criterion (see Komatsu,
Eriguchi & Hachisu 1989a,b) leads to an angular velocity distribu-
tion of the form

�c − � = 1

A2

[
(� − ω)r 2 sin2 θe−2ρ

1 − (� − ω)2r 2 sin2 θe−2ρ

]
, (9)

where �c is the angular velocity on the rotational axis and A is a
parameter with units of length that determines the length-scale over
which the angular velocity varies inside the star (in the limit of A →
∞, uniform rotation is recovered).

When constructing sequences of fixed rest mass, the radius of
the star can vary by more than a factor of 2. If we characterize the

1 The metric function ρ in equation (6) should not be confused with the
rest-mass density in equation (1).

sequence by a fixed value of the parameter A, then different models
would correspond to different degrees of differential rotation. In
order to ascribe the same degree of differential rotation to all models
along a sequence, we follow Baumgarte, Shapiro & Shibata (2000)
in normalizing the parameter A by the radius of the star. Thus, we
define

Â = A/re, (10)

where Â is now a dimensionless parameter and re is the equatorial
coordinate radius of the star. Notice that, in the Newtonian limit, Â
is the radius of the cylinder, as a fraction of the radius of the star,
where the angular velocity falls to one half of the central angular
velocity.

Our focus is on the effect of rotation on pulsation modes. Hence,
we do not survey a broad range of suggested high-density EOSs,
but rather choose a polytropic EOS with N = 1 and K = 100,
respectively. This choice corresponds to models of neutron stars
having mass and radius similar to those constructed with a realistic
EOS of average stiffness. We focus attention on two different se-
quences of differentially rotating models (sequences A and B) and
their uniformly rotating counterparts (sequences AU and BU). The
equilibrium properties of all models are displayed in Table 1. All
sequences terminate at the same non-rotating model (thus, models
A0, AU0, B0 and BU0 all coincide).

The differentially rotating sequence A and its corresponding uni-
formly rotating sequence AU are characterized by a fixed rest mass
M 0 = 1.506 M�. Along sequence A, the degree of differential ro-
tation is held fixed at Â = 1. The values of M0 and Â are chosen
in order to represent a newly-born, differentially rotating neutron
star. The angular velocity at the equator is roughly 1/3 to 1/2 of
the central angular velocity, which is similar to the degree of dif-
ferential rotation obtained in typical core collapse simulations (see
Villain et al. 2003). The fastest rotating model in sequence A has a
polar to equatorial coordinate axial ratio of only r p/r e = 0.294, a
ratio T /|W | = 0.26 and rotates close to, but still below, the mass-
shedding limit. The central density is nearly an order of magni-
tude smaller than the corresponding non-rotating model, while the
circumferential radius is more than twice as large. The uniformly
rotating sequence AU only reaches an axial ratio of 0.575, a ratio
T /|W | = 0.095, half the central density, and a 50 per cent larger
radius than the corresponding non-rotating model. Model AU5 is at
the mass-shedding limit.

On the other hand, the differentially rotating sequence B and its
corresponding uniformly rotating sequence BU are characterized
by a fixed central density ρ c = 1.28 × 10−3 and fixed Â = 1. Its
fastest rotating member has a rest mass of M 0 = 2.79 M� and
a gravitational mass of 2.53 M�, corresponding roughly to a hy-
permassive neutron star created in a binary neutron star merger.
The degree of differential rotation is in rough agreement with sim-
ulations by Shibata & Uryū (2000, 2002). The axial ratio for the
fastest rotating model is 0.4 (the model being still below, but close
to, the mass-shedding limit). Because all models in the sequence
are compact, the radius R only increases by 21 per cent. The cor-
responding uniformly rotating sequence only reaches an axial ra-
tio of 0.58 at the mass-shedding limit (BU9) with an increase in
radius R by 40 per cent. Thus, we see that when considering a
sequence of fixed central density, the uniformly rotating models
attain a larger equatorial radius than differentially rotating mod-
els, which tend to expand out of the equatorial plane, becoming
torus-like.

Fig. 1 shows all constructed equilibrium models in a mass versus
central energy density plot. The two nearly horizontal sequences
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Table 1. Properties of the four sequences of equilibrium models (A is a sequence of fixed rest mass M 0 =
1.506 M� with Â = 1, AU is the corresponding sequence of uniformly rotating models, B is a sequence of fixed
central rest-mass density ρ c = 1.28 × 10−3 with Â = 1, and BU is the corresponding sequence of uniformly
rotating models). All models are relativistic polytropes with N = 1 and K = 100. The definitions of the various
quantities are given in the main text. Notice that all quantities are in dimensionless units with c = G = M� = 1.

