On the 2nd Kahn-Kalai conjecture and Bayesian inference connections

Ilias Zadik

Assistant Professor
Department of Statistics and Data Science
Yale University

With Elchanan Mossel (MIT), Jonathan Niles-Weed (NYU) and Nike Sun (MIT).

University of Athens seminar

• Erdős-Rényi model on n vertices, $p = p_n$: $G \sim G(n, p)$

- Erdős-Rényi model on n vertices, $p = p_n$: $\textbf{G} \sim G\left(n,p\right)$
- \bullet $H=H_n$ subgraph of $K_n,\ \text{e.g.}$ triangle, $\log n\text{-clique},\ \text{perfect matching}.$

- Erdős-Rényi model on n vertices, $p = p_n$: $\textbf{G} \sim G(n, p)$
- ullet $H=H_n$ subgraph of K_n , e.g. triangle, $\log n$ -clique, perfect matching.

Threshold of H

 $\mathbb{P}_{p}\left(\mathbf{G} \text{ contains a copy of H} \right)$

- Erdős-Rényi model on n vertices, $p = p_n$: $\textbf{G} \sim G\left(n,p\right)$
- ullet $H=H_n$ subgraph of K_n , e.g. triangle, $\log n\text{-clique}$, perfect matching.

Threshold of H

The $\operatorname{\it critical} p = p_c(H)$ such that

 \mathbb{P}_{p} (**G** contains a copy of H) = 1/2.

- Erdős-Rényi model on n vertices, $p = p_n$: $\textbf{G} \sim G(n, p)$
- ullet $H=H_n$ subgraph of K_n , e.g. triangle, $\log n$ -clique, perfect matching.

Threshold of H

The critical $p = p_c(H)$ such that

 $\mathbb{P}_{p}\left(\mathbf{G} \text{ contains a copy of H}\right)=1/2.$

Bollobas-Thomason: $\lim_n \mathbb{P}_p \left(\mathbf{G} \text{ contains a copy of H} \right) = \begin{cases} 0, p \ll p_c \\ 1, p \gg p_c \end{cases}$

- Erdős-Rényi model on n vertices, $p = p_n$: $\textbf{G} \sim G(n, p)$
- ullet $H=H_n$ subgraph of K_n , e.g. triangle, $\log n$ -clique, perfect matching.

Threshold of H

The critical $p = p_c(H)$ such that

 $\mathbb{P}_{p}\left(\mathbf{G} \text{ contains a copy of H}\right) = 1/2.$

Bollobas-Thomason: $\lim_n \mathbb{P}_p \left(\mathbf{G} \text{ contains a copy of } H \right) = \begin{cases} 0, p \ll p_c \\ 1, p \gg p_c \end{cases}$ Huge Literature...

First moment method

$$\mathcal{Z}_{H} = \mathcal{Z}_{H}(\boldsymbol{G}) \text{ copies of } H \text{ in } \boldsymbol{G} \sim G\left(n,p\right).$$

$$\mathbb{P}_{\mathsf{p}}(\mathcal{Z}_{\mathsf{H}} \geq 1)$$

First moment method

$$\mathcal{Z}_H = \mathcal{Z}_H(\boldsymbol{G})$$
 copies of H in $\boldsymbol{G} \sim G\left(n,p\right)$.

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H$$

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_{p}(\mathcal{Z}_{H} \geq 1) \leq \mathbb{E}\mathcal{Z}_{H} = M_{H}p^{e(H)}.$$

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H = \mathsf{M}_H \mathsf{p}^{\mathsf{e}(\mathsf{H})}.$$

Outcome:
$$p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$$
.

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_{p}(\mathcal{Z}_{\mathsf{H}} \geq 1) \leq \mathbb{E}\mathcal{Z}_{\mathsf{H}} = \mathsf{M}_{\mathsf{H}}\mathsf{p}^{\mathsf{e}(\mathsf{H})}.$$

Outcome: $p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$.

Tight? Usually, second moment method

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H = \mathsf{M}_H \mathsf{p}^{\mathsf{e}(\mathsf{H})}.$$

Outcome: $p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$.

Tight? Usually, second moment method

• H triangle: $\mathbb{E}\mathcal{Z}_H = \binom{n}{3} p^3$, $p_1(H) \sim 1/n$, correct: $p_c(H) \sim 1/n$.