Model εc M R re rp/re �c �e T/|W|
(×10−3) (×10−2) (×10−2)

A0 1.444 1.400 9.59 8.13 1.0 0.0 0.0 0.0
A1 1.300 1.405 10.01 8.54 0.930 2.019 0.759 0.018
A2 1.187 1.408 10.40 8.92 0.875 2.580 0.977 0.033
A3 1.074 1.410 10.84 9.35 0.820 2.944 1.125 0.049
A4 0.961 1.413 11.37 9.87 0.762 3.192 1.232 0.066
A5 0.848 1.418 12.01 10.49 0.703 3.340 1.303 0.086
A6 0.735 1.422 12.78 11.25 0.643 3.383 1.336 0.107
A7 0.622 1.427 13.75 12.21 0.579 3.339 1.337 0.131
A8 0.509 1.433 15.01 13.45 0.513 3.197 1.300 0.158
A9 0.396 1.439 16.70 15.13 0.444 2.953 1.223 0.189
A10 0.283 1.447 19.03 17.44 0.370 2.604 1.101 0.223
A11 0.170 1.456 21.92 20.30 0.294 2.184 9.439 0.260

AU0 1.444 1.400 9.59 8.13 1.0 0.0 0.0 0.0
AU1 1.300 1.404 10.19 8.71 0.919 1.293 1.293 0.020
AU2 1.187 1.407 10.79 9.30 0.852 1.656 1.656 0.037
AU3 1.074 1.411 11.56 10.06 0.780 1.888 1.888 0.055
AU4 0.961 1.415 12.65 11.14 0.698 2.029 2.029 0.076
AU5 0.863 1.420 14.94 13.43 0.575 2.084 2.084 0.095

B0 1.444 1.400 9.59 8.13 1.0 0.0 0.0 0.0
B1 1.444 1.437 9.75 8.24 0.950 1.801 0.666 0.013
B2 1.444 1.478 9.92 8.36 0.900 2.574 0.944 0.026
B3 1.444 1.525 10.11 8.49 0.849 3.189 1.160 0.040
B4 1.444 1.578 10.31 8.63 0.800 3.728 1.342 0.055
B5 1.444 1.640 10.53 8.77 0.750 4.227 1.504 0.071
B6 1.444 1.713 10.76 8.91 0.700 4.707 1.651 0.087
B7 1.444 1.798 11.01 9.05 0.650 5.185 1.789 0.105
B8 1.444 1.899 11.26 9.17 0.600 5.683 1.921 0.124
B9 1.444 2.020 11.50 9.26 0.550 6.232 2.052 0.144
B10 1.444 2.167 11.71 9.27 0.500 6.889 2.192 0.165
B11 1.444 2.341 11.80 9.13 0.450 7.770 2.357 0.187
B12 1.444 2.532 11.64 8.72 0.400 9.118 2.584 0.207

BU0 1.444 1.400 9.59 8.13 1.00 0.0 0.0 0.0
BU1 1.444 1.432 9.83 8.33 0.95 1.075 1.075 0.012
BU2 1.444 1.466 10.11 8.58 0.90 1.509 1.509 0.024
BU3 1.444 1.503 10.42 8.82 0.85 1.829 1.829 0.037
BU4 1.444 1.543 10.78 9.13 0.80 2.084 2.084 0.050
BU5 1.444 1.585 11.20 9.50 0.75 2.290 2.290 0.062
BU6 1.444 1.627 11.69 9.95 0.70 2.452 2.452 0.074
BU7 1.444 1.666 12.30 10.51 0.65 2.569 2.569 0.084
BU8 1.444 1.692 13.07 11.26 0.60 2.633 2.633 0.091
BU9 1.444 1.695 13.44 11.63 0.58 2.642 2.642 0.092

are A and AU, while the two vertical sequences are B and BU.
Open circles correspond to uniformly rotating models, while the
crosses correspond to differentially rotating models. Also shown are
the sequence of non-rotating models (solid line) and the sequence
of models rotating at the mass-shedding limit for uniform rotation
(dashed line). Differential rotation allows equilibrium models well
beyond the region allowed for uniformly rotating models (see also
Baumgarte et al. 2000, where such configurations are called hyper-
massive).

In Fig. 2 the density stratification for the fastest rotating model
of sequence A (A11) is shown. In the figure, Cartesian coordinates,

x = r sin θ , z = r cos θ are used, scaled by the equatorial coordinate
radius re. The maximum density is attained off-centre. The dashed
line shows the spherical surface of the non-rotating model with the
same rest mass (A0), scaled by the equatorial coordinate radius of
the rotating model A11. It becomes evident that the large rotation
rate of model A11 causes the equatorial radius to increase by more
than a factor of 2.

Finally, we note that, apart from the above two sequences, we have
also investigated the effect of the degree of differential rotation on
the axisymmetric pulsations, by constructing various sequences that
differ only in the value of Â.
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Figure 1. Mass versus central energy density plot of all models in sequences
A, AU, B and BU. Open circles correspond to uniformly rotating models,
while the crosses correspond to differentially rotating models. The two nearly
horizontal sequences are A and AU, while the two vertical sequences are B
and BU. Also shown are the sequence of non-rotating models (solid line),
and the sequence of models rotating at the mass-shedding limit for uniform
rotation (dashed line). Differential rotation allows equilibrium models well
beyond the region allowed for uniformly rotating models.

Figure 2. Density stratification in the fastest differentially rotating model of
the fixed rest-mass sequence A. The maximum density appears off-centre,
at x/r e = 0.32. In comparison, the shape of the non-rotating star of the
same rest mass is shown (dashed line), scaled by the equatorial radius of the
rotating model.

4 E I G E N F R E QU E N C I E S
A N D E I G E N F U N C T I O N S

Although we use a non-linear evolution code to study pulsations
of rotating stars, we restrict attention to small-amplitude pulsations
(small in the sense that, for example, δρ/ρ ∼ 10−2). Therefore, the
time evolution of a perturbed star can still be viewed (to a good
approximation) as a superposition of linear normal modes. When
obtaining the Fourier transform of the time evolution of several

variables, we verify that the various modes that are excited have
indeed discrete frequencies (the same frequency at any point inside
the star in the coordinate frame). Thus, even though the evolution
is non-linear, the amplitude is small enough to justify the use of the
terms ‘eigenfrequency’ and ‘eigenfunction’ for the various pulsation
modes. In order to compute the real part of the eigenfrequency of a
pulsation mode, we Fourier transform the time series of the evolution
of a suitable physical variable (the density for the l = 0 modes and
vθ for the l = 2 modes). Instead of examining the Fourier spectra
at a few specific points inside the star, we integrate the amplitude
of the Fourier transform along a coordinate line, e.g for the l = 0
modes we examine the integrated Fourier amplitude along θ = π/2
(equatorial plane), while for the l = 2 modes the integrated Fourier
amplitude along a line of θ = π/4 is used.

Because the trial eigenfunction used for exciting the pulsations
does not correspond exactly to a particular mode, several additional
modes are excited, apart from the main mode we wish to study. This
is particularly true for very rapidly rotating models, where rotational
coupling effects are significant and higher-order coupling terms in
the mode eigenfunctions become comparable to the dominant term.
Thus, in order to identify specific modes for several models along
a sequence, we have to begin with pulsations of a non-rotating star
(for which the modes are identified by comparison to results ob-
tained with linear perturbation theory; see Font et al. 2000, 2001,
2002)2 and gradually identify modes for more rapidly rotating stars
by comparing the peaks in a Fourier transform to the corresponding
peaks in a more slowly rotating model. Close to the mass-shedding
limit, avoided crossings between low-order and high-order modes
can complicate the picture and lead to erroneous identifications.
For this reason, we do not only rely on the Fourier transforms at a
few points inside the star, but reconstruct the whole two-dimensional
eigenfunction of each mode, using Fourier transforms at every point
inside the star. At the eigenfrequency of a specific mode, the am-
plitude of the Fourier transform correlates with its eigenfunction.
A change in sign in the eigenfunction corresponds to both the real
and imaginary part of the Fourier transform going through zero.
Comparing the eigenfunctions corresponding to different peaks in
a Fourier transform allows for an unambiguous identification of
specific mode sequences.

An example of the eigenfunction extraction using Fourier trans-
forms is shown in Fig. 3, which displays the amplitude of the Fourier
transform of the time evolution of the density, after an l = 0 pertur-
bation was applied to model B7. In the range of frequencies shown
in Fig. 3, the amplitude of the Fourier transform clearly correlates
with the eigenfunctions of the fundamental F-mode and 2f-mode
(the additional mode, FII, is discussed in Section 5). Notice that in
displaying the eigenfunctions we use the amplitude of the Fourier
transform, multiplied by the sign of its real part.

When comparing the eigenfrequencies between models that differ
only in the degree of differential rotation, we see that a moderate
degree of differential rotation has some (but not a dramatic) effect
on the eigenfrequencies. When Â is decreased significantly below
∼1, which leads to a ‘strongly’ differentially rotating model, most
of the angular momentum of the star is concentrated in a narrow
region around the rotational axis. Outside this region, the star is only
slowly rotating and the eigenfrequencies of its pulsations become
again similar to those of a non-rotating model. Thus, the effect of
differential rotation on the eigenfrequencies becomes strongest, not

2 For a review of pulsations of non-rotating relativistic stars, see Kokkotas
& Schmidt (1999).
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Figure 3. Amplitude of the Fourier transform of the time evolution of
the density in the equatorial plane, for model B7, after applying an l = 0
perturbation. Several excited pulsation modes can be identified. For a partic-
ular mode, the amplitude of the Fourier transform correlates with its eigen-
function.

for very small values of Â (strong differential rotation), but for values
that correspond to stars with only a moderate degree of differential
rotation.

4.1 Fixed rest-mass sequences

It is well known that the frequencies of the fundamental l = 0 and
l = 2 polar modes of oscillation depend mainly on the central den-
sity of a star, or, equivalently, on the compactness M/R (see, for
example, Hartle & Friedman 1975). This is particularly true for the
axisymmetric (m = 0) modes. The sequences of fixed rest mass
M 0 = 1.506 M� start with a non-rotating model with compact-
ness M/R = 0.15. Rotation increases the radius and decreases the
central density. The uniformly rotating sequence AU terminates at
the mass-shedding limit, with a compactness of M/R = 0.095.
The differentially rotating sequence can reach higher rotation rates
and terminates near the mass-shedding limit with a compactness of
M/R = 0.066. Based on the significant decrease of the compactness
along the fixed-rest-mass sequences, we expect a corresponding de-
crease in the frequencies of the fundamental modes (and a similar
tendency for the first overtones).