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H = \mathsf{M}_H \mathsf{p}^{\mathsf{e}(\mathsf{H})}.$$

Outcome: $p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$.

Tight? Usually, second moment method

- H triangle: $\mathbb{E}\mathcal{Z}_H = \binom{n}{3} p^3$, $p_1(H) \sim 1/n$, correct: $p_c(H) \sim 1/n$.
- H K₄: $\mathbb{E}\mathcal{Z}_H = \binom{n}{4} p^6$, $p_1 \sim 1/n^{2/3}$, correct: $p_c(H) \sim 1/n^{2/3}$.

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H = \mathsf{M}_H \mathsf{p}^{\mathsf{e}(\mathsf{H})}.$$

Outcome: $p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$.

Tight? Usually, second moment method

- H triangle: $\mathbb{E}\mathcal{Z}_H = \binom{n}{3}p^3$, $p_1(H) \sim 1/n$, correct: $p_c(H) \sim 1/n$.
- H K₄: $\mathbb{E}\mathcal{Z}_H = \binom{n}{4} p^6$, $p_1 \sim 1/n^{2/3}$, correct: $p_c(H) \sim 1/n^{2/3}$.
- H K₄+ antenna: $\mathbb{E}\mathcal{Z}_H \sim n^5 p^7$, $p_1 \sim 1/n^{5/7}$ but... $p_c(H) \sim 1/n^{2/3}$.

First moment method

 $\mathcal{Z}_H = \mathcal{Z}_H(\textbf{G}) \text{ copies of H in } \textbf{G} \sim G\left(n,p\right) . \text{ } M_H \text{ copies of H in } K_n.$

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{E}\mathcal{Z}_H = M_H p^{e(H)}.$$

Outcome: $p_1(H) := (\frac{1}{2M_H})^{1/e(H)} \le p_c(H)$.

Tight? Usually, second moment method

- H triangle: $\mathbb{E}\mathcal{Z}_H = \binom{n}{3}p^3$, $p_1(H) \sim 1/n$, correct: $p_c(H) \sim 1/n$.
- H K₄: $\mathbb{E}\mathcal{Z}_H = \binom{n}{4} p^6$, $p_1 \sim 1/n^{2/3}$, correct: $p_c(H) \sim 1/n^{2/3}$.
- H K₄+ antenna: $\mathbb{E}\mathcal{Z}_H \sim n^5 p^7$, $p_1 \sim 1/n^{5/7}$ but... $p_c(H) \sim 1/n^{2/3}$.

Issue: $H' = K_4$ is a subgraph of $H=K_4+$ antenna.

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1) \leq \mathbb{E}\mathcal{Z}_{H'}.$$

Refined first moment threshold

Using subgraphs H' of H,

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \min_{H' \subseteq H} \mathbb{E} \mathcal{Z}_{H'} = \min_{H' \subseteq H} \mathsf{M}_{H'} \mathsf{p}^{e(H')}.$$

Refined first moment threshold

Using subgraphs H' of H,

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \min_{H' \subseteq H} \mathbb{E} \mathcal{Z}_{H'} = \min_{H' \subseteq H} \mathsf{M}_{H'} \mathsf{p}^{\mathsf{e}(H')}.$$

Refined outcome: $p_E(H) := max_{H' \subseteq H} (\frac{1}{2M_{H'}})^{1/e(H')} \le p_c(H)$.

Refined first moment threshold

Using subgraphs H' of H,

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \min_{H' \subseteq H} \mathbb{E} \mathcal{Z}_{H'} = \min_{H' \subseteq H} M_{H'} p^{e(H')}.$$

$$\textit{Refined outcome:} \ p_{\mathsf{E}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\tfrac{1}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')} \leq p_{\mathsf{c}}(\mathsf{H}).$$

• Correct for e.g. constant size graphs (Bollobas '81), log n-cliques.

Refined first moment threshold

Using subgraphs H' of H,

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \min_{H' \subseteq H} \mathbb{E} \mathcal{Z}_{H'} = \min_{H' \subseteq H} M_{H'} p^{e(H')}.$$

$$\textit{Refined outcome:} \ p_{\mathsf{E}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\tfrac{1}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')} \leq p_{\mathsf{c}}(\mathsf{H}).$$

• Correct for e.g. constant size graphs (Bollobas '81), log n-cliques.