Table 2 displays the computed eigenfrequencies for the funda-
mental and first overtone of the l = 0 and l = 2 modes for the
sequence AU. Rotation reduces the frequency of the fundamen-
tal quasi-radial mode from 2.71 to 1.96 kHz with corresponding
changes in the frequencies of the other modes. Fig. 4 displays the
variation of the mode frequencies with increasing T/|W| along se-
quence AU (dashed lines). The rate of decrease in frequency for the
fundamental quasi-radial modes, with increasing rotation rate be-
comes larger as the mass-shedding limit is approached (due to a cusp
forming in the equatorial region), while the decrease in frequency
for the other modes is a nearly linear function of T/|W|.

Table 2. Frequencies of the fundamental quasi-radial (l = 0) mode, F, its
first overtone, H1, the fundamental quadrupole (l = 2) mode, 2f and its first
overtone, 2p1, for the sequence of uniformly rotating models AU.

Model F H1
2f 2p1

(kHz) (kHz) (kHz) (kHz)

AU0 2.706 4.547 1.846 4.100
AU1 2.526 4.246 1.800 3.862
AU2 2.403 4.090 1.744 3.592
AU3 2.277 3.937 1.663 3.265
AU4 2.141 3.795 1.547 2.847
AU5 1.960 3.647 1.330 2.560

Figure 4. Eigenfrequencies of various modes for sequences A and AU. The
lower of the two lines that start at the F-mode frequency for the non-rotating
models is an additional mode, FII, appearing mainly in differentially rotating
stars (at least in the Cowling approximation).

Table 3 reports the corresponding eigenfrequencies for the differ-
entially rotating sequence A, which are also shown in Fig. 4 (solid
lines). The frequencies of all modes decrease nearly linearly with
increasing T/|W|. Due to the differential rotation, the outer layers of
the star rotate more slowly and the equatorial radius is smaller than
a uniformly rotating model of same T/|W|. This leads to a smaller
sound-crossing time and correspondingly higher fundamental mode
frequencies for the differentially rotating models. This explains why
the lines in Fig. 4 corresponding to the fundamental modes of se-
quence A have smaller slopes than those corresponding to sequence
AU.

For the fastest rotating model of sequence A, the fundamen-
tal quasi-radial mode has a frequency of only 1.22 kHz, with the
fundamental quadrupole mode having a frequency of 0.82 kHz. It
should be emphasized that the above frequencies are computed in
the Cowling approximation, which leads to higher values than the
actual frequencies (see Yoshida & Kojima 1997). Therefore, the ac-
tual frequencies of the fundamental quasi-radial modes should be
in the range of 40–45 per cent smaller than those computed here.
The actual frequencies of the fundamental quadrupole mode should
be roughly 15–20 per cent smaller than our values. For the non-
rotating model of sequences A and AU, the actual frequencies of the
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Table 3. Same as Table 2, but for the sequence of differentially rotating
models A. Also shown are the frequencies of an additional fundamental
mode FII that appears mainly in differentially rotating models (at least in the
Cowling approximation).

Model FII F H1
2f 2p1

(kHz) (kHz) (kHz) (kHz) (kHz)

A0 2.706 2.706 4.547 1.846 4.100
A1 2.485 2.561 4.310 1.822 3.961
A2 2.361 2.480 4.163 1.780 3.822
A3 2.243 2.386 4.029 1.738 3.642
A4 2.142 2.295 3.900 1.677 3.442
A5 2.039 2.201 3.748 1.598 3.211
A6 1.921 2.101 3.563 1.510 2.973
A7 1.779 1.982 3.329 1.403 2.711
A8 1.609 1.846 3.120 1.274 2.494
A9 1.424 1.667 2.857 1.132 2.185
A10 1.223 1.422 2.503 0.966 1.905
A11 1.044 1.220 2.174 0.820 1.658

fundamental l = 0 and l = 2 modes are 1.44 and 1.58 kHz, respec-
tively (Font et al. 2002). Thus, the fundamental l = 0 mode has a
frequency only somewhat smaller than the fundamental l = 2 mode
(while in the Cowling approximation it has a frequency significantly
larger than the fundamental l = 2 mode).

In Font et al. (2002) it was found that, in the case of uniform
rotation, both the actual frequency and the frequency in the Cowling
approximation of the fundamental quasi-radial mode decrease in a
similar way as the rotation rate increases. This leads to the following
empirical relation between the actual frequency and the frequency
in the Cowling approximation:

f� = f (C)
� + [

f0 − f (C)
0

]
. (11)

Here the superscript (C) denotes the Cowling approximation, f � is
the frequency of the fundamental quasi-radial mode for a rotating
star with angular velocity�, and f 0 is the corresponding frequency in
a non-rotating star. This empirical relation was found to be accurate
to within 2 per cent at all rotation rates, even near the mass-shedding
limit. Because the frequencies of differentially rotating stars are not
much different with respect to those of uniformly rotating stars with
the same oblateness, the above relation should approximately hold
for differentially-rotating models as well.

Based on Yoshida & Kojima (1997) and Yoshida & Eriguchi
(2001) we can estimate the error in the fundamental mode frequen-
cies, due to the Cowling approximation. For the fastest rotating
model of sequence A, with M/R ∼ 0.07, we estimate that the ac-
tual fundamental l = 0 and l = 2 frequencies are 63 and 79 per
cent of our results in the Cowling approximation, respectively (ac-
tual frequency meaning the frequency without the assumption of
the Cowling approximation). Taking into account the nearly linear
scaling of the frequencies with increasing rotation rate in Fig. 4, we
construct the following empirical relation

f (kHz) ≈ 1.44 − 2.59
T

|W | , (12)

for the actual frequency of the fundamental quasi-radial mode and

f (kHz) ≈ 1.58 − 3.69
T

|W | , (13)

for the actual frequency of the fundamental quadrupole mode for
the differentially rotating models of sequence A. We estimate the

Figure 5. Same as Fig. 4, but for the sequences B and BU.

uncertainty of the above empirical relations to be of the order of a
few per cent.

According to the above empirical relations, for rapidly rotating
protoneutron stars with T/|W| in the range 0.14–0.26, the frequency
of the two fundamental modes will be in the range of roughly 0.65–
1.1 kHz. This range of frequencies agrees well with the frequencies
of gravitational waves observed in the rotating core collapse simu-
lations by, for example, Dimmelmeier et al. (2001, 2002a,b), which
confirms the validity of our chosen equilibrium models and pulsa-
tion modes to model the gravitational waves produced in the above
simulations.3

The additional fundamental frequency FII in Tables 2 and 3 and
in Fig. 4 is discussed in Section 5.

4.2 Fixed central density sequence

Another sequence of models with differential rotation that has been
analysed is sequence B, consisting of 12 models with the same cen-
tral energy density ε c = 1.28 × 10−3 but with axial ratios ranging
from 1.0 to 0.40. The most rapidly rotating model corresponds to
a hypermassive neutron star, such as those created temporarily in
a binary neutron star merger. The corresponding sequence of uni-
formly rotating models, BU, of the same fixed central energy density,
comprises models with axial ratios from 1.0 to 0.58. The computed
frequencies of the l = 0, 2 fundamental modes and their first over-
tones are shown in Fig. 5 and in Tables 4 and 5 (the additional
fundamental mode FII is discussed in Section 5).

The frequencies of the fundamental l = 0 and l = 2 modes change
by as much as 16 per cent along the sequence BU. In comparison,
for sequence B the eigenfrequencies for both the l = 0 and l =
2 fundamental modes remain relatively unaffected by the rotation
rate, changing by less than 3 and 5 per cent, respectively, compared
to their values in the non-rotating limit. This leads to the conclu-
sion that a moderate amount of differential rotation, of the order of

3 Here we only refer to the regular collapse cases in Dimmelmeier et al. and
not to multiple-bounce cases. Notice that, even though our polytropic index
is different than in Dimmelmeier et al., our choice of the polytropic constant
leads to models of similar compactness, for the same mass.
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Table 4. Same as Table 2, but for the sequence of uniformly rotating models
BU.

Model F H1
2f 2p1

(kHz) (kHz) (kHz) (kHz)

BU0 2.706 4.547 1.846 4.100
BU1 2.657 4.467 1.855 4.040
BU2 2.619 4.409 1.860 3.944
BU3 2.579 4.385 1.857 3.814
BU4 2.535 4.371 1.844 3.645
BU5 2.495 4.356 1.815 3.456
BU6 2.456 4.357 1.762 3.244
BU7 2.417 4.337 1.686 3.010
BU8 2.328 4.300 1.588 2.710
BU9 2.313 4.280 1.558 2.642

Table 5. Same as Table 3, but for the sequence of differentially rotating
models B.

Model FII F H1
2f 2p1

(kHz) (kHz) (kHz) (kHz) (kHz)

B0 2.706 2.706 4.547 1.846 4.100
B1 2.627 2.658 4.446 1.880 4.102
B2 2.561 2.637 4.421 1.900 4.090
B3 2.525 2.632 4.405 1.913 4.045
B4 2.506 2.632 4.403 1.924 3.983
B5 2.487 2.632 4.422 1.929 3.907
B6 2.459 2.633 4.436 1.925 3.828
B7 2.423 2.635 4.447 1.909 3.721
B8 2.394 2.646 4.444 1.890 3.632
B9 2.360 2.653 4.413 1.867 3.567
B10 2.330 2.662 4.360 1.842 3.500
B11 2.318 2.678 4.300 1.832 3.470
B12 2.328 2.722 4.240 1.830 3.473

Â = 1, makes the fundamental frequencies relatively insensitive to
rotation and depending mainly on the central energy density of the
star. This finding should simplify attempts to extract information
about the physical properties of neutron stars in binary mergers,
when such events become observable through their gravitational-
wave emission.