The Second Kahn-Kalai conjecture (KK'06)

For some universal K>0, for any H, $p_c(H) \leq Kp_E(H)\log e(H)$.

Refined first moment threshold

Using subgraphs H' of H,

$$\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \min_{H' \subseteq H} \mathbb{E} \mathcal{Z}_{H'} = \min_{H' \subseteq H} M_{H'} p^{e(H')}.$$

Refined outcome:
$$p_E(H) := max_{H' \subseteq H} (\frac{1}{2M_{H'}})^{1/e(H')} \le p_c(H)$$
.

• Correct for e.g. constant size graphs (Bollobas '81), log n-cliques.

The Second Kahn-Kalai conjecture (KK'06)

For some universal K>0, for any H, $p_c(H) \leq Kp_E(H)\log e(H)$.

Perfect matching, Hamiltonian cycle, $p_E(H) \sim 1/n$, $p_c(H) \sim \log n/n$ (beyond 2nd MM).

Any non-trivial monotone property ${\mathcal F}$ on random set ${\boldsymbol V} \sim {\sf Bern}(p)^{\otimes N}.$

$$p_c(\mathcal{F}) \text{ s.t. } \mathbb{P}_p\left(\textbf{V} \text{ satisfies } \mathcal{F} \right) = 1/2.$$

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V \sim \mathsf{Bern}(p)^{\otimes N}$.

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, V=G samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V\sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}.$

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, V = G samples edges of K_n , $\mathcal{F} = \mathcal{F}_H$ containing copy of H.

• $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $\mathsf p_\mathsf c(\mathcal F) \leq \mathsf K \max_{\mathsf{covers}} \{\mathsf{first} \ \mathsf{moment} \ \mathsf{thresholds}\} \log \ell(\mathcal F).$

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V\sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}.$

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, $\boldsymbol{V}=\boldsymbol{G}$ samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

• $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $p_c(\mathcal F) \leq K \max_{COVETS} \{ \text{first moment thresholds} \} \log \ell(\mathcal F)$.

(More general than the second, but weaker bound for \mathcal{F}_{H} .)

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V \sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}$.

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, V=G samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

• $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $p_c(\mathcal F) \leq K \max_{COVETS} \{ \text{first moment thresholds} \} \log \ell(\mathcal F)$.

(More general than the second, but weaker bound for \mathcal{F}_{H} .)

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V\sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}.$

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, V=G samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

- $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $\mathsf p_\mathsf c(\mathcal F) \leq \mathsf K\max_{\mathsf{COVETS}}\{\mathsf{first} \mathsf{ moment thresholds}\}\log\ell(\mathcal F).$
 - (More general than the second, but weaker bound for \mathcal{F}_{H} .)
- (Talagrand '10): fractional covers: fractional KK conjecture.

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V\sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}.$

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, $\boldsymbol{V}=\boldsymbol{G}$ samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

- $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $\mathsf p_\mathsf c(\mathcal F) \leq \mathsf K \max_{\mathsf{covers}} \{\mathsf{first} \ \mathsf{moment} \ \mathsf{thresholds}\} \log \ell(\mathcal F).$
 - (More general than the second, but weaker bound for \mathcal{F}_{H} .)
- (Talagrand '10): fractional covers: fractional KK conjecture.
- (FKNP'19) Proof of the fractional KK conjecture! **Key technique: spread lemma** from *sunflower conjecture*.

Any non-trivial monotone property $\mathcal F$ on random set $\mathbf V\sim \mathsf{Bern}(\mathsf p)^{\otimes \mathsf N}.$

$$p_c(\mathcal{F})$$
 s.t. $\mathbb{P}_p(\mathbf{V} \text{ satisfies } \mathcal{F}) = 1/2.$

For us, $\boldsymbol{V}=\boldsymbol{G}$ samples edges of K_n , $\mathcal{F}=\mathcal{F}_H$ containing copy of H.

- $\mathcal C$ cover of $\mathcal F$ ("subsets of sets that necessarily appear under $\mathcal F$ "). Kahn-Kalai conj: $p_c(\mathcal F) \leq K \max_{COVETS} \{ \text{first moment thresholds} \} \log \ell(\mathcal F)$.
 - (More general than the second, but weaker bound for \mathcal{F}_{H} .)
- (Talagrand '10): fractional covers: fractional KK conjecture.
- (FKNP'19) Proof of the fractional KK conjecture! **Key technique:** spread lemma from *sunflower conjecture*.
- (Park, Pham '22): Proof of the Kahn-Kalai conjecture!