As discussed in Section 2, we obtain the two-dimensional eigen-
function of a specific mode by computing Fourier transforms of se-
lected variables at every point inside the star. An example of such an
eigenfunction is shown in Fig. 6, which displays the eigenfunction
corresponding to the density perturbations due to the l = 2 funda-
mental mode, for the non-rotating model B0. Because the model
is non-rotating, the eigenfunction shows the expected quadrupolar
structure. For the most rapidly rotating model B12, however, the
eigenfunction for the same mode appears severely altered (Fig. 7)
with respect to the non-rotating limit. There are two main effects
caused by rapid rotation. First, the l = 2 fundamental mode not
only couples to higher-order spherical harmonics, but also couples
to an l = 0 term. This causes a significant density variation at the
centre of the star, whereas for the non-rotating model the centre of
the star is not pulsating. Secondly, the centrifugal force weakens the
effective gravity in the equatorial region, causing the eigenfunction
to attain a large amplitude near the equatorial surface of the star.
The effect of the centrifugal force becomes extreme when the star
rotates at the mass-shedding limit, as discussed in Section 6. The
above effects are common in other modes, too, and also in all four
sequences considered.

Figure 6. Two-dimensional eigenfunction of the density perturbation, cor-
responding to the l = 2 fundamental mode for the non-rotating model B0.
The eigenfunction is shown in Cartesian coordinates with x and z being
scaled by the equatorial coordinate radius re, while δρ is in arbitrary units.

Figure 7. Same as Fig. 6, but for the most rapidly rotating model of sequence
B (B12).

5 S P L I T T I N G O F T H E F U N DA M E N TA L M O D E

An interesting feature visible in Figs 4 and 5 is the appearance
of an additional fundamental mode, which we denote as FII. This
mode is degenerate in the non-rotating limit, but becomes distinct
from the F-mode for rotating models. For sequence A, the FII-mode
has a similar dependence on rotation rate as the F-mode, with the
difference in frequency between the two modes remaining nearly
constant with increasing rotation rate. For sequence B, however, the
frequency of the FII-mode is decreasing with increasing rotation
rate, while the frequency of the F-mode is increasing.

For both sequences A and B (which have a fixed strength of dif-
ferential rotation, Â = 1) the FII-mode is excited at the same level
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Figure 8. Comparison of integrated Fourier amplitudes of the density evo-
lution for a differentially rotating (B7) and a uniformly rotating (BU7) model.
The peaks corresponding to the fundamental quasi-radial mode F, the addi-
tional fundamental mode FII and the fundamental l = 2 mode are shown.

as the F-mode, by the perturbation shown in equation (3) (the ampli-
tude of the Fourier transform is similar for both modes). Varying the
degree of differential rotation (for the same model and the same ap-
plied perturbation) we find that, while the amplitude of the F-mode
remains constant, the amplitude of the FII-mode decreases as the star
becomes less differentially rotating. In the limit of uniform rotation,
there still exists a peak in the Fourier transform, corresponding to
the FII mode, although it has an amplitude much smaller than the
main F-mode (see Fig. 8, which compares the Fourier transforms
for models B7 and BU7). Extracting the eigenfunction of the radial
velocity perturbation, in the equatorial plane, for model BU7, shows
that the eigenfunction of the FII-mode has a node close to 70 per cent
of the equatorial radius, while the F-mode clearly has no node (see
Fig. 9). Even though the FII-mode has a node in the radial velocity,
which is a property of a first overtone in a non-rotating star, we still
refer to it as a fundamental mode, due to its degeneracy with the
F-mode in a non-rotating star.

The distinction between the F-mode and the FII-mode becomes
very clear in the extracted two-dimensional eigenfunctions. Figs 10
and 11 show the eigenfunction of the two modes, corresponding to
the density perturbation, for the differentially rotating model B8. The
eigenfunction of the F-mode is significantly modified by rotational
couplings near the equatorial surface, but otherwise it is similar to
the expected eigenfunction of the F-mode in a non-rotating star. In
contrast, the eigenfunction of the FII mode is similar to an F-mode
eigenfunction in a non-rotating star only in the central region, but
otherwise it is very different in the polar and equatorial regions. The
shape of the eigenfunction in the equatorial plane (having no node
in the density perturbation) is reminiscent of density perturbations
in differentially rotating tori.

Is the FII-mode physical? Because our numerical code imple-
ments the Cowling approximation we cannot answer this question
at present. In the Cowling approximation the energy and momentum
conservation are violated. In previous simulations (Font et al. 2001)
this violation of the constraints has led to the appearance of an un-
physical ‘fundamental’ dipole mode. It is possible that the FII-mode
observed in the present simulations is also an artefact of the Cowling

Figure 9. Comparison of the eigenfunctions, in the equatorial plane, cor-
responding to variations in the velocity component vr for the fundamental
quasi-radial mode F and for the additional fundamental mode FII (for the
uniformly rotating model BU7).

Figure 10. Two-dimensional eigenfunction of the density perturbation,
corresponding to the l = 0 fundamental mode for the differentially rotating
model B8.

approximation. This can only be confirmed by new simulations in
full general relativity.

6 M A S S - S H E D D I N G - I N D U C E D DA M P I N G
O F P U L S AT I O N S

Linear perturbations of rotating stars are assumed to have a van-
ishingly small amplitude, so that the background equilibrium star is
unaffected by a linear oscillation mode. However, when we consider
a finite-amplitude oscillation, then non-linear effects can become
important. Our non-linear evolution code allows us to investigate
such effects.
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Figure 11. Same as Fig. 10, but for the additional fundamental mode FII

(see discussion in Section 5).