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \le p_{\tilde{E}}(H) \le p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \le Kp_{\tilde{F}}(H) \log e(H)$$
.

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \le p_{\tilde{E}}(H) \le p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \le Kp_{\tilde{E}}(H) \log e(H)$$
.

(1) "Subgraph" formula beyond constant-size H.
A simpler formula than (fractional) Kahn-Kalai thresholds.

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := \max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \leq p_{\tilde{E}}(H) \leq p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

- (1) "Subgraph" formula beyond constant-size H.
 A simpler formula than (fractional) Kahn-Kalai thresholds.
- (2) Very short proof via the spread lemma.

 Main tool also in breakthroughs: sunflower lemma and frac. KK

- $\bullet \ \ \mathsf{p_E}(\mathsf{H}) = \mathsf{max}_{\mathsf{H}'}(1/2\mathsf{M}_{\mathsf{H}'})^{1/\mathsf{e}(\mathsf{H}')} = \mathsf{max}_{\mathsf{H}' \ \mathsf{covers}} \{\mathsf{1st} \ \mathsf{MM} \ \mathsf{thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := \max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \leq p_{\tilde{E}}(H) \leq p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

- "Subgraph" formula beyond constant-size H.
 A simpler formula than (fractional) Kahn-Kalai thresholds.
- (2) Very short proof via the spread lemma.

 Main tool also in breakthroughs: sunflower lemma and frac. KK
- (3) New proof of spread lemma using Bayesian inference tools.

The modified threshold

For H' subgraph of H, let $M_{H',H}$ the *number of copies* of H' in H.

The modified threshold

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

$$\mathbb{P}_{\mathsf{p}}(\mathcal{Z}_{\mathsf{H}} \geq 1) \leq \mathbb{P}_{\mathsf{p}}(\mathcal{Z}_{\mathsf{H}'} \geq \mathsf{M}_{\mathsf{H}',\mathsf{H}})$$

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

$$\begin{split} \mathbb{P}_{p}(\mathcal{Z}_{H} \geq 1) &\leq \mathbb{P}_{p}(\mathcal{Z}_{H'} \geq M_{H',H}) \\ &\leq \min_{H' \subseteq H} \frac{\mathbb{E}\mathcal{Z}_{H'}}{M_{H',H}} \end{split}$$

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

$$\begin{split} \mathbb{P}_p(\mathcal{Z}_H \geq 1) &\leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq M_{H',H}) \\ &\leq \min_{H' \subseteq H} \frac{\mathbb{E}\mathcal{Z}_{H'}}{M_{H',H}} \\ &= \min_{H' \subseteq H} \frac{M_{H'}}{M_{H',H}} p^{e(H')}. \end{split}$$

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

New first moment threshold

$$\begin{split} \mathbb{P}_p(\mathcal{Z}_H \geq 1) &\leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq M_{H',H}) \\ &\leq \min_{H' \subseteq H} \frac{\mathbb{E}\mathcal{Z}_{H'}}{M_{H',H}} \\ &= \min_{H' \subseteq H} \frac{M_{H'}}{M_{H',H}} p^{e(H')}. \end{split}$$

Hence:

$$p_{\tilde{E}}(H) := \max_{H' \subset H} (\frac{M_{H',H}}{2M_{H'}})^{1/e(H')} \leq p_c(H).$$

For H' subgraph of H, let $M_{H',H}$ the number of copies of H' in H. Before, $\mathbb{P}_p(\mathcal{Z}_H \geq 1) \leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq 1)$. What if $M_{H',H} > 1$?

New first moment threshold

$$\begin{split} \mathbb{P}_p(\mathcal{Z}_H \geq 1) &\leq \mathbb{P}_p(\mathcal{Z}_{H'} \geq M_{H',H}) \\ &\leq \min_{H' \subseteq H} \frac{\mathbb{E}\mathcal{Z}_{H'}}{M_{H',H}} \\ &= \min_{H' \subseteq H} \frac{M_{H'}}{M_{H',H}} p^{e(H')}. \end{split}$$

Hence:

$$p_{\mathsf{E}}(\mathsf{H}) \leq p_{\tilde{\mathsf{E}}}(\mathsf{H}) := \max_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')} \leq p_{\mathsf{c}}(\mathsf{H}).$$

Main result

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\tfrac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}.$$

Main result

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}.$$

Theorem

For some universal constant $\mathsf{K}>0$ and any $\mathsf{H}=\mathsf{H}_n$,

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

Main result

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}.$$

Theorem

For some universal constant $\mathsf{K}>0$ and any $\mathsf{H}=\mathsf{H}_n$,

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

• log-necessary: Perfect matching $p_{\tilde{F}}(H) \sim 1/n, \, p_c(H) \sim \log n/n.$

$$p_{\tilde{E}}(H) := \mathsf{max}_{H' \subseteq H} (\frac{\mathsf{M}_{H',H}}{2\mathsf{M}_{H'}})^{1/e(H')}, \ p_c(H) \leq \mathsf{Kp}_{\tilde{E}}(H) \log e(H).$$

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \ \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1, \ldots, G_M are subgraphs of K_n , the uniform measure $\mathbf{A} \sim \pi$ on G_i is R-spread if for all $S \subseteq K_n$ $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

$$p_{\tilde{E}}(H) := \mathsf{max}_{H' \subseteq H}(\frac{\mathsf{M}_{H',H}}{2\mathsf{M}_{H'}})^{1/e(H')}, \ p_c(H) \leq \mathsf{Kp}_{\tilde{E}}(H) \log e(H).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure ${\bf A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq {\bf A})\leq R^{-e(S)}$.

Spread Lemma

$$p_{\tilde{E}}(H) := \mathsf{max}_{H' \subseteq H}(\frac{\mathsf{M}_{H',H}}{2\mathsf{M}_{H'}})^{1/e(H')}, \ p_c(H) \leq \mathsf{Kp}_{\tilde{E}}(H) \log e(H).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

There exists C > 0 s.t. if G_1, \ldots, G_M subgraphs of K_n , where

$$p_{\tilde{E}}(H) := \mathsf{max}_{H' \subseteq H}(\frac{\mathsf{M}_{H',H}}{2\mathsf{M}_{H'}})^{1/e(H')}, \ p_c(H) \leq \mathsf{Kp}_{\tilde{E}}(H) \log e(H).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where (1) $e(G_i)\leq k, \forall i$ and (2) the uniform measure on G_i 's is R-spread,

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \ \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure ${\bf A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq {\bf A})\leq R^{-e(S)}$.

Spread Lemma

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \; \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure ${\bf A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq {\bf A})\leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\mathbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

• NTS ${\bf H} \sim \pi$, a uniform random copy of H in ${\bf K_n}$, is $1/p_{\tilde{\bf F}}({\bf H})$ spread.

$$p_{\tilde{E}}(H) := \mathsf{max}_{H' \subseteq H} (\frac{\mathsf{M}_{H',H}}{2\mathsf{M}_{H'}})^{1/e(H')}, \; p_c(H) \leq \mathsf{Kp}_{\tilde{E}}(H) \log e(H).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

- NTS $\mathbf{H} \sim \pi$, a uniform random copy of H in K_n , is $1/p_{\tilde{\mathbf{F}}}(H)$ spread.
- For any $S \subseteq K_n$

$$\pi(S \subseteq \mathbf{H})$$

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \; \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

- NTS $\mathbf{H} \sim \pi$, a uniform random copy of H in K_n , is $1/p_{\tilde{\mathbf{F}}}(H)$ spread.
- \bullet For any $S\subseteq K_n$ by symmetry (S independent random S in $K_n)$

$$\pi(S \subseteq H) = \pi(S \subseteq H)$$

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \; \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure ${\bf A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq {\bf A})\leq R^{-e(S)}$.