At low rotation rates, a small oscillation amplitude of the order
of 10−2 does not lead to significant non-linear effects. However,
as the star approaches the mass-shedding limit, the effective gravity
near the equatorial surface diminishes. Exactly at the mass-shedding
limit, fluid elements are only marginally bound to the surface of the
star. A small radial pulsation then suffices to cause mass-shedding
after each oscillation period. At an oscillation frequency around
2.3 kHz (in the Cowling approximation), matter that has been shed
from the star does not have the time to fall back before more matter
is shed (this statement applies to the specific example with an initial
pulsation amplitude of the order of 10−2, which is studied here –
more generally, the fall-back time will depend on the initial ampli-
tude). In this way, a low-density toroidal envelope is created in the
equatorial region, which expands with every oscillation period.

Fig. 12 shows the profile of the specific internal energy ε at two
different times, for the uniformly rotating model BU9, which is at
the mass-shedding limit. It is clearly seen that the matter is shed in
the form of high-entropy shock waves. A first shock wave, shown
at t = 0.14 ms, leaves the star as a result of the initial perturbation
applied to the equilibrium model. After one oscillation period, a
second shock wave leaves the star and both shock waves are shown
at t = 0.92 ms. In the same fashion, consecutive shock waves are
created after each oscillation period and the density in the toroidal
envelope gradually increases.

Because matter is shed from the star in the form of shocks, they
carry away kinetic energy, to the expense of the pulsational energy.
In this way, the pulsations of the star are gradually damped. Fig. 13
shows a comparison between the time evolution of the central rest-
mass density in the slowly rotating model BU1 and model BU9. It is
evident that the damping of the pulsations due to mass-shedding is
very strong. The damping will also be effective in stars which rotate
at somewhat smaller rotation rates. The precise damping rate will
depend on several factors, such as the amplitude of the pulsation,
the rotation rate of the star, the EOS, etc. The assumption of the
Cowling approximation, which we have adopted in our simulations,
will also affect the damping rate, as it causes an imbalance between
the different forces acting on a fluid element on the equatorial surface
of the star. Simulations which take into account the time evolution

Figure 12. Profiles of the internal energy ε showing the propagation of
shocks, generated due to radial pulsations at the surface of the star. At t =
0.14 ms, a first shock is shown to propagate away from the star. At t =
0.92 ms, a second shock is propagating in the rarefaction region created by
the first shock. A shock is produced after each period of the fundamental
quasi-radial mode F. Pulsational energy is carried away by these shocks and
a high-entropy envelope forms in the equatorial region surrounding the star.

Figure 13. Damping of non-linear pulsations for a star rotating at the mass-
shedding limit. For a slowly rotating star the pulsations are not damped
(except by numerical viscosity). The time evolution of the density is shown at
half-radius in the star (for a better comparison, the lower curve was displaced
by a fixed amount on the vertical axis). For an initial mode amplitude of 1 per
cent, the non-linear damping occurs on a dynamical time-scale.

of the gravitational field during the oscillations should yield more
accurate damping rates.

Our finding of the mass-shedding-induced damping of pulsations
in critically rotating stars can have severe consequences for unstable
pulsation modes, such as f-modes and r-modes, because, over a
time-scale of several seconds, even a very small damping rate could
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suffice to saturate their amplitude at values much less than order
unity.

7 D E T E C TA B I L I T Y O F G R AV I TAT I O NA L
WAV E S

Pulsating rotating neutron stars are gravitational-wave sources that
depend on several parameters (EOS, mass, angular momentum, dif-
ferential rotation law, initial amplitude, damping mechanisms, etc.).
All these parameters may have different effects on the oscillation
spectrum of the star and, therefore, the successful extraction of the
physical characteristics of the source from the gravitational-wave
signal will be difficult to achieve. It is important to isolate each ef-
fect on the gravitational waveform in order to find general trends.
If independent information about the source (a gravitational-wave
burst, or optical, neutrino or gamma-ray signals in the case of core
collapse; a gravitational-wave chirp in the case of a binary merger)
can distinguish between isolated neutron star formation and binary
merger, then this could be used to constrain the interesting range
of several parameters. Thus, a combined filter that includes both
a pre-formation characteristic signal and several damped pulsation
modes will enhance the total signal-to-noise ratio (see Kokkotas,
Apostolatos & Andersson 2001, for extraction of the characteris-
tic parameters of a damped monochromatic gravitational waves,
through matched filtering).

In the core collapse simulations by Dimmelmeier et al. (2001,
2002a,b) the quasi-periodic gravitational waves emitted during core
collapse were found to have frequencies less than roughly 1.1 kHz
and our computed frequencies of l = 0 and l = 2 modes agree with
this, as discussed in Section 4.1. Such frequencies are still within
the range of current laser-interferometric detectors. However, the
above frequencies are typical only for certain EOSs. The fundamen-
tal l = 2 f-mode frequency of the non-rotating model of sequence
A is at the lower end of the corresponding frequency range for
1.4-M�, models, constructed with a large sample of different real-
istic EOSs, which range from ∼1.35 kHz (for extremely stiff EOSs)
to ∼3.6 kHz (for extremely soft EOSs); see, for example, Anders-
son & Kokkotas (1998). A similar range of frequencies, for different
EOSs, exists for the fundamental l = 0 mode, for stars of 1.4-M�,
mass. Based on the empirical relations constructed in Section 4.1, we
estimate that, depending on the stiffness of the high-density EOS,
the frequency range of quasi-periodic gravitational waves during
core collapse could be as low as 0.65–1.35 kHz for extremely stiff
EOSs and as high as 1.8–3.6 kHz for extremely soft EOSs. The
higher-frequency range would be accessible for gravitational-wave
detection only with detectors such as the proposed wide-band dual
sphere (Cerdonio et al. 2001).