Spread Lemma

- NTS $\mathbf{H} \sim \pi$, a uniform random copy of H in K_n , is $1/p_{\tilde{\mathbf{F}}}(H)$ spread.
- \bullet For any $S\subseteq K_n$ by symmetry (§ independent random S in $K_n)$

$$\pi(S \subseteq H) = \pi(S \subseteq H) = \pi(S \subseteq H)$$

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \ \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\textbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

- NTS $\mathbf{H} \sim \pi$, a uniform random copy of H in K_n , is $1/p_{\tilde{\mathbf{F}}}(H)$ spread.
- \bullet For any $S\subseteq K_n$ by symmetry (§ independent random S in $K_n)$

$$\pi(S \subseteq H) = \pi(S \subseteq H) = \pi(S \subseteq H) = M_{S,H}/M_S$$

4D + 4B + 4B + B + 990

$$\mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) := \mathsf{max}_{\mathsf{H}' \subseteq \mathsf{H}} (\frac{\mathsf{M}_{\mathsf{H}',\mathsf{H}}}{2\mathsf{M}_{\mathsf{H}'}})^{1/\mathsf{e}(\mathsf{H}')}, \ \mathsf{p}_{\mathsf{c}}(\mathsf{H}) \leq \mathsf{K} \mathsf{p}_{\tilde{\mathsf{E}}}(\mathsf{H}) \log \mathsf{e}(\mathsf{H}).$$

Spread measure

If G_1,\ldots,G_M are subgraphs of K_n , the uniform measure $\mathbf{A}\sim\pi$ on G_i is R-spread if for all $S\subseteq K_n$ $\pi(S\subseteq \mathbf{A})\leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\mathbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

- NTS $\mathbf{H} \sim \pi$, a uniform random copy of H in K_n , is $1/p_{\tilde{E}}(H)$ spread.
- \bullet For any $S\subseteq K_n$ by symmetry (§ independent random S in $K_n)$

$$\pi(\mathsf{S}\subseteq\mathsf{H})=\pi(\mathsf{S}\subseteq\mathsf{H})=\pi(\mathsf{S}\subseteq\mathsf{H})=\mathsf{M}_{\mathsf{S},\mathsf{H}}/\mathsf{M}_{\mathsf{S}}\leq (1/2\mathsf{p}_{\widetilde{\mathsf{E}}}(\mathsf{H}))^{-\mathsf{e}(\mathsf{S})}.$$

This work

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := \max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \leq p_{\tilde{E}}(H) \leq p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

- (1) "Subgraph" formula beyond constant-size H.
 A simpler formula than (fractional) Kahn-Kalai thresholds.
- (2) Very short proof via the spread lemma.

 Main tool also in breakthroughs: sunflower lemma and frac. KK
- (3) New proof of spread lemma using Bayesian inference tools.

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where: (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\mathbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

Breakthroughs: sunflower conjecture & fractional Kahn-Kalai.

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

- Breakthroughs: sunflower conjecture & fractional Kahn-Kalai.
- Delicate counting arguments (Alweiss, Lovett, Wu, Zhang '19), (Frankston, Kahn, Narayanan, Park '19)

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

- Breakthroughs: sunflower conjecture & fractional Kahn-Kalai.
- Delicate counting arguments (Alweiss, Lovett, Wu, Zhang '19), (Frankston, Kahn, Narayanan, Park '19)
- (Rao '19): **Encoding** and *Shannon's channel theorem*.

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

- Breakthroughs: sunflower conjecture & fractional Kahn-Kalai.
- Delicate counting arguments (Alweiss, Lovett, Wu, Zhang '19), (Frankston, Kahn, Narayanan, Park '19)
- (Rao '19): Encoding and Shannon's channel theorem.
- (Tao '20): Non-trivial Shannon entropy manipulations

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where: (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\mathbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

- Breakthroughs: sunflower conjecture & fractional Kahn-Kalai.
- Delicate counting arguments (Alweiss, Lovett, Wu, Zhang '19), (Frankston, Kahn, Narayanan, Park '19)
- (Rao '19): Encoding and Shannon's channel theorem.
- (Tao '20): Non-trivial Shannon entropy manipulations

New principled proof via Bayesian inference formulation.

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

There exists C > 0 s.t. if G_1, \ldots, G_M subgraphs of K_n , where: (1) $e(G_i) \le k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread,

then for $p \ge C \log k/R$, $\mathbf{G} \sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

There exists C>0 s.t. if G_1,\ldots,G_M subgraphs of K_n , where: (1) $e(G_i)\leq k$, $\forall i$ and (2) the uniform measure on G_i 's is R-spread, then for $p\geq C\log k/R$, $\mathbf{G}\sim G(n,p)$ contains one of the G_i 's w.p. ≥ 0.9 .

• Sample a $G_i \sim \pi$ as "signal" and $\mathbf{G} \sim G(\mathsf{n},\mathsf{p})$ as "noise" (p noise level). Observe $\mathbf{G}' = \mathsf{G}_i \cup \mathbf{G}$. Can a statistician estimate G_i from \mathbf{G}' ? (Formally: find $j = j(\mathbf{G}')$ with $|\mathsf{G}_i \cap \mathsf{G}_i| \geq 1$.)

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

- Sample a $G_i \sim \pi$ as "signal" and $\mathbf{G} \sim G(\mathsf{n},\mathsf{p})$ as "noise" (p noise level). Observe $\mathbf{G}' = \mathsf{G}_i \cup \mathbf{G}$. Can a statistician estimate G_i from \mathbf{G}' ? (Formally: find $j = \mathsf{j}(\mathbf{G}')$ with $|\mathsf{G}_j \cap \mathsf{G}_i| \geq 1$.)
- "Key step:" (Partial) estimation of G_i from $\mathbf{G}' = G_i \cup \mathbf{G}$ is impossible \Rightarrow the "noise" \mathbf{G} (almost) contains one of G_1, \ldots, G_M .

 $\mathbf{A} \sim \pi$ R-spread if for all $S \subseteq K_n$, $\pi(S \subseteq \mathbf{A}) \leq R^{-e(S)}$.

Spread Lemma

- Sample a $G_i \sim \pi$ as "signal" and $\mathbf{G} \sim G(\mathsf{n},\mathsf{p})$ as "noise" (p noise level). Observe $\mathbf{G}' = \mathsf{G}_i \cup \mathbf{G}$. Can a statistician estimate G_i from \mathbf{G}' ? (Formally: find $j = \mathsf{j}(\mathbf{G}')$ with $|\mathsf{G}_j \cap \mathsf{G}_i| \geq 1$.)
- "Key step:" (Partial) estimation of G_i from $\mathbf{G}' = G_i \cup \mathbf{G}$ is impossible \Rightarrow the "noise" \mathbf{G} (almost) contains one of G_1, \ldots, G_M .
- "All-or-Nothing" Phenomenon: tight bounds for when inference becomes impossible (GZ AoS '22), (RXZ MSL '21), (NWZ NeurIPS '20), (NWZ TIT'22).

This work

- $p_E(H) = \max_{H'} (1/2M_{H'})^{1/e(H')} = \max_{H' \text{ covers}} \{1\text{st MM thresholds}\}.$
- Second KK conjecture: $p_c(H) \le Kp_E(H) \log e(H)$.

We modify $p_E(H)$ to $p_{\tilde{E}}(H) := \max_{H' \subseteq H} (M_{H',H}/2M_{H'})^{1/e(H')}$ for which $p_E(H) \leq p_{\tilde{E}}(H) \leq p_c(H)$ and prove the modified second Kahn-Kalai conjecture

$$p_c(H) \leq K p_{\tilde{F}}(H) \log e(H).$$

- "Subgraph" formula beyond constant-size H.
 A simpler formula than (fractional) Kahn-Kalai thresholds.
- (2) Very short proof via the spread lemma.

 Main tool also in breakthroughs: sunflower lemma and frac. KK
- (3) New proof of spread lemma using Bayesian inference tools.

Can we characterize more thresholds?
 e.g. hypergraph inclusion thresholds (vertex-symmetry).

- Can we characterize more thresholds?
 e.g. hypergraph inclusion thresholds (vertex-symmetry).
- Prove/refute second Kahn-Kalai conjecture.

- Can we characterize more thresholds?
 e.g. hypergraph inclusion thresholds (vertex-symmetry).
- Prove/refute second Kahn-Kalai conjecture.
- Powerful spread lemma: more applications? beyond Erdős-Rényi?

- Can we characterize more thresholds?
 e.g. hypergraph inclusion thresholds (vertex-symmetry).
- Prove/refute second Kahn-Kalai conjecture.
- Powerful spread lemma: more applications? beyond Erdős-Rényi?
- An interesting direction:
 Bayesian Inference ⇒ spread lemma ⇒ sunflower, frac. KK.
 More applications?

- Can we characterize more thresholds?
 e.g. hypergraph inclusion thresholds (vertex-symmetry).
- Prove/refute second Kahn-Kalai conjecture.
- Powerful spread lemma: more applications? beyond Erdős-Rényi?
- An interesting direction:
 Bayesian Inference ⇒ spread lemma ⇒ sunflower, frac. KK.
 More applications?

Thank you!!