In the case of a neutron star binary merger, the high-frequency
quasi-periodic oscillations excited in the hypermassive neutron star
could last for a large number of oscillation periods, because the
damping due to a low-density envelope should be much weaker
than in the core collapse case. Thus, the quasi-periodic signal could
be enhanced significantly by matched filtering.

8 D I S C U S S I O N

Using an axisymmetric general-relativistic hydrodynamics code we
have studied non-linear pulsations of uniformly and differentially ro-
tating neutron stars. We have performed time-dependent numerical
simulations of a large sample of initial models which were slightly
perturbed away from hydrostatic equilibrium. The time evolutions

have been analysed using Fourier transforms at several points in-
side the stars, which enables the extraction of the two-dimensional
eigenfunction for each mode. Our attention has been focused on two
different sequences of uniformly and differentially rotating stars,
for which we have obtained the pulsation frequencies for the two
lowest-order quasi-radial (l = 0) and quadrupole (l = 2) modes.
We have found that differentially rotating models can reach signif-
icantly lower pulsation frequencies than uniformly rotating models
of the same rest mass. In addition, our simulations show that the
fundamental quasi-radial mode is split into two different sequences.
This new mode has been most clearly observed in the fastest dif-
ferentially rotating models. The centrifugal forces and the degree
of differential rotation have significant effects on the mode eigen-
functions. Most notably, axisymmetric non-radial modes acquire a
non-zero density variation at the centre of the star, due to coupling to
lower-order terms in the eigenfunction. However, both the splitting
of the fundamental mode and the non-zero central density varia-
tions of non-radial modes could be due to the use of the Cowling
approximation.

We have found that near the mass-shedding limit the pulsations
are damped due to shocks forming at the surface of the star, when
matter is shed in the equatorial region during each pulsation cycle.
The damping rate should depend on the amplitude of the pulsations
and on the rotation rate of the star. This new damping mechanism
may set a small saturation amplitude for modes that are unstable to
the emission of gravitational radiation. The non-linear development
of pulsations when subject to this strong damping depends on the
adopted EOS during the time evolution. If we restrict the perfect
fluid to remain isentropic, by assuming that the usual polytropic
EOS holds throughout the evolution, then this restriction does not
allow for real shocks to form and propagate away from the star, even
though discontinuities appear in the fluid variables in this case as
well (actually, such discontinuities are larger than the corresponding
discontinuities in the non-isentropic case, for the same mode am-
plitude, due to kinetic energy conservation). Instead of propagating
shocks, we obtain a behaviour that is reminiscent of the ‘wave-
breaking’ of large-amplitude r-modes in rapidly rotating stars, in
non-linear simulations by Lindblom, Tohline & Vallisneri (2001).4

In contrast, the correct approach is to use a non-isentropic EOS dur-
ing the evolution, such as the ideal fluid EOS used in our simulations,
which allows for physically realistic shocks to form and propagate.
We note that in the simulations by Lindblom et al. (2001) the growth
in the amplitude of the unstable r-mode was accelerated by a large
factor, leading to the ‘wave-breaking’ and the sudden destruction of
the mode. We conjecture that if we use a non-isentropic EOS and
do not accelerate the natural r-mode growth time, then a balance
between the growth rate due to gravitational-radiation reaction and
the damping rate due to shock-dissipation caused by mass-shedding
could be obtained at some amplitude less than order unity. This dis-
cussion is relevant, of course, only if in very rapidly rotating stars
the mass-shedding-induced damping limits the non-linear ampli-
tude of unstable modes before other non-linear saturation mecha-
nisms can dominate. Examples of other non-linear saturation mech-
anisms are saturation due to the interaction of differential rotation
with a magnetic field (Rezzolla, Lamb & Shapiro 2000; Rezzolla
et al. 2001a,b), hydrodynamical instabilities of large-amplitude
non-linear oscillations (Gressman et al. 2002) and non-linear cou-
plings to other damped modes (Schenk et al. 2002; Morsink 2002;

4 We note that, in rapidly rotating stars, the r-mode velocity field has a
significant radial component.
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Arras et al. 2003). At present, it is still unclear what the relation, if
any, between the latter two mechanisms is (in the case of r-mode
oscillations). Which non-linear saturation mechanism sets the max-
imum amplitude of unstable modes could depend on the rotation
rate and the magnetic field strength of the star.
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Schenk A. K., Arra P., Flanagan É. É., Teukolsky S. A., Wasserman I., 2002,

Phys. Rev. D, 65, 024001
Shapiro S. L., 2000, ApJ, 544, 397
Shibata M., 2003, Phys. Rev. D, 67, 024033
